Ann. Funct. Anal. 7 (2016), no. 2, 358-370
http://dx.doi.org/10.1215/20088752-3544830
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

SCALE TRANSFORMATIONS FOR PRESENT POSITION-DEPENDENT CONDITIONAL EXPECTATIONS OVER CONTINUOUS PATHS

DONG HYUN CHO

Communicated by S. Barza

Abstract. Let $C[0, t]$ denote a generalized Wiener space, the space of realvalued continuous functions on the interval $[0, t]$, and define a random vector $Z_{n}: C[0, t] \rightarrow \mathbb{R}^{n}$ by

$$
Z_{n}(x)=\left(\int_{0}^{t_{1}} h(s) d x(s), \ldots, \int_{0}^{t_{n}} h(s) d x(s)\right)
$$

where $0<t_{1}<\cdots<t_{n}=t$ is a partition of $[0, t]$ and $h \in L_{2}[0, t]$ with $h \neq 0$ almost everywhere. Using a simple formula for a generalized conditional Wiener integral on $C[0, t]$ with the conditioning function Z_{n}, we evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function

$$
G(x)=f((e, x)) \phi((e, x))
$$

for $x \in C[0, t]$, where $f \in L_{p}(\mathbb{R})(1 \leq p \leq \infty)$, e is a unit element in $L_{2}[0, t]$, and ϕ is the Fourier transform of a measure of bounded variation over \mathbb{R}. We then express the generalized analytic conditional Feynman integral of G as two kinds of limits of nonconditional generalized Wiener integrals with a polygonal function and cylinder functions using a change-of-scale transformation. The choice of a complete orthonormal subset of $L_{2}[0, t]$ used in the transformation is independent of e.

[^0]choice of a complete orthonormal subset of $L_{2}[0, t]$ used in the transformation is independent of e. We note that the results of this paper are different from those in [6] and [11].

2. A generalized conditional Wiener integral

Let \mathbb{C} and \mathbb{C}_{+}denote the sets of complex numbers and complex numbers with positive real parts, respectively. Let $\left(C[0, t], \mathcal{B}(C[0, t]), w_{\varphi}\right)$ be the analogue of Wiener space associated with a probability measure φ on the Borel class of \mathbb{R}, where $\mathcal{B}(C[0, t])$ denotes the Borel class of $C[0, t]$ (see [8]). For $v \in L_{2}[0, t]$ and $x \in C[0, t]$, let $(v, x)=\int_{0}^{t} v(s) d x(s)$ denote the Paley-Wiener-Zygmund integral of v according to x (see [8]). The inner product on the real Hilbert space $L_{2}[0, t]$ is denoted by $\langle\cdot, \cdot\rangle$.

Let $F: C[0, t] \rightarrow \mathbb{C}$ be integrable, and let X be a random vector on $C[0, t]$. Then we have the conditional expectation $E[F \mid X]$ given X from a well-known probability theory (see [10, Definition 6.1.1.]). Furthermore, there exists a P_{X}-integrable function ψ on the value space of X such that $E[F \mid X](x)=(\psi \circ X)(x)$ for w_{φ}-a.e. $x \in C[0, t]$, where P_{X} is the probability distribution of X. The function ψ is called the conditional Wiener w_{φ}-integral of F given X, and it is also denoted by $E[F \mid X]$.

Let $0=t_{0}<t_{1}<\cdots<t_{n}=t$ be a partition of $[0, t]$, where n is a fixed positive integer. Let $h \in L_{2}[0, t]$ be of bounded variation with $h \neq 0$ almost everywhere on $[0, t]$. For $j=1, \ldots, n$, let

$$
\alpha_{j}=\frac{1}{\left\|\chi_{\left(t_{j-1}, t_{j}\right]} h\right\|} \chi_{\left(t_{j-1}, t_{j}\right]} h
$$

and let V be the subspace of $L_{2}[0, t]$ generated by $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Let V^{\perp} be the orthogonal complement of V. Let $\mathcal{P}: L_{2}[0, t] \rightarrow V$ be the orthogonal projection given by

$$
\mathcal{P} v=\sum_{j=1}^{n}\left\langle v, \alpha_{j}\right\rangle \alpha_{j}
$$

and let $\mathcal{P}^{\perp}: L_{2}[0, t] \rightarrow V^{\perp}$ be the orthogonal projection. For $x \in C[0, t]$ define the stochastic process $Z: C[0, t] \times[0, t] \rightarrow \mathbb{R}$ by

$$
Z(x, s)=\int_{0}^{s} h(u) d x(u), \quad 0 \leq s \leq t
$$

and let $Z_{n}: C[0, t] \rightarrow \mathbb{R}^{n}$ be given by

$$
\begin{equation*}
Z_{n}(x)=\left(Z\left(x, t_{1}\right), \ldots, Z\left(x, t_{n}\right)\right) \tag{2.1}
\end{equation*}
$$

Let $b(s)=\int_{0}^{s}(h(u))^{2} d u$, and, for $x \in C[0, t]$, define the polygonal function $[Z(x, \cdot)]_{b}$ of $Z(x, \cdot)$ by

$$
\begin{align*}
& {[Z(x, \cdot)]_{b}(s)} \\
& \quad=\sum_{j=1}^{n} \chi_{\left(t_{j-1}, t_{j}\right]}(s)\left[Z\left(x, t_{j-1}\right)+\frac{b(s)-b\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\left(Z\left(x, t_{j}\right)-Z\left(x, t_{j-1}\right)\right)\right] \tag{2.2}
\end{align*}
$$

for $s \in[0, t]$. Similarly, for $\vec{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$, the polygonal function $[\vec{\xi}]_{b}$ of $\vec{\xi}$ is given by (2.2) replacing $Z\left(x, t_{j}\right)$ by $\xi_{j}(j=1, \ldots, n)$ with $\xi_{0}=0$. For a function $F: C[0, t] \rightarrow \mathbb{C}$ such that $F_{Z}(x) \equiv F(Z(x, \cdot))$ is integrable over x, we have, by an application of Theorem 2.9 in [5],

$$
\begin{equation*}
E\left[F_{Z} \mid Z_{n}\right](\vec{\xi})=E\left[F\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \tag{2.3}
\end{equation*}
$$

for $P_{Z_{n}}$-a.e. $\vec{\xi} \in \mathbb{R}^{n}$ (for almost every $\vec{\xi} \in \mathbb{R}^{n}$), where $P_{Z_{n}}$ is the probability distribution of Z_{n} on the Borel class $\mathcal{B}\left(\mathbb{R}^{n}\right)$ of \mathbb{R}^{n}. For $\lambda>0$, let $F_{Z}^{\lambda}(x)=$ $F_{Z}\left(\lambda^{-\frac{1}{2}} x\right)$, and let $Z_{n}^{\lambda}(x)=Z_{n}\left(\lambda^{-\frac{1}{2}} x\right)$ for $x \in C[0, t]$, where Z_{n} is given by (2.1). Suppose that $E\left[F_{Z}^{\lambda}\right]$ exists. By the definition of the conditional Wiener w_{φ}-integral and (2.3),

$$
\begin{equation*}
E\left[F_{Z}^{\lambda} \mid Z_{n}^{\lambda}\right](\vec{\xi})=E\left[F\left(\lambda^{-\frac{1}{2}}\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}\right)+[\vec{\xi}]_{b}\right)\right] \tag{2.4}
\end{equation*}
$$

for $P_{Z_{n}^{\lambda}}$-a.e. $\vec{\xi} \in \mathbb{R}^{n}$, where $P_{Z_{n}^{\lambda}}$ is the probability distribution of Z_{n}^{λ} on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$. Let $I_{F_{Z}}^{\lambda}(\vec{\xi})$ be the right-hand side of (2.4). If $I_{F_{Z}}^{\lambda}(\vec{\xi})$ has an analytic extension $J_{\lambda}^{*}\left(F_{Z}\right)(\vec{\xi})$ on \mathbb{C}_{+}, then it is called the conditional analytic Wiener w_{φ}-integral of F_{Z}, given Z_{n} with the parameter λ, and is denoted by

$$
E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})=J_{\lambda}^{*}\left(F_{Z}\right)(\vec{\xi})
$$

for $\vec{\xi} \in \mathbb{R}^{n}$. Moreover, if, for nonzero real $q, E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})$ has a limit as λ approaches $-i q$ through \mathbb{C}_{+}, then it is called the conditional analytic Feynman w_{φ}-integral of F_{Z}, given Z_{n} with the parameter q, and is denoted by

$$
E^{a n f_{q}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})=\lim _{\lambda \rightarrow-i q} E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})
$$

If $E\left[F\left(\lambda^{-\frac{1}{2}} \cdot\right)\right]$ exists for $\lambda>0$ and it has an analytic extension $J_{\lambda}^{*}(F)$ on \mathbb{C}_{+}, then we call $J_{\lambda}^{*}(F)$ the analytic Wiener w_{φ}-integral of F over $C[0, t]$ with parameter λ, and it is denoted by

$$
E^{a n w_{\lambda}}[F]=J_{\lambda}^{*}(F)
$$

The following lemmas are useful to prove the results in the next sections (see [9]).

Lemma 2.1. Let a and b be positive real numbers. Then, for any real u,

$$
\int_{\mathbb{R}} \exp \left\{-a v^{2}-b(v-u)^{2}\right\} d v=\left(\frac{\pi}{a+b}\right)^{\frac{1}{2}} \exp \left\{-\frac{a b}{a+b} u^{2}\right\} .
$$

Lemma 2.2. Let $v \in L_{2}[0, t]$. Then, for w_{φ}-a.e. $x \in C[0, t]$,

$$
\left(v,[Z(x, \cdot)]_{b}\right)=(\mathcal{P}(v h), x) .
$$

Applying Theorem 3.5 in [8], we can easily prove the following theorem.
Theorem 2.3. Let $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be an orthonormal system of $L_{2}[0, t]$. For $i=1,2, \ldots, n$, let $X_{i}(x)=\left(h_{i}, x\right)$ on $C[0, t]$. Then X_{1}, \ldots, X_{n} are independent
and each X_{i} has the standard normal distribution. Moreover, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Borel-measurable, then

$$
\begin{aligned}
& \int_{C[0, t]} f\left(X_{1}(x), \ldots, X_{n}(x)\right) d w_{\varphi}(x) \\
& \quad *\left(\frac{1}{2 \pi}\right)^{\frac{n}{2}} \int_{\mathbb{R}^{n}} f\left(u_{1}, u_{2}, \ldots, u_{n}\right) \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} u_{j}^{2}\right\} d\left(u_{1}, u_{2}, \ldots, u_{n}\right),
\end{aligned}
$$

where $\stackrel{*}{=}$ means that if either side exists, then both sides exist and they are equal.

3. Generalized analytic conditional Feynman integrals

In this section we establish the analytic conditional Wiener and Feynman integrals of cylinder functions.

Let e be in $L_{2}[0, t]$ with $\|e\|=1$. For $1 \leq p \leq \infty$, let $\mathcal{A}^{(p)}$ be the space of the cylinder functions F having the following form:

$$
\begin{equation*}
F(x)=f((e, x)) \tag{3.1}
\end{equation*}
$$

for w_{φ}-a.e. $x \in C[0, t]$, where $f \in L_{p}(\mathbb{R})$. Without loss of generality, we can take f to be Borel-measurable. Let $\hat{\mathrm{M}}(\mathbb{R})$ be the space of all functions ϕ on \mathbb{R} defined by

$$
\begin{equation*}
\phi(u)=\int_{\mathbb{R}} \exp \{i u z\} d \rho(z) \tag{3.2}
\end{equation*}
$$

where ρ is a complex Borel measure of bounded variation over \mathbb{R}.
Theorem 3.1. Let $1 \leq p \leq \infty$. Let Z_{n} and $F \in \mathcal{A}^{(p)}$ be given by (2.1) and (3.1), respectively. Then, for $\lambda \in \mathbb{C}_{+}, E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})$ exists for almost every $\vec{\xi} \in \mathbb{R}^{n}$ and it is given by

$$
\begin{aligned}
& E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi}) \\
& \quad=\left[\frac{\lambda}{2 \pi\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}}\right]^{\frac{1}{2}} \int_{\mathbb{R}} f(u) \exp \left\{-\frac{\lambda}{2\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}}\left(u-\left(e,[\vec{\xi}]_{b}\right)\right)^{2}\right\} d u
\end{aligned}
$$

if $\mathcal{P}^{\perp}(e h) \neq 0$ or, equivalently, eh $\notin V$. Furthermore, if $p=1$ and $\mathcal{P}^{\perp}(e h) \neq 0$, then for a nonzero real $q E^{\operatorname{anf}_{q}},\left[F_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right-hand side of the above equality, replacing λ by -iq. If $\mathcal{P}^{\perp}(e h)=0$ or, equivalently, eh $\in V$, then

$$
E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})=E^{a n f_{q}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})=F\left([\vec{\xi}]_{b}\right)=f\left(\left(e,[\vec{\xi}]_{b}\right)\right)
$$

for almost every $\vec{\xi} \in \mathbb{R}^{n}$.
Proof. For $\lambda>0$ and almost every $\vec{\xi} \in \mathbb{R}^{n}$, we have, by Lemma 2.2 and Theorem 2.3,

$$
\begin{aligned}
I_{F_{Z}}^{\lambda}(\vec{\xi}) & =\int_{C[0, t]} f\left(\lambda^{-\frac{1}{2}}\left(e, Z(x, \cdot)-[Z(x, \cdot)]_{b}\right)+\left(e,[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x) \\
& =\int_{C[0, t]} f\left(\lambda^{-\frac{1}{2}}(e h-\mathcal{P}(e h), x)+\left(e,[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{C[0, t]} f\left(\lambda^{-\frac{1}{2}}\left(\mathcal{P}^{\perp}(e h), x\right)+\left(e,[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x) \\
& =\left[\frac{\lambda}{2 \pi\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}}\right]^{\frac{1}{2}} \int_{\mathbb{R}} f\left(u+\left(e,[\vec{\xi}]_{b}\right)\right) \exp \left\{-\frac{\lambda}{2\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}} u^{2}\right\} d u
\end{aligned}
$$

if $\mathcal{P}^{\perp}(e h) \neq 0$. If $\mathcal{P}^{\perp}(e h)=0$, then it is not difficult to show that $I_{F_{Z}}^{\lambda}(\vec{\xi})=$ $f\left(\left(e,[\vec{\xi}]_{b}\right)\right)$. By Morera's theorem we have the existence of $E^{a n w_{\lambda}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})$. If $p=1$, then the existence of $E^{a n f_{q}}\left[F_{Z} \mid Z_{n}\right](\vec{\xi})$ follows from the dominated convergence theorem.

By the boundedness of ϕ and Theorem 3.1, we have the following theorem.
Theorem 3.2. Let $G(x)=F(x) \phi((e, x))$ for w_{φ}-a.e. $x \in C[0, t]$, where $F \in$ $\mathcal{A}^{(p)}(1 \leq p \leq \infty)$ and $\phi \in \hat{\mathrm{M}}(\mathbb{R})$ are given by (3.1) and (3.2), respectively. Then, for $\lambda \in \mathbb{C}_{+}$and almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E^{a n w_{\lambda}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi}) \\
& \quad=\left[\frac{\lambda}{2 \pi\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}}\right]^{\frac{1}{2}} \int_{\mathbb{R}} f(u) \phi(u) \exp \left\{-\frac{\lambda}{2\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}}\left(u-\left(e,[\vec{\xi}]_{b}\right)\right)^{2}\right\} d u
\end{aligned}
$$

if $\mathcal{P}^{\perp}(e h) \neq 0$. Furthermore, if $p=1$ and $\mathcal{P}^{\perp}(e h) \neq 0$, then for a nonzero real q, $E^{a n f_{q}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right-hand side of the above equality, replacing $\lambda b y-i q$. If $\mathcal{P}^{\perp}(e h)=0$, then

$$
E^{a n w_{\lambda}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})=E^{a n f_{q}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})=G\left([\vec{\xi}]_{b}\right)=\phi\left(\left(e,[\vec{\xi}]_{b}\right)\right) f\left(\left(e,[\vec{\xi}]_{b}\right)\right)
$$

for almost every $\vec{\xi} \in \mathbb{R}^{n}$.

4. Change-of-scale formulas using the polygonal function

In this section we derive a change-of-scale formula for the generalized conditional Wiener integrals of cylinder functions on the analogue of Wiener space using the polygonal function as given in the previous section.

Throughout this paper, let $\left\{e_{1}, e_{2}, \ldots\right\}$ be a complete orthonormal basis of $L_{2}[0, t]$. For $v \in L_{2}[0, t]$, let

$$
\begin{equation*}
c_{j}(v)=\left\langle v, e_{j}\right\rangle \quad \text { for } j=1,2, \ldots \tag{4.1}
\end{equation*}
$$

For $m \in \mathbb{N}, \lambda \in \mathbb{C}_{+}$, and $x \in C[0, t]$, let

$$
\begin{equation*}
K_{m}(\lambda, x)=\exp \left\{\frac{1-\lambda}{2} \sum_{j=1}^{m}\left(e_{j}, x\right)^{2}\right\} \tag{4.2}
\end{equation*}
$$

Lemma 4.1. Let m be a fixed positive integer, and let K_{m} be given by (4.2). Let $1 \leq p \leq \infty$ and $F \in \mathcal{A}^{(p)}$ be given by (3.1). Suppose that $\left\{e_{1}, \ldots, e_{m}, \mathcal{P}^{\perp}(e h)\right\}$ is a linearly independent set. Then, for $\lambda \in \mathbb{C}_{+}$and $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{align*}
& E\left[K_{m}(\lambda, x) F\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+\left[\vec{\xi}_{b}\right)\right]\right. \\
& \quad=\lambda^{-\frac{m}{2}}\left[\frac{\lambda}{2 \pi A(m, \lambda)}\right]^{\frac{1}{2}} \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2 A(m, \lambda)}\left(u-\left(e,\left[\vec{\xi}_{b}\right)\right)^{2}\right\} f(u) d u\right. \tag{4.3}
\end{align*}
$$

where

$$
\begin{equation*}
A(m, \lambda)=\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}+\lambda\left[\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}-\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}\right] \tag{4.4}
\end{equation*}
$$

and the c_{j} 's are given by (4.1).
Proof. For $\lambda>0$ and $\vec{\xi} \in \mathbb{R}^{n}$, let $\Gamma(\lambda, m, \vec{\xi})$ be the left-hand side of (4.3). Then

$$
\begin{aligned}
\Gamma(\lambda, m, \vec{\xi}) & =\int_{C[0, t]} K_{m}(\lambda, x) F\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+\left[\vec{\xi}_{b}\right) d w_{\varphi}(x)\right. \\
& =\int_{C[0, t]} \exp \left\{\frac{1-\lambda}{2} \sum_{j=1}^{m}\left(e_{j}, x\right)^{2}\right\} f\left(\left(\mathcal{P}^{\perp}(e h), x\right)+\left(e,[\vec{\xi}]_{b}\right)\right) d w_{\varphi}(x)
\end{aligned}
$$

by Lemma 2.2. Let g_{m+1} be the unit element in $L_{2}[0, t]$ obtained from $\left\{e_{1}, \ldots, e_{m}\right.$, $\left.\mathcal{P}^{\perp}(e h)\right\}$ using the Gram-Schmidt orthonormalization process. Then

$$
\mathcal{P}^{\perp}(e h)=\sum_{j=1}^{m} c_{j}\left(\mathcal{P}^{\perp}(e h)\right) e_{j}+c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right) g_{m+1}
$$

where $c_{j}\left(\mathcal{P}^{\perp}(e h)\right)$ is given by (4.1) for $j=1, \ldots, m$ and

$$
\left[c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}=\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}-\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}
$$

By the independence of $\left\{e_{1}, \ldots, e_{m}, \mathcal{P}^{\perp}(e h)\right\}, c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right) \neq 0$. By Theorem 2.3,

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
&=\left(\frac{1}{2 \pi}\right)^{\frac{m+1}{2}} \int_{\mathbb{R}^{m+1}} \exp \left\{\frac{1-\lambda}{2} \sum_{j=1}^{m} u_{j}^{2}-\frac{1}{2} \sum_{j=1}^{m+1} u_{j}^{2}\right\} f\left(\sum_{j=1}^{m+1} c_{j}\left(\mathcal{P}^{\perp}(e h)\right) u_{j}\right. \\
&\left.+\left(e,[\vec{\xi}]_{b}\right)\right) d\left(u_{1}, \ldots, u_{m}, u_{m+1}\right) \\
&=\left(\frac{1}{2 \pi}\right)^{\frac{m+1}{2}} \int_{\mathbb{R}^{m+1}} \exp \left\{-\frac{\lambda}{2} \sum_{j=1}^{m} u_{j}^{2}-\frac{1}{2} u_{m+1}^{2}\right\} f\left(\sum_{j=1}^{m+1} c_{j}\left(\mathcal{P}^{\perp}(e h)\right) u_{j}\right. \\
&\left.+\left(e,[\vec{\xi}]_{b}\right)\right) d\left(u_{1}, \ldots, u_{m}, u_{m+1}\right) .
\end{aligned}
$$

Suppose that $c_{j}\left(\mathcal{P}^{\perp}(e h)\right) \neq 0$ for $j=1, \ldots, m$. For $j=1, \ldots, m+1$, let $z_{j}=$ $\sum_{k=1}^{j} c_{k}\left(\mathcal{P}^{\perp}(e h)\right) u_{k}$ and $z_{0}=0$. Then $u_{j}=\frac{1}{c_{j}\left(\mathcal{P}^{\perp}(e h)\right)}\left(z_{j}-z_{j-1}\right)$ for $j=1, \ldots, m+1$ so that, by Lemma 2.1 and the change-of-variable theorem,

$$
\begin{aligned}
& \Gamma(\lambda, m, \vec{\xi}) \\
&=\left(\frac{1}{2 \pi}\right)^{\frac{m+1}{2}} \frac{1}{\prod_{j=1}^{m+1} c_{j}\left(\mathcal{P}^{\perp}(e h)\right)} \int_{\mathbb{R}^{m+1}} \exp \left\{-\frac{\lambda}{2} \sum_{j=1}^{m} \frac{\left(z_{j}-z_{j-1}\right)^{2}}{\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}}\right. \\
&\left.-\frac{\left(z_{m+1}-z_{m}\right)^{2}}{2\left[c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}}\right\} f\left(z_{m+1}+\left(e,[\vec{\xi}]_{b}\right)\right) d\left(z_{1}, \ldots, z_{m}, z_{m+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \lambda^{-\frac{1}{2}}\left(\frac{1}{2 \pi}\right)^{\frac{m}{2}}\left[\frac{1}{\left[\sum_{j=1}^{2}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}\right] \prod_{j=3}^{m+1}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}}\right]^{\frac{1}{2}} \\
& \times \int_{\mathbb{R}^{m}} \exp \left\{-\frac{\lambda}{2 \sum_{j=1}^{2}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}} z_{2}^{2}-\frac{\lambda}{2} \sum_{j=3}^{m} \frac{\left(z_{j}-z_{j-1}\right)^{2}}{\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}}\right. \\
& \left.-\frac{\left(z_{m+1}-z_{m}\right)^{2}}{2\left[c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}}\right\} f\left(z_{m+1}+\left(e,[\vec{\xi}]_{b}\right)\right) d\left(z_{2}, \ldots, z_{m}, z_{m+1}\right) .
\end{aligned}
$$

Applying this process repeatedly,

$$
\begin{aligned}
\Gamma(\lambda, & m, \vec{\xi}) \\
= & \lambda^{-\frac{m-1}{2}} \frac{1}{2 \pi}\left[\frac{1}{\left[\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}\right]\left[c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}}\right]^{\frac{1}{2}} \\
& \times \int_{\mathbb{R}^{2}} \exp \left\{-\frac{\lambda}{2 \sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}} z_{m}^{2}-\frac{\left(z_{m+1}-z_{m}\right)^{2}}{2\left[c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right)^{2}\right.}\right\} \\
& \times f\left(z_{m+1}+\left(e,[\vec{\xi}]_{b}\right)\right) d\left(z_{m}, z_{m+1}\right) \\
= & \lambda^{-\frac{m}{2}}\left(\frac{\lambda}{2 \pi}\right)^{\frac{1}{2}}\left[\frac{1}{\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}+\lambda\left[c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}}\right]^{\frac{1}{2}} \\
& \times \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2\left(\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}+\lambda\left[c_{m+1}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}\right)} z_{m+1}^{2}\right\} \\
& \times f\left(z_{m+1}+\left(e,[\vec{\xi}]_{b}\right)\right) d z_{m+1} \\
= & \lambda^{-\frac{m}{2}}\left[\frac{\lambda}{2 \pi A(m, \lambda)}\right]^{\frac{1}{2}} \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2 A(m, \lambda)}\left(z-\left(e,[\vec{\xi}]_{b}\right)\right)^{2}\right\} f(z) d z .
\end{aligned}
$$

Since

$$
\begin{equation*}
\left(\frac{1}{2 \pi}\right)^{\frac{1}{2}} \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2} u^{2}\right\} d u=\lambda^{-\frac{1}{2}} \tag{4.5}
\end{equation*}
$$

we have (4.3) for $\lambda>0$, even if $c_{j}\left(\mathcal{P}^{\perp}(e h)\right)=0$ for some $j \in\{1, \ldots, m\}$. Each side of (4.3) is an analytic function of λ in \mathbb{C}_{+}so that, by the uniqueness of the analytic extension, we have (4.3) for any $\lambda \in \mathbb{C}_{+}$.

Using (4.5) and the same process as used in the proof of Lemma 4.1, we have the following corollary.

Corollary 4.2. Let m be a fixed positive integer, and let K_{m} be given by (4.2). Let $1 \leq p \leq \infty$ and $F \in \mathcal{A}^{(p)}$ be given by (3.1). Suppose that $\left\{e_{1}, \ldots, e_{m}, \mathcal{P}^{\perp}(e h)\right\}$ is a linearly dependent set. If $\mathcal{P}^{\perp}($ eh $) \neq 0$ or, equivalently, eh $\notin V$, then, for $\lambda \in \mathbb{C}_{+}$ and $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E\left[K_{m}(\lambda, x) F\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \\
& \quad=\lambda^{-\frac{m}{2}}\left[\frac{\lambda}{2 \pi A(m, 0)}\right]^{\frac{1}{2}} \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2 A(m, 0)}\left(u-\left(e,\left[\vec{\xi}_{b}\right)\right)^{2}\right\} f(u) d u,\right.
\end{aligned}
$$

where A is given by (4.4). Furthermore, if $\mathcal{P}^{\perp}(e h)=0$ or, equivalently, eh $\in V$, then, for $\lambda \in \mathbb{C}_{+}$and $\vec{\xi} \in \mathbb{R}^{n}$,

$$
E\left[K_{m}(\lambda, x) F\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right]=\lambda^{-\frac{m}{2}} F\left([\vec{\xi}]_{b}\right) .
$$

We now have the following theorem by the boundedness of ϕ.
Theorem 4.3. Let $G(x)=F(x) \phi((e, x))$ for w_{φ}-a.e. $x \in C[0, t]$, where $F \in$ $\mathcal{A}^{(p)}(1 \leq p \leq \infty)$ and ϕ are given by (3.1) and (3.2), respectively. Let m be a fixed positive integer, and let K_{m} be given by (4.2). If $\left\{e_{1}, \ldots, e_{m}, \mathcal{P}^{\perp}(e h)\right\}$ is a linearly independent set, then, for $\lambda \in \mathbb{C}_{+}$and $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E\left[K_{m}(\lambda, x) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \\
& \quad=\lambda^{-\frac{m}{2}}\left[\frac{\lambda}{2 \pi A(m, \lambda)}\right]^{\frac{1}{2}} \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2 A(m, \lambda)}\left(u-\left(e,[\vec{\xi}]_{b}\right)\right)^{2}\right\} f(u) \phi(u) d u,
\end{aligned}
$$

where A is given by (4.4). If $\left\{e_{1}, \ldots, e_{m}, \mathcal{P}^{\perp}(e h)\right\}$ is a linearly dependent set and $\mathcal{P}^{\perp}(e h) \neq 0$ or, equivalently, eh $\notin V$, then, for $\lambda \in \mathbb{C}_{+}$and $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E\left[K_{m}(\lambda, x) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \\
& \quad=\lambda^{-\frac{m}{2}}\left[\frac{\lambda}{2 \pi A(m, 0)}\right]^{\frac{1}{2}} \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2 A(m, 0)}\left(u-\left(e,[\vec{\xi}]_{b}\right)\right)^{2}\right\} f(u) \phi(u) d u .
\end{aligned}
$$

If $\mathcal{P}^{\perp}($ eh $)=0$ or, equivalently, eh $\in V$, then, for $\lambda \in \mathbb{C}_{+}$and $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
E\left[K_{m}(\lambda, x) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] & =\lambda^{-\frac{m}{2}} G\left([\vec{\xi}]_{b}\right) \\
& =\lambda^{-\frac{m}{2}} \phi\left(\left(e,[\vec{\xi}]_{b}\right)\right) f\left(\left(e,[\vec{\xi}]_{b}\right)\right)
\end{aligned}
$$

Theorem 4.4. Let Z_{n} be given by (2.1), and let G be as given in Theorem 4.3. Then, for $\lambda \in \mathbb{C}_{+}$and almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{align*}
& E^{a n w_{\lambda}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi}) \\
& \quad=\lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} E\left[K_{m}(\lambda, x) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \tag{4.6}
\end{align*}
$$

where K_{m} is given by (4.2). Moreover, if $p=1, q$ is a nonzero real number, and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to -iq as m approaches ∞, then $E^{a n f_{q}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})$ is given by the right-hand side of (4.6) replacing λ by λ_{m}.

Proof. Suppose that $\left\{e_{1}, \ldots, e_{m}, \mathcal{P}^{\perp}(e h)\right\}$ is a linearly independent set for any positive integer m. Then, for $\lambda \in \mathbb{C}_{+}$and $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \lambda^{\frac{m}{2}} E\left[K_{m}(\lambda, x) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \\
& \quad=\left[\frac{\lambda}{2 \pi A(m, \lambda)}\right]^{\frac{1}{2}} \int_{\mathbb{R}} \exp \left\{-\frac{\lambda}{2 A(m, \lambda)}\left(u-\left(e,[\vec{\xi}]_{b}\right)\right)^{2}\right\} f(u) \phi(u) d u
\end{aligned}
$$

by Theorem 4.3. By (4.4),

$$
\begin{aligned}
\lim _{m \rightarrow \infty} A(m, \lambda) & =\lim _{m \rightarrow \infty}\left[\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}+\lambda\left[\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}-\sum_{j=1}^{m}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}\right]\right] \\
& =\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}+\lambda\left[\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}-\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}\right]=\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}
\end{aligned}
$$

so that we have (4.6) by Theorem 3.2. If $\left\{e_{1}, \ldots, e_{l}, \mathcal{P}^{\perp}(e h)\right\}$ is a linearly dependent set for some positive integer l and $\mathcal{P}^{\perp}(e h) \neq 0$, then, for $m \geq l$,

$$
A(m, \lambda)=A(m, 0)=A(l, 0)=\sum_{j=1}^{l}\left[c_{j}\left(\mathcal{P}^{\perp}(e h)\right)\right]^{2}=\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}
$$

and hence

$$
\lambda^{\frac{m}{2}} E\left[K_{m}(\lambda, x) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right]=E^{a n w_{\lambda}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})
$$

by Theorem 3.2 and the second equality of Theorem 4.3. Finally, if $\mathcal{P}^{\perp}(e h)=0$, then we have (4.6) by Theorem 3.2 and the third equality of Theorem 4.3.

The following corollary follows immediately from the proof of Theorem 4.4.
Corollary 4.5. Let $K_{0}(\lambda, x)=1$ for $\lambda \in \mathbb{C}_{+}$and $x \in C[0, t]$, let G be as given in Theorem 4.3, and letl be the smallest positive integer such that $\left\{e_{1}, \ldots, e_{l}, \mathcal{P}^{\perp}(e h)\right\}$ is a linearly dependent set if $\mathcal{P}^{\perp}(e h) \neq 0$. Moreover, let $l=0$ if $\mathcal{P}^{\perp}(e h)=0$. Then, for any nonnegative integer r with $r \geq l$, for $\lambda \in \mathbb{C}_{+}$and for almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
E^{a n w_{\lambda}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})=\lambda^{\frac{r}{2}} E\left[K_{r}(\lambda, x) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] \tag{4.7}
\end{equation*}
$$

Letting $\lambda=\gamma^{-2}$ in (4.6) and (4.7), we have the following change-of-scale formulas for the generalized conditional Wiener integral on the analogue of Wiener space using the polygonal function.

Corollary 4.6.

(1) Under the assumptions as given in Theorem 4.4, we have, for $\gamma>0$ and almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E\left[G(\gamma Z(x, \cdot)) \mid \gamma Z_{n}(x)\right](\vec{\xi}) \\
& \quad=\lim _{m \rightarrow \infty} \gamma^{-m} E\left[K_{m}\left(\gamma^{-2}, x\right) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right] .
\end{aligned}
$$

(2) Under the assumptions as given in Corollary 4.5, we have for any nonnegative integer r with $r \geq l$, for $\gamma>0$, and for almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E\left[G(\gamma Z(x, \cdot)) \mid \gamma Z_{n}(x)\right](\vec{\xi}) \\
& \quad=\gamma^{-r} E\left[K_{r}\left(\gamma^{-2}, x\right) G\left(Z(x, \cdot)-[Z(x, \cdot)]_{b}+[\vec{\xi}]_{b}\right)\right]
\end{aligned}
$$

5. Change-of-scale formulas without the polygonal function

In this section we derive change-of-scale formulas for the generalized conditional Wiener integral of the cylinder function on the analogue of Wiener space without the polygonal functions used in Section 4.

Theorem 5.1. Let Z_{n} be given by (2.1), and let G be as given in Theorem 4.3. Then, for $\lambda \in \mathbb{C}_{+}$and almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{align*}
E^{a n w_{\lambda}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})= & \lim _{m \rightarrow \infty} \lambda^{\frac{m}{2}} E\left[K _ { m } (\lambda , \cdot) f \left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|\right.\right. \\
& \left.\left.+\left(e,[\vec{\xi}]_{b}\right)\right) \phi\left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right)\right] \tag{5.1}
\end{align*}
$$

for any unit element $v \in L_{2}[0, t]$, where K_{m} is given by (4.2). Moreover, if $p=1$, q is a nonzero real number, and $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ is a sequence in \mathbb{C}_{+}converging to -iq as m approaches ∞, then $E^{\operatorname{anf}_{q}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})}$ is given by the right-hand side of (5.1) replacing λ by λ_{m}.

Proof. Suppose that $\mathcal{P}^{\perp}(e h) \neq 0$. For $\lambda \in \mathbb{C}_{+}$and almost every $\vec{\xi} \in \mathbb{R}^{n}$, we have, by Theorem 3.2 and the change-of-variable theorem,

$$
\begin{aligned}
E^{a n w_{\lambda}} & {\left[G_{Z} \mid Z_{n}\right](\vec{\xi}) } \\
= & {\left[\frac{\lambda}{2 \pi\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}}\right]^{\frac{1}{2}} \int_{\mathbb{R}} f(u) \phi(u) \exp \left\{-\frac{\lambda}{2\left\|\mathcal{P}^{\perp}(e h)\right\|^{2}}\left(u-\left(e,[\vec{\xi}]_{b}\right)\right)^{2}\right\} d u } \\
= & \left(\frac{\lambda}{2 \pi}\right)^{\frac{1}{2}} \int_{\mathbb{R}} f\left(u\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right) \phi\left(u\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right) \\
& \times \exp \left\{-\frac{\lambda}{2} u^{2}\right\} d u \\
= & E^{a n w_{\lambda}}\left[f\left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right) \phi\left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right)\right]
\end{aligned}
$$

where the last equality follows from Theorem 3.1 in [6]. Applying the same method as used in the proofs of Lemma 2.2, Theorem 2.6, and Corollary 2.7 in [9], we have (5.1). If $\mathcal{P}^{\perp}(e h)=0$, then we have (5.1) by (4.5) and Theorem 3.2. The second part of the theorem immediately follows from the dominated convergence theorem.

Now we have the following corollaries by Corollary 4.5 and Theorem 5.1.
Corollary 5.2. Under the assumptions as given in Corollary 4.5, we have, for any nonnegative integer r with $r \geq l$, for $\lambda \in \mathbb{C}_{+}$, and for almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
E^{a n w_{\lambda}}\left[G_{Z} \mid Z_{n}\right](\vec{\xi})= & \lambda^{\frac{r}{2}} E\left[K_{r}(\lambda, \cdot) f\left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right)\right. \\
& \left.\times \phi\left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right)\right]
\end{aligned}
$$

for any unit element $v \in L_{2}[0, t]$.

Corollary 5.3.

(1) Under the assumptions as given in Theorem 4.4, we have, for $\gamma>0$ and almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E\left[G(\gamma Z(x, \cdot)) \mid \gamma Z_{n}(x)\right](\vec{\xi}) \\
& =\lim _{m \rightarrow \infty} \gamma^{-m} E\left[K _ { m } (\gamma ^ { - 2 } , \cdot) f \left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|\right.\right. \\
& \left.\left.\quad+\left(e,[\vec{\xi}]_{b}\right)\right) \phi\left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right)\right]
\end{aligned}
$$

for any unit element $v \in L_{2}[0, t]$.
(2) Under the assumptions as given in Corollary 4.5, we have, for any nonnegative integer r with $r \geq l$, for $\gamma>0$, and for almost every $\vec{\xi} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& E\left[G(\gamma Z(x, \cdot)) \mid \gamma Z_{n}(x)\right](\vec{\xi}) \\
& \quad=\gamma^{-r} E\left[K _ { r } (\gamma ^ { - 2 } , \cdot) f \left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|\right.\right. \\
& \left.\left.\quad+\left(e,[\vec{\xi}]_{b}\right)\right) \phi\left((v, \cdot)\left\|\mathcal{P}^{\perp}(e h)\right\|+\left(e,[\vec{\xi}]_{b}\right)\right)\right]
\end{aligned}
$$

for any unit element $v \in L_{2}[0, t]$.
Remark 5.4.
(1) While the complete orthonormal set in [6] and [11] contain e used in the definition of the cylinder function, the complete orthonormal set $\left\{e_{1}, e_{2}, \ldots\right\}$ in this paper does not contain e. Furthermore, the v 's in Theorem 5.1 and Corollaries 5.2 and 5.3 are independent of both $\left\{e_{1}, e_{2}, \ldots\right\}$ and e.
(2) Letting $\phi=1$ or, equivalently, $\rho=\delta_{0}$, which is the Dirac measure concentrated at 0, Corollaries 4.5, 4.6, 5.2, and 5.3 and Theorems 4.4 and 5.1 still hold replacing G by F.
(3) The change-of-scale formulas in this paper still hold, even if $\mathcal{P}^{\perp}(e h)=0$ or, equivalently, eh $\in V$. Since, for $\gamma>0$ and almost every $\vec{\xi} \in \mathbb{R}^{n}$,
$E\left[G(\gamma Z(x, \cdot)) \mid \gamma Z_{n}(x)\right](\vec{\xi})=G\left([\vec{\xi}]_{b}\right)=E\left[G(Z(x, \cdot)) \mid Z_{n}(x)\right](\vec{\xi})$,
they are surplus in this case.
(4) While the conditioning function Z_{n} does not contain the initial position $Z(x, 0)$ of the path $Z(x, \cdot)$ because of $Z(x, 0)=0$, it does contain the position $Z(x, t)$ at the present time t. Furthermore, if $h=1$ almost everywhere, then $Z_{n}(x)=\left(x\left(t_{1}\right)-x(0), \ldots, x\left(t_{n}\right)-x(0)\right)$ so that the formulas in this paper do not extend the existing change-of-scale formulas on the (generalized) Wiener spaces (see [6], [11]).
(5) The results of this paper are independent of a particular choice of the probability measure φ.

Acknowledgments. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2058991).

References

1. R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), no. 4, 623-627. Zbl 0057.09601. MR0065033. 359
2. R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), no. 2, 130-137. Zbl 0032.41801. MR0019259. 359
3. R. H. Cameron and D. A. Storvick, "Some Banach algebras of analytic Feynman integrable functionals" in Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer, Berlin, 1980, 18-67. MR0577446. 359
4. R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 105-115. MR0950411. 359
5. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795-3811. MR2386246. DOI 10.1090/ S0002-9947-08-04380-8. 359, 361
6. D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438. Zbl 1175.28010. MR2546758. DOI 10.1016/j.jmaa.2009.05.023. 359, 360, 368, 369
7. D. H. Cho and I. Yoo, Change of scale formulas for a generalized conditional Wiener integral, to appear in Bull. Korean Math. Soc. (2016). 359
8. M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819. Zbl 1017.28007. MR1920906. DOI 10.4134/ JKMS.2002.39.5.801. 359, 360, 361
9. B. S. Kim, Relationship between the Wiener integral and the analytic Feynman integral of cylinder function, J. Chungcheong Math. Soc. 27 (2014), no. 2, 249-260. 359, 361, 368
10. R. G. Laha and V. K. Rohatgi, Probability Theory, Wiley, New York, 1979. Zbl 0409.60001. MR0534143. 360
11. I. Yoo, K. S. Chang, D. H. Cho, B. S. Kim, and T. S. Song, A change of scale formula for conditional Wiener integrals on classical Wiener space, J. Korean Math. Soc. 44 (2007), no. 4, 1025-1050. Zbl 1129.28014. MR2334543. DOI 10.4134/JKMS.2007.44.4.1025. 359, 360, 369
12. I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, II, J. Korean Math. Soc. 31 (1994), no. 1, 115-129. MR1269456. 359
13. I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), no. 2, 239-247. MR1261069. DOI 10.1155/ S0161171294000359. 359
14. I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), no. 1, 371-389. Zbl 1048.28010. MR2061137. DOI 10.1216/rmjm/1181069911. 359

Department of Mathematics, Kyonggi University, Suwon 16227, Republic of KoREA.

E-mail address: j94385@kyonggi.ac.kr

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Aug. 25, 2015; Accepted Nov. 2, 2015.
 2010 Mathematics Subject Classification. Primary 46T12; Secondary 28C20, 46G12.
 Keywords. analytic conditional Feynman integral, analytic conditional Wiener integral, conditional Wiener integral, Wiener integral, Wiener space.

