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Abstract. For a generic set in the Teichmüller space, we construct a covariant
functor with the range in a category of the AF -algebras; the functor maps
isomorphic Riemann surfaces to the stably isomorphic AF -algebras. In the
special case of genus one, one gets a functor between the category of complex
tori and the Effros–Shen algebras.

1. Introduction

The aim of our paper is to construct a functor from the set of generic Riemann
surfaces to a category of operator algebras known as the AF-algebras ; for the
sake of clarity, consider the simplest example. We shall write {Λτ = Z + Zτ |
=(τ) > 0} to denote a lattice in the complex plane C. Let C/Λτ be a complex
torus corresponding to Λτ , that is, the Riemann surface of genus g = 1. We shall
write {Aθ | θ ∈ R} to denote an AF -algebra defined by the inductive limit of
positive isomorphisms:

Z2

a0 1
1 0


−→ Z2

a1 1
1 0


−→ Z2

a2 1
1 0


−→ . . . , (1.1)

where the regular continued fraction [a0, a1, a2, . . . ] converges to θ; we refer the
reader to Bratteli [3] for a definition of the AF -algebras and Effros and Shen [6]
for the properties of algebra Aθ (the Effros–Shen algebra). Recall that C/Λτ and
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C/Λτ ′ are isomorphic complex tori if and only if τ ′ = aτ+b
cτ+d

for some integers a, b, c,
and d, such that ad− bc = ±1; here, an isomorphism means a conformal map be-
tween the Riemann surfaces C/Λτ and C/Λτ ′ . It is a deep and amazing fact that
the same is true of the Effros–Shen algebras. Namely, recall that the C∗-algebras
A and A′ are called stably isomorphic (Morita equivalent) if A ⊗ K ∼= A′ ⊗ K,
where K is the C∗-algebra of compact operators on a Hilbert space H. It is
known that the Effros–Shen algebras Aθ and Aθ′ are stably isomorphic if and
only if θ′ = aθ+b

cθ+d
for some integers a, b, c, and d, such that ad − bc = ±1 (see,

e.g., [6, pp. 199–201]). (A relation between complex tori and continued fractions
was already known to Klein [10].) One may wonder if there exists a functor from
the category of complex tori (resp., Riemann surfaces) to the category of Effros–
Shen algebras (resp., AF -algebras) such that isomorphisms between the Riemann
surfaces generate stable isomorphisms between the corresponding AF -algebras.

In the present paper we construct a covariant functor F from a generic set of the
Riemann surfaces of genus g ≥ 1 to a category of the so-called toric AF-algebras
(to be specified below); the functor maps isomorphic Riemann surfaces to the
stably isomorphic toric AF -algebras (Theorem 1.1). To formulate our results,
denote by T (g) the Teichmüller space of genus g ≥ 1, and let S ∈ T (g) be a
Riemann surface. Let q ∈ H0(S,Ω⊗2) be a holomorphic quadratic differential on

the Riemann surface S such that all zeros of q are simple (see [13]). By S̃ we
denote a double cover of S ramified over the zeros of q. Note that there is an

involution on the homology groups H∗(S̃) induced by the covering map S̃ → S.

Let Hodd
1 (S̃) be the odd part of the first (integral) homology of S̃ with respect to

this involution relative to the zeros of q. By the formulas for the relative homology,

one gets Hodd
1 (S̃) ∼= Zn, where n = 6g− 6 if g ≥ 2 and n = 2 if g = 1. It is known

that

Hom
(
Hodd

1 (S̃);R
)
− {0} ∼= T (g), (1.2)

where 0 is the zero homomorphism (see [9]). Fix a basis in homology group

Hodd
1 (S̃) and, in view of (1.2), denote by (λ1, . . . , λn) its image in R such that

λ1 6= 0; let θ = (θ1, . . . , θn−1) be a vector with the coordinates θi = λi−1/λ1. We
shall consider the following Jacobi–Perron continued fraction:(

1
θ

)
= lim

k→∞

(
0 1
I b1

)
. . .

(
0 1
I bk

)(
0
I

)
, (1.3)

where bi = (b
(i)
1 , . . . , b

(i)
n )T is a vector of the nonnegative integers, I is the unit

matrix, and I = (0, . . . , 0, 1)T ; we refer the reader to Bernstein [2] for the theory of
such fractions. Finally, consider an AF -algebra defined by the following inductive
limit of positive isomorphisms:

Zn

0 1
I b1


−→ Zn

0 1
I b2


−→ Zn

0 1
I b3


−→ . . . (1.4)

(see, e.g., [5]). We shall denote such an algebra by Aθ and refer to Aθ as a toric
AF-algebra. Notice that if g = 1, then the Jacobi–Perron continued fraction
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coincides with a regular continued fraction; thus, for g = 1, the toric AF -algebra
is isomorphic to an Effros–Shen algebra Aθ, and hence our notation.

Let F : T (g) → {toric AF -algebras} be a map acting by the formula
(λ1, . . . , λn) 7→ Aθ, where θ = (θ1, . . . , θn). Let V be the maximal subset of T (g)
such that every Riemann surface S ∈ V corresponds to a convergent Jacobi–
Perron fraction, and let W = F (V ). Our main result is as follows.

Theorem 1.1. The set V is a generic subset of T (g), and map F has the follow-
ing properties: (i) V ∼= W × (0,∞) is a trivial fiber bundle, whose projection map
π : V → W coincides with F ; and (ii) F is a covariant functor which maps iso-
morphic Riemann surfaces S, S ′ ∈ V to the stably isomorphic toric AF-algebras
Aθ,Aθ′ ∈ W .

The article is organized as follows. Preliminary facts are reviewed in Section 2.
Theorem 1.1 is proved in Section 3.

2. Preliminaries

2.1. Measured foliations and T (g). A measured foliation, F, on a surface X is
a partition of X into the singular points x1, . . . , xn of order k1, . . . , kn and regular
leaves (1-dimensional submanifolds). On each open cover Ui of X − {x1, . . . , xn}
there exists a nonvanishing real-valued closed 1-form φi such that (i) φi = ±φj

on Ui∩Uj, and (ii) at each xi there exists a local chart (u, v) : V → R2 such that,

for z = u + iv, it holds that φi = Im(z
ki
2 dz) on V ∩ Ui for some branch of z

ki
2 .

The pair (Ui, φi) is called an atlas for measured foliation F. Finally, a measure
µ is assigned to each segment (t0, t) ∈ Ui, which is transverse to the leaves of F
via the integral µ(t0, t) =

∫ t

t0
φi. The measure is invariant along the leaves of F;

hence the name. We refer the reader to Thurston [14] and Fathi, Laudenbach,
and Poénaru [8] for a systematic account of measured foliations.

Let S be a Riemann surface, and let q ∈ H0(S,Ω⊗2) be a holomorphic quadrat-
ic differential on S. The lines Re q = 0 and Im q = 0 define a pair of measured
foliations on R, which are transversal to each other outside the set of singular
points. The set of singular points is common to both foliations and coincides with
the zeros of q. The above measured foliations are said to represent the vertical
and horizontal trajectory structure of q, respectively. Let T (g) be the Teichmüller
space of the topological surface X of genus g ≥ 1, that is, the space of the com-
plex structures on X. Consider the vector bundle p : Q→ T (g) over T (g), whose
fiber above a point S ∈ T (g) is the vector space H0(S,Ω⊗2). Given nonzero q ∈ Q
above S, we can consider a horizontal measured foliation Fq ∈ ΦX of q, where
ΦX denotes the space of equivalence classes of measured foliations on X. If {0} is
the zero section of Q, the above construction defines a map Q−{0} −→ ΦX . For
any F ∈ ΦX , let EF ⊂ Q− {0} be the fiber above F. In other words, EF is a sub-
space of the holomorphic quadratic forms whose horizontal trajectory structure
coincides with the measured foliation F. Note that if F is a measured foliation
with the simple zeros (a generic case), then EF ∼= Rn−0, while T (g) ∼= Rn, where
n = 6g − 6 if g ≥ 2 and n = 2 if g = 1.
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Lemma 2.1 (Hubbard and Masur [9, Main Theorem]). The restriction of p to
EF defines a homeomorphism (an embedding) hF : EF → T (g).

The Hubbard–Masur result implies that the measured foliations parameterize
the space T (g)−{pt}, where pt = hF(0); indeed, denote by F′ a vertical trajectory
structure of q. Since F and F′ define q, and F = Const for all q ∈ EF, one gets
a homeomorphism between T (g) − {pt} and ΦX , where ΦX

∼= Rn − 0 is the
space of equivalence classes of the measured foliations F′ on X. Note that the
above parameterization depends on a foliation F. However, there exists a unique
canonical homeomorphism h = hF as follows. Let Sp(S) be the length spectrum of
the Riemann surface S, and let Sp(F′) be the set of positive reals inf µ(γi), where
γi runs over all simple closed curves, which are transverse to the foliation F′.
A canonical homeomorphism h = hF : ΦX → T (g) − {pt} is defined by the
formula Sp(F′) = Sp(hF(F′)) for ∀F′ ∈ ΦX . Thus, the following corollary is true.

Corollary 2.2. There exists a unique homeomorphism h : ΦX → T (g)− {pt}.

Recall that ΦX is the space of equivalence classes of measured foliations on
the topological surface X. Following Douady and Hubbard [4], we consider a
coordinate system on ΦX suitable for the proof of Theorem 1.1. For clarity, let
us make a generic assumption that q ∈ H0(S,Ω⊗2) is a nontrivial holomorphic
quadratic differential with only simple zeros. We wish to construct a Riemann
surface of

√
q, which is a double cover of S with ramification over the zeros of q.

Such a surface, denoted by S̃, is unique and has an advantage of carrying a

holomorphic differential ω such that ω2 = q. We further denote by π : S̃ → S

the covering projection. The vector space H0(S̃,Ω) splits into the direct sum

H0
even(S̃,Ω)⊕H0

odd(S̃,Ω) in view of the involution π−1 of S̃, and the vector space

H0(S,Ω⊗2) ∼= H0
odd(S̃,Ω). Let H

odd
1 (S̃) be the odd part of the homology of S̃

relative to the zeros of q. Consider the pairing Hodd
1 (S̃) × H0(S,Ω⊗2) → C

defined by the integration (γ, q) 7→
∫
γ
ω. We shall take the associated map ψq :

H0(S,Ω⊗2) → Hom(Hodd
1 (S̃);C), and let hq = Reψq.

Lemma 2.3 (Douady and Hubbard [4]). The map

hq : H
0(S,Ω⊗2) −→ Hom

(
Hodd

1 (S̃);R
)

(2.1)

is an R-isomorphism.

Since each F ∈ ΦX is the vertical foliation Re q = 0 for a q ∈ H0(S,Ω⊗2),

the Douady–Hubbard lemma implies that ΦX
∼= Hom(Hodd

1 (S̃);R). By formulas

for the relative homology, one finds that Hodd
1 (S̃) ∼= Zn, where n = 6g − 6 if

g ≥ 2 and n = 2 if g = 1. Finally, each h ∈ Hom(Zn;R) is given by the reals
λ1 = h(e1), . . . , λn = h(en), where (e1, . . . , en) is a basis in Zn. The numbers
(λ1, . . . , λn) are the coordinates in the space ΦX and, in view of Corollary 2.2, in
the Teichmüller space T (g).

2.2. The Jacobi–Perron continued fraction. Let a1, a2 ∈ N such that
a2 ≤ a1. Recall that the greatest common divisor of a1, a2, GCD(a1, a2) can
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be determined from the Euclidean algorithm

a1 = a2b1 + r3,

a2 = r3b2 + r4,

r3 = r4b3 + r5,
...

rk−3 = rk−2bk−1 + rk−1,

rk−2 = rk−1bk,

where bi ∈ N and GCD(a1, a2) = rk−1. The Euclidean algorithm can be written
as the regular continued fraction

θ =
a1
a2

= b1 +
1

b2 +
1

+···+ 1
bk

= [b1, . . . , bk]. (2.2)

If a1, a2 are noncommensurable, in the sense that θ ∈ R−Q, then the Euclidean
algorithm never stops and θ = [b1, b2, . . . ]. Note that the regular continued frac-
tion can be written in matrix form:(

1
θ

)
= lim

k→∞

(
0 1
1 b1

)
. . .

(
0 1
1 bk

)(
0
1

)
. (2.3)

The Jacobi–Perron algorithm and the connected (multidimensional) continued
fraction generalize the Euclidean algorithm to the case GCD(a1, . . . , an) when
n ≥ 2. Namely, let λ = (λ1, . . . , λn), λi ∈ R−Q, and θi−1 =

λi

λ1
, where 1 ≤ i ≤ n.

The continued fraction
1
θ1
...

θn−1

 = lim
k→∞


0 0 . . . 0 1

1 0 . . . 0 b
(1)
1

...
...

...
...

0 0 . . . 1 b
(1)
n−1

 . . .


0 0 . . . 0 1

1 0 . . . 0 b
(k)
1

...
...

...
...

0 0 . . . 1 b
(k)
n−1



0
0
...
1

 ,

where b
(j)
i ∈ N ∪ {0}, is called the Jacobi–Perron algorithm (JPA). Unlike the

regular continued fraction algorithm, the JPA may diverge for certain vectors
λ ∈ Rn. However, for points of a generic subset of Rn, the JPA converges. The
convergence of the JPA algorithm can be characterized in terms of the mea-
sured foliations. Let F ∈ ΦX be a measured foliation on the surface X of genus
g ≥ 1. Recall that F is called uniquely ergodic if every invariant measure of F
is a multiple of the Lebesgue measure. It is known that there exists a generic
subset V ⊂ ΦX such that each F ∈ V is uniquely ergodic (see [12], [15]). We let

λ = (λ1, . . . , λn) be the vector with coordinates λi = µ(γi), where γi ∈ Hodd
1 (S̃);

by an abuse of notation, we shall say that λ ∈ V . In view of a bijection be-
tween measured foliations and the interval exchange transformations (see [12]),
the following characterization of convergence of the JPA is true.

Lemma 2.4 (Bauer [1, Theorem 4]). The JPA converges if and only if λ ∈ V ⊂
Rn.
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3. Proof of Theorem 1.1

Let us outline the proof. We shall consider the following sets of objects:

(i) generic Riemann surfaces V ;
(ii) pseudolattices PL (see [11]);
(iii) projective pseudolattices PPL;
(iv) toric AF -algebras W .

The proof takes the following steps:

(a) Show that V ∼= PL are equivalent categories such that isomorphic Rie-
mann surfaces S, S ′ ∈ V map to isomorphic pseudolattices PL,PL′ ∈ PL.

(b) A noninjective functor F : PL→ PPL is constructed. The F maps isomor-
phic pseudolattices to isomorphic projective pseudolattices and KerF ∼=
(0,∞).

(c) Show that a subcategory U ⊆ PPL and W are the equivalent categories.

In other words, we have the following diagram:

V
α−→ PL F−→ U

β−→W, (3.1)

where α is an injective map, β is a bijection, and KerF ∼= (0,∞).
(i) Category V . A Riemann surface is a triple (X,S, j), whereX is a topological

surface of genus g ≥ 1, j : X → S is a complex (conformal) parameterization
of X, and S is a Riemann surface. A morphism of Riemann surfaces (X,S, j) →
(X,S ′, j′) is a biholomorphic map modulo the ones that are isotopic to the identity
map with respect to a fixed topological marking of X. A category of generic
Riemann surfaces V consists of Ob(S), which are Riemann surfaces S ∈ V ⊂ T (g)
and morphismsH(S, S ′) between S, S ′ ∈ Ob(V ) that coincide with the morphisms
specified above. For any S, S ′, S ′′ ∈ Ob(S) and any morphisms ϕ′ : S → S ′,
ϕ′′ : S ′ → S ′′, a morphism φ : S → S ′′ is the composite of ϕ′ and ϕ′′, which we
write as φ = ϕ′′ϕ′. The identity morphism, 1S, is a morphism H(S, S).

(ii) Category PL. A pseudolattice (of rank n) is a triple (Λ,R, j), where Λ ∼= Zn

and j : Λ → R is a homomorphism. A morphism of pseudolattices (Λ,R, j) →
(Λ,R, j′) is a commutative diagram:

? ?
-

-

Zn R

Zn R

ϕ ψ

j′

j

where ϕ is a group homomorphism and ψ is an inclusion map; that is,
j′(Λ′) ⊆ j(Λ). Any isomorphism class of a pseudolattice contains a representative
given by j : Zn → R such that

j(1, 0, . . . , 0) = λ1, j(0, 1, . . . , 0) = λ2, . . . , j(0, 0, . . . , 1) = λn,
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where λ1, λ2, . . . , λn are positive reals. The pseudolattices of rank n make up a
category, which we denote by PLn.

The following lemma says that the Z-module Zλ1+ · · ·+Zλn is an invariant of
the isomorphism class of the Riemann surface S; in other words, the action of the
mapping class group Mod(X) on such a module corresponds to a transformation
of the basis of the module.

Lemma 3.1. Let g ≥ 2 (resp., g = 1) and n = 6g−6 (resp., n = 2). There exists
an injective covariant functor α : V → PLn which maps isomorphic Riemann
surfaces S, S ′ ∈ V to the isomorphic pseudolattices PL,PL′ ∈ PLn.

Proof. Let α : T (g) − {pt} → Hom(Hodd
1 (S̃);R) − 0 be a Hubbard–Masur map.

Since α is a homeomorphism between the respective spaces, we conclude that α
is an injective map. The first claim of the lemma is proved.

Let us show that α sends morphisms of S to morphisms of PL. Let ϕ ∈ Mod(X)
be a diffeomorphism of X. Suppose that all the zeros of measured foliations are

generic (simple), and let p : X̃ → X be the double cover of X. (Note that the
case of torus does not require a double cover, and thus one can assert p = Id

in the argument below.) Denote by ϕ̃ a diffeomorphism of X̃, which makes the
following diagram commutative:

? ?
-

-

X X

X̃ X̃

p p

ϕ

ϕ̃

One can consider the effect of ϕ, ϕ̃, and p on the respective (relative) integral
homology groups:

? ?
-

-

H1(X, SingF) H1(X, SingF)

Hodd
1 (X̃)⊕Heven

1 (X̃) Hodd
1 (X̃)⊕Heven

1 (X̃)

p∗ p∗

ϕ∗

ϕ̃∗

where Ker p∗ ∼= Heven
1 (X̃). Since p∗ : Hodd

1 (X̃) → H1(X, SingF) is an isomor-

phism, we conclude that ϕ̃∗ ∈ GLn(Z), where n = dimHodd
1 (X̃). It is easy to see

that ϕ̃∗ acts on a pseudolattice by a transformation of its basis, and therefore
ϕ̃∗ ∈ Mor(PL).

Let us show that α is a functor; indeed, let S, S ′ ∈ V be isomorphic Riemann
surfaces such that S ′ = ϕ(S) for a ϕ ∈ Mod(X). Let aij be the elements of matrix
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ϕ̃∗ ∈ GLn(Z). Recall that

λi =

∫
γi

φ (3.2)

for a closed 1-form φ = Reω and γi ∈ Hodd
1 (X̃). Then

γj =
n∑

i=1

aijγi, j = 1, . . . , n, (3.3)

are the elements of a new basis in Hodd
1 (X̃). By the integration rules,

λ′j =

∫
γj

φ =

∫
∑

aijγi

φ =
n∑

i=1

aijλi. (3.4)

Finally, let j(Λ) = Zλ1 + · · · + Zλn and j′(Λ) = Zλ′1 + · · · + Zλ′n. Since λ′j =∑n
i=1 aijλi and (aij) ∈ GLn(Z), we conclude that

j(Λ) = j′(Λ). (3.5)

In other words, the Z-module Zλ1 + · · · + Zλn is an invariant of Mod(X). In
particular, the pseudolattices (Λ,R, j) and (Λ,R, j′) are isomorphic. Hence, α :
V → PL maps isomorphic Riemann surfaces to the isomorphic pseudolattices;
that is, α is a functor.

Finally, let us show that α is a covariant functor; indeed, let ϕ1, ϕ2 ∈ Mor(S).
Then α(ϕ1ϕ2) = (ϕ̃1ϕ2)∗ = (ϕ̃1)∗(ϕ̃2)∗ = α(ϕ1)α(ϕ2). Lemma 3.1 follows. �

(iii) Category PPL. A projective pseudolattice (of rank n) is a triple (Λ,R, j),
where Λ ∼= Zn and j : Λ → R is a homomorphism. A morphism of projective
pseudolattices (Λ,C, j) → (Λ,R, j′) is a commutative diagram:

? ?
-

-

Zn R

Zn R

ϕ ψ

j′

j

where ϕ is a group homomorphism and ψ is an R-linear map. (Notice that, unlike
the case of pseudolattices, ψ is a scaling map as opposed to an inclusion map. This
allows the two pseudolattices to be projectively equivalent while being distinct in
the category PLn.) It is not hard to see that any isomorphism class of a projective
pseudolattice contains a representative given by j : Zn → R such that

j(1, 0, . . . , 0) = 1, j(0, 1, . . . , 0) = θ1, . . . , j(0, 0, . . . , 1) = θn−1,

where the θi’s are positive reals. The projective pseudolattices of rank n make up
a category which we denote by PPLn.
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(iv) Category W . Let θ = (θ1, . . . , θn−1). Then toric AF -algebras Aθ make
a category; morphisms in the category are stable isomorphisms between toric
AF -algebras. We shall denote such a category by Wn.

Lemma 3.2. Let Un ⊆ PPLn be a subcategory consisting of the projective pseu-
dolattices PPL = PPL(1, θ1, . . . , θn−1) for which the Jacobi–Perron fraction of
the vector (1, θ1, . . . , θn−1) converges to the vector. Define a map β : Un → Wn by
the formula PPL(1, θ1, . . . , θn−1) 7→ Aθ. Then β is a bijective functor that maps
isomorphic projective pseudolattices to the stably isomorphic toric AF-algebras.

Proof. It is evident that β is injective and surjective. Let us show that β is a
functor; indeed, every totally ordered abelian group of rank n has form Z+θ1Z+
· · ·+ Zθn−1 (see, e.g., [5, Corollary 4.7]). The latter is a projective pseudolattice
PPL from the category Un. On the other hand, each PPL defines a stable iso-
morphism class of the AF -algebra Aθ1,...,θn−1 ∈ Wn (see [7]). Therefore, β maps
isomorphic projective pseudolattices (from the set Un) to the stably isomorphic
toric AF -algebras, and vice versa. Lemma 3.2 follows. �

Let PL(λ1, λ2, . . . , λn) ∈ PLn and PPL(1, θ1, . . . , θn−1) ∈ PPLn. To finish the
proof of Theorem 1.1, it remains to show the following.

Lemma 3.3. Let F : PLn → PPLn be a map given by formula

PL(λ1, λ2, . . . , λn) 7→ PPL
(
1,
λ2
λ1
, . . . ,

λn
λ1

)
.

Then KerF = (0,∞) and F is a functor which maps isomorphic pseudolattices
to isomorphic projective pseudolattices.

Proof. Indeed, F can be thought of as a map from Rn to RP n−1. Hence, KerF =
{λ1 : λ1 > 0} ∼= (0,∞). The second part of the lemma is evident. �

Assuming n = 6g − 6 (resp., n = 2) for g ≥ 2 (resp., g = 1), one gets items (i)
and (ii) of the second part of Theorem 1.1 from Lemmas 3.1–3.3; the first part of
Theorem 1.1 (i.e., that V is generic) follows from Lemma 2.4. �
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