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Abstract. Let H be a complex separable Hilbert space, and let A be a
bounded self-adjoint operator on H. Consider the orthonormal basis B =
{e1, e2, . . .} and the projection Pn of H onto the finite-dimensional subspace
spanned by the first n elements of B. The finite-dimensional truncations An =
PnAPn shall be regarded as a sequence of finite matrices by restricting their
domains to Pn(H) for each n. Many researchers used the sequence of eigen-
values of An to obtain information about the spectrum of A. But in many
situations, these An’s need not be simple enough to make the computations
easier. The natural question Can we use some simpler sequence of matrices Bn

instead of An? is addressed in this article. The notion of preconditioners and
their convergence in the sense of eigenvalue clustering are used to study the
problem. The connection between preconditioners and compact perturbations
of operators is identified here. The usage of preconditioners in the spectral
gap prediction problems is also discussed. The examples of Toeplitz and block
Toeplitz operators are considered as an application of these results. Finally,
some future possibilities are discussed.

1. Introduction

Given a complex separable Hilbert space H and a bounded self-adjoint oper-
ator A on H, how to approximate the spectrum of A is a fundamental question
in operator theory. The usage of finite-dimensional truncations led to some pos-
itive results in the literature (see [1], [7]–[9], [12]). Let B = {e1, e2, . . .} be an
orthonormal basis for H, and for each n let Pn be the projection of H onto the
finite-dimensional subspace spanned by the first n elements of B. We will regard
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the finite-dimensional truncation An = PnAPn as a finite matrix by restricting
the domain to Pn(H) for each n. The usage of the eigenvalue sequence of the
truncations An to study the spectrum of A is usually referred to as the trunca-
tion method. This method involves computation of the sequence of eigenvalues
of An = PnAPn and their limits as n tends to infinity. The bounds of the essen-
tial spectrum σe(A), and the discrete eigenvalues that lie above and below these
bounds, were approximated by this method (see [7]). Also, there were attempts
to determine the spectral gaps that may exist between the bounds of σe(A) using
this method (see [12]). The location of eigenvalues inside spectral gaps was also
studied in some articles (see [8], [9]).

In this article, we try to modify the truncation method with the help of the
notions of preconditioners and the convergence of matrix sequences in the sense
of eigenvalue clustering. Recall that, in the numerical analysis literature, the
preconditioner associated with a matrix is used to make the iteration process
more efficient for solving, for example, linear systems of large dimensions. The
Frobenius optimal approximation of matrices was used in the special case of
Toeplitz matrices for the design of efficient solvers of complicated linear systems
of large size (see [15], [16]). Here we use different notions of convergence of matrix
sequences in the sense of eigenvalue clustering to study the spectral approximation
by preconditioners. To be more precise, we will replace the matrix sequence An

by its preconditioner sequence Bn, and we will consider the eigenvalue sequence
of Bn to approximate the spectrum of A. This also makes sense numerically,
because the preconditioners usually are chosen in a class of matrices for which
the eigenvalues are known in closed form or can be computed very efficiently using
fast Fourier transform-type algorithms (see [4], [5]).

We start with defining different notions of convergence of matrix sequences in
the sense of eigenvalue clustering. Such notions were used in the special case of
Toeplitz matrices in [15] and were generalized into the case of arbitrary symmetric
matrices in [11]. The definition given below is valid for arbitrary matrix sequences.

Definition 1.1. Let {An} and {Bn} be two sequences of n × n matrices. We say
that An − Bn converges to the zero matrix in a strong cluster if for every ε > 0
there exist positive integers N1,ε, N2,ε such that

An −Bn = Rn +Nn, for all n ≥ N2,ε,

where the rank of Rn is bounded above by N1,ε and ‖Nn‖ ≤ ε.
If the number N1,ε does not depend on ε, then we say that An−Bn converges to

0 in a uniform cluster. If N1,ε depends on ε, n and is of o(n), we say that An−Bn

converges to 0 in a weak cluster.

This article aims to modify the truncation method by replacing An by some
other simpler sequence of matrices Bn, where {An}−{Bn} converges to the zero
matrix in a strong cluster (resp., weak or uniform cluster). We study the effect of
this replacement in the well-known results obtained by the truncation method.
A brief outline of the truncation method is given below.

1.1. Truncation method. Let A be a bounded self-adjoint operator defined on
a complex separable Hilbert space H. The spectrum of A is denoted by σ(A) with
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m,M as its lower and upper bounds. Consider the finite-dimensional truncations
of A; that is, An = PnAPn, where Pn is the projection of H onto the span of
first n elements {e1, e2, . . . , en} of the basis. Let ν, µ be the lower and upper
bounds of the essential spectrum σe(A), respectively, with A being self-adjoint.
Let λ+

R(A) ≤ · · · ≤ λ+
2 (A) ≤ λ+

1 (A) be the discrete eigenvalues of A lying above
µ, and let λ−

1 (A) ≤ λ−
2 (A) ≤ · · · ≤ λ−

S (A) be the eigenvalues of A lying below ν.
Here R and S can be infinity. Denote by λ1(An) ≥ λ2(An) ≥ · · · ≥ λn(An) the
eigenvalues of An.

Now we recall the notion of essential points and transient points introduced
in [1].

Definition 1.2. A real number λ is an essential point of A if for every open set U
containing λ, limn→∞Nn(U) = ∞, where Nn(U) is the number of eigenvalues of
An in U .

Definition 1.3. A real number λ is a transient point of A if there is an open set U
containing λ, such that supNn(U) with n varying on the set of all natural number
is finite.

Remark 1.4. Note that a number can be neither transient nor essential.

Denote Λ = {λ ∈ R;λ = limλn, λn ∈ σ(An)} and Λe as the set of all essential
points. The following spectral inclusion result for a bounded self-adjoint operator
A is of high importance.

Theorem 1.5 (see [1, Theorem 2.3]). The spectrum of a bounded self-adjoint
operator is contained in the set of all limit points of the eigenvalue sequences of
its truncations. Also, the essential spectrum is contained in the set of all essential
points; that is,

σ(A) ⊆ Λ ⊆ [m,M ] and σe(A) ⊆ Λe.

The following result from [7, Theorem 3.1] enables us to approximate discrete
eigenvalues that lie above and below the upper and lower bounds of the essential
spectrum.

Theorem 1.6. For every fixed integer k,

lim
n→∞

λk(An) =

{
λ+
k (A) if R = ∞ or 1 ≤ k ≤ R,

µ if R < ∞ and k ≥ R + 1,

lim
n→∞

λn+1−k(An) =

{
λ−
k (A) if S = ∞ or 1 ≤ k ≤ S,

ν if S < ∞ and k ≥ S + 1.

In particular, limk→∞ limn→∞ λk(An) = µ and limk→∞ limn→∞ λn+1−k(An) = ν.

The subsequent theorem taken from [7, Theorem 4.1] denies the existence of
spurious eigenvalues (points in Λ which are not spectral values) under the as-
sumption that the essential spectrum is connected.

Theorem 1.7. If A is a bounded self-adjoint operator and if σe(A) is connected,
then σ(A) = Λ.
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Hence, the remaining task is to predict the existence of spectral gaps that may
arise in between the bounds of the essential spectrum. There were attempts in
this direction using the truncation method (see [12]). The following theorem is
taken from [12, Theorem 3.1], which is an attempt to predict the spectral gaps
between the bounds of the essential spectrum.

Theorem 1.8. Let A be a bounded self-adjoint operator, and let λn1(An) ≥
λn2(An) ≥ · · · ≥ λnn(An) be the eigenvalues of An arranged in decreasing or-
der. For each positive integer n, let an =

∑n
k=1wnkλnk be the convex combination

of eigenvalues of An. If there exists a δ > 0 and K > 0 such that

#
{
λnj; |an − λnj| < δ

}
< K

and, in addition, if σe(A) and σ(A) have the same upper and lower bounds, then
σe(A) has a gap.

The article is organized as follows. In the next section, we give a characteriza-
tion for convergence in the strong, uniform, and weak cluster in the case of Her-
mitian matrices. We also prove that the strong and uniform convergence amounts
to a compact and finite-rank perturbation in the operator. The third section deals
with the spectral gap prediction problems and the usage of Frobenius optimal pre-
conditioners. The concrete example of the Toeplitz case and its preconditioners
is considered in this section. A concluding section ends the paper.

2. Main results

The following theorem gives a characterization of the convergence in a strong,
uniform, or weak cluster in the case of Hermitian matrices.

Theorem 2.1. Let {An} and {Bn} be two sequences of n×n Hermitian matrices.
Then {An} − {Bn} converges to 0 in a strong cluster (resp., weak or uniform
cluster) if and only if, for every given ε > 0, there exist positive integers N1,ε, N2,ε

such that the spectrum σ(An −Bn) lies in the interval (−ε, ε), except for at most
N1,ε (independent of the size n) eigenvalues for all n > N2,ε.

Proof. First we suppose that {An} − {Bn} converges to 0 in a strong cluster
(resp., weak or uniform cluster). Therefore, by definition, for ε > 0, there exist
natural numbers N1,ε, N2,ε with the following decomposition:

An −Bn = Rn +Nn, for all n ≥ N2,ε,

where the rank of Rn is bounded above by N1,ε and ‖Nn‖ ≤ ε.
Since the rank of Rn is bounded by N1,ε, by the rank-nullity theorem, Rn has

at most N1,ε nonzero eigenvalues. Also, since ‖Nn‖ ≤ ε, we have, except for at
most N1,ε eigenvalues, all the eigenvalues of An − Bn = Rn + Nn that lie in the
interval (−ε, ε) whenever n ≥ N2,ε.

Conversely, suppose that, for any given ε > 0, there exist integers N1,ε, N2,ε

such that all eigenvalues of An −Bn lie in the interval (−ε, ε) except for at most
N1,ε (resp., N1,ε = o(n)) eigenvalues whenever n ≥ N2,ε. Hence, by the spectral
theorem, there exists a unitary matrix sequence Un such that

Un(An −Bn)Un
−1 = Dn, Un

−1 = Un
∗,
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where Dn is a diagonal matrix sequence with diagonal entries that lie in the
interval (−ε, ε) except for at most N1,ε (resp., N1,ε = o(n)) entries whenever
n ≥ N2,ε. Therefore, we can write Dn = R′

n +N ′
n, where R

′
n and N ′

n are diagonal
matrices with all the entries in N ′

n in the interval (−ε, ε) whenever n ≥ N2,ε

and the entries in R′
n are 0 except for at most N1,ε (resp., N1,ε = o(n)) entries.

Therefore, we have

(An −Bn) = Un
−1DnUn = Un

−1(R′
n +N ′

n)Un = Rn +Nn.

Also, the rank of Rn = Un
−1R′

nUn is bounded above by N1,ε and ‖Nn‖ =
‖N ′

n‖ ≤ ε. Hence, for ε > 0, there exist natural numbers N1,ε, N2,ε with the
following decomposition:

An −Bn = Rn +Nn, for all n ≥ N2,ε,

where the rank of Rn is bounded above by N1,ε and ‖Nn‖ ≤ ε. �

Remark 2.2. Theorem 2.1 is not true for non-Hermitian matrices. However, we
shall obtain the necessary part for normal matrices in terms of disks around the
origin. This follows easily by noticing that we used only the spectral theorem,
which is also true for normal matrices.

Remark 2.3. Theorem 2.1 shall be generalized if the singular values are considered
in place of the eigenvalues.

2.1. Perturbation of operators and eigenvalue clustering. Here we estab-
lish the connection between compact perturbations of operators and convergence
in the eigenvalue cluster.

Theorem 2.4. Let A,B ∈ B(H) be self-adjoint operators. Then the operator
R = A−B is compact if and only if the truncation An−Bn converges to the zero
matrix in the strong cluster.

Proof. First assume that R = A−B is compact and its spectrum σ(R) = {λk(R) :
k = 1, 2, 3, . . .} ∪ {0}. Here 0 is the only accumulation point of the spectrum.
Hence, λk(R) → 0 as k → ∞. Hence, for any given ε > 0, there exists a positive
integer N1,ε such that

λk(R) ∈
(−ε

2
,
ε

2

)
, for every k > N1,ε.

Also, since R is compact, the truncation Rn = An − Bn converges to R in the
operator norm topology. Therefore, the eigenvalues of truncations converge to the
eigenvalues of R.

In addition to this, if we arrange the eigenvalues of R and Rn in such a way
that nonnegative eigenvalues occur at the odd places in nonincreasing order and
negative eigenvalues at even places in a nondecreasing order (i.e., λk ≥ 0 if k
is odd and λk < 0 if k is even), then we have the following inequality (see [6,
pp. 176–178]): ∣∣λk(Rn)− λk(R)

∣∣ ≤ ‖Rn −R‖. (2.1)

Therefore, we have

λk(Rn) → λk(R) as n → ∞, for each k.
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In particular, for every k > N1,ε, there exists a positive integer N2,ε such that

λk(Rn)− λk(R) ∈
(−ε

2
,
ε

2

)
, for every n > N2,ε.

Also, notice that this N2,ε can be chosen independently of k by inequality (2.1).
Therefore, when n > N2,ε, all the eigenvalues λk(Rn) of Rn = An−Bn, except for
the first N1,ε eigenvalues, are in the interval (−ε, ε); that is, An − Bn converges
to 0 in the strong cluster.

For the converse part, assume that An − Bn converges to the zero matrix in
the strong cluster. Then for any λ 6= 0, choose an ε > 0 such that λ is outside
the interval (−ε, ε). Corresponding to this ε, there exist positive integers N1,ε, N2,ε

such that σ(An−Bn) is contained in (−ε, ε), for every n > N2,ε, except for possibly
N1,ε eigenvalues. Now consider the counting function Nn(U) of eigenvalues of
An − Bn in U ⊆ R. For any neighborhood U of λ that does not intersect with
(−ε, ε), Nn(U) is bounded by the number N1,ε. Hence, λ is not an essential point of
A−B. Therefore, by Theorem 1.5, λ is not in the essential spectrum. Since λ 6= 0
was arbitrary, this shows that the essential spectrum of A − B is the singleton
set {0}. Hence, it is a compact operator and the proof is completed. �

Theorem 2.5. Let A,B ∈ B(H) be self-adjoint operators. Then the operator
R = A − B is of finite rank if and only if the truncation An − Bn converges to
the zero matrix in the uniform cluster.

Proof. The proof is an imitation of the proof of Theorem 2.4 and differs only in the
choice of N1,ε to be independent of ε; however, the details are given below. First
assume that R = A−B is a finite-rank operator with rank N1, and its spectrum
σ(R) = {λk(R) : k = 1, 2, 3, . . . , N1} ∪ {0}. Since the truncation Rn = An − Bn

converges to R in the operator norm topology, the eigenvalues of truncations
converge to the eigenvalues of R; that is,

λk(Rn) → λk(R) as n → ∞, for each k = 1, 2, 3, . . . , N1.

For every k > N1, λk(Rn) converges to 0 by [7, Theorem 3.1]. Hence, for a given
ε > 0, there exists a positive integer N2,ε such that

λk(Rn) ∈ (−ε, ε), for every n > N2,ε and for each k > N1.

Therefore, when n > N2,ε, all the eigenvalues λk(Rn) of Rn = An − Bn, except
for the first N1 eigenvalues, are in the interval (−ε, ε); that is, An −Bn converges
to 0 in the uniform cluster.

For the converse part, assume that An−Bn converges to the zero matrix in the
uniform cluster. Then, for any ε > 0, there exist positive integers N1, N2,ε such
that σ(An−Bn) is contained in (−ε, ε), for every n > N2,ε, except for possibly N1

eigenvalues. As in the proof of Theorem 2.4, we obtain that 0 is the only element
in the essential spectrum. Hence, R = A−B is a compact operator. In addition to
this, R can have at most N1 eigenvalues. To see this, note that all the eigenvalues
of a compact operator are obtained as the limits of a sequence of eigenvalues of
its truncations. In this case at most N1 such sequences can go to a nonzero limit.
Hence, R is a finite-rank operator and the proof is completed. �
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Remark 2.6. The above results have the following implications. Since a compact
perturbation may change the discrete eigenvalues, the above results show that the
convergence of preconditioners in the sense of eigenvalue clustering is not sufficient
to use them in the spectral approximation problems. Nevertheless, one can use it
in the spectral gap prediction problems, since the compact perturbation preserves
the essential spectrum. In particular, it can be used to compute the upper and
lower bound of the essential spectrum.

Remark 2.7. The effect of convergence of truncations in a weak cluster has to be
investigated in detail. This could be one possibility to modify the approximation
techniques for discrete spectral values.

Remark 2.8. Since the eigenvalue clustering results in compact perturbation only,
in Theorem 1.8 one can replace the role of the eigenvalue sequence of An by any
sequence of matrices Bn (truncation) such that An − Bn converges to the zero
matrix in a strong cluster.

3. Frobenius optimal preconditioners and other examples

In this section we introduce the Frobenius optimal preconditioners (see [11]).
These preconditioners were used in the special case of Toeplitz operators in [15]
and [16], and in the general case in [11].

Let {Un} be a sequence of unitary matrices over C, where Un is of order n for
each n. For each n, we define the commutative algebra MUn of matrices as follows:

MUn =
{
A ∈ Mn(C);Un

∗AUn complex diagonal
}
.

Recall that Mn(C) is a Hilbert space with the Frobenius norm

‖A‖22 =
n∑

j,k=1

|Aj,k|2,

induced by the classical Frobenius scalar product

〈A,B〉 = trace(B∗A).

Observe that MUn is a closed convex set in Mn(C), and, hence, corresponding to
each A ∈ Mn(C), there exists a unique matrix PUn(A) in MUn such that

‖A−X‖22 ≥
∥∥A− PUn(A)

∥∥2

2
for every X ∈ MUn .

Definition 3.1 (see [11, Definition 3.3]). For each A ∈ B(H), Φn : B(H) → Mn(C)
is defined as

Φn(A) = PUn(An),

where PUn(An) is the matrix which minimizes the Frobenius distance of An

to MUn , for each positive integer n. Φn(A) is called the preconditioner of A.

Lemma 3.2 (see [15, Lemma 2.1]). With A,B ∈ Mn(C) and α, β complex num-
bers, we have

PUn(A) = Unσ(Un
∗AUn)Un

∗,
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where σ(X) is the diagonal matrix having Xii as the diagonal elements

PUn(αA+ βB) = αPUn(A) + βPUn(B),

PUn(A
∗) = PUn(A)

∗,

TracePUn(A) = Trace(A),∥∥PUn(A)
∥∥ = 1 (operator norm),∥∥PUn(A)

∥∥
F
= 1 (Frobenius norm),∥∥A− PUn(A)

∥∥
F

2
= ‖A‖F 2 −

∥∥PUn(A)
∥∥
F

2
.

Lemma 3.3 (see [4], [5]). If A is a Hermitian matrix, then the eigenvalues of
PUn(A) are contained in the closed interval [λ1(A), λn(A)], where λj(A) are the
eigenvalues of A arranged in a nondecreasing way. Hence, if A is positive definite,
then PUn(A) is positive definite as well.

Since by Lemma 3.2 the trace of An and Bn = PUn(An) is equal, one can use
it for spectral gap prediction results. The following theorem is an application of
Theorem 1.8.

Theorem 3.4. Let A be a bounded self-adjoint operator, and let λn1 ≥ λn2 ≥
· · · ≥ λnn be the eigenvalues of Bn = PUn(An) arranged in decreasing order. For

each positive integer n, let an = Trace(Bn)
n

. If there exists a δ > 0 and K > 0 such
that

#
{
λnj; |an − λnj| < δ

}
< K

and, in addition, if σe(A) and σ(A) have the same upper and lower bounds, then
σe(A) has a gap.

Proof. This follows easily by taking wnk = 1
n
, for all k, in Theorem 1.8, and also

by using Lemma 3.2. �

Now we give the concrete examples for which the preconditioners are useful in
the truncation method of spectral approximation. We make use of the results from
[11] and [15] to construct useful examples. We discuss the case of the well-known
Toeplitz operator and its preconditioners.

3.1. Toeplitz operator with continuous periodic symbols. Consider the
Toeplitz operator A = A(f), where the symbol function f ∈ C[−π, π] and
H = L2[−π, π]. It can be easily observed that the truncation of such opera-
tors comprises the finite Toeplitz matrices with symbol f . The notation An(f) is
used to denote the finite Toeplitz matrix with symbol f .

Let v = {vn}n∈N with vn = (vnj)j≤n−1 be a sequence of trigonometric functions
on an interval I. Let S = {Sn}n∈N be a sequence of grids of n points on I, namely,
Sn = {xn

i , i = 0, 1, . . . , n− 1}. Let us suppose that the generalized Vandermonde
matrix

Vn =
(
vnj(x

n
i )
)n−1

i;j=0

is a unitary matrix. Then the algebra of the form MUn is a trigonometric algebra
if Un = Vn

∗ with Vn a generalized trigonometric Vandermonde matrix.
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We get examples of trigonometric algebras with the following choice of the
sequence of matrices Un and grid Sn:

Un = Fn =
( 1√

n
eijx

n
i

)
, i, j = 0, 1, . . . , n− 1,

Sn =
{
xn
i =

2iπ

n
, i = 0, 1, . . . , n− 1

}
⊂ I = [−π, π] (circulant algebra),

Un = Gn =
(√ 2

n+ 1
sin(j + 1)xn

i

)
, i, j = 0, 1, . . . , n− 1,

Sn =
{
xn
i =

(i+ 1)π

n+ 1
, i = 0, 1, . . . , n− 1

}
⊂ I = [0, π] (algebra τ),

Un = Hn =
( 1√

n

[
sin(jxn

i ) + cos(jxn
i )
])

, i, j = 0, 1, . . . , n− 1,

Sn =
{
xn
i =

2iπ

n
, i = 0, 1, . . . , n− 1

}
⊂ I = [−π, π] (Hartly algebra).

Now we consider the preconditioners Bn = PUn(An(f)) of An(f) corresponding
to the matrix algebras MUn with the above choices of Un’s. We see that the eigen-
values of the preconditioners are much easier to handle since they are obtained as
the evaluation of some trigonometric functions at some grid points. The following
results taken from [15, Section 4.1] illustrate this fact.

(1) Consider the preconditioner Bn = PUn(An(f)) of An(f) associated with
the circulant algebra. Observe that from Lemma 3.2 the eigenvalues of
Bn are obtained as the evaluation of a trigonometric function at certain
grid points; that is, the jth eigenvalue of Bn, λj(Bn) = σ(UnAn(f)U

∗
n)jj

is the evaluation of certain trigonometric functions at the grid points xj
n.

Now let Ln[Un](f)(x) denote the function obtained by replacing the grids
xj

n in the expression of λj(Bn) by x ∈ I. In the case of the circulant
algebra, the eigenvalue function Ln[Un](·) is the Cesàro sum [Cn(·)](x).
Also, Ln[Un](f) converges to f uniformly on [−π, π] and has a rate of
convergence of order n−1 on a class of functions (see [17, pp. 122–123])
which contains the polynomials.

(2) Consider the matrix algebra of all the matrices simultaneously diagonal-
ized by the transform Un = Gn given above and generated by the sym-
metric Toeplitz matrix An(cos(x)).

The explicit expression of the eigenvalues of the Frobenius-optimal approximation
PUn(An(f)) is given by the following results taken from [3, Theorems 4.3 and 4.4].

Theorem 3.5. The eigenvalues of Bn = PUn(An(f)) are given by the values taken
on the grid iπ

n+1
by the function Ln[Un](f)(x) defined by

Ln[Un](f)(x) =
[
Kn(f)

]
(x)− 2

n+ 1
h(x), h(x) = s′(x)− s(x) cot(x),

where s(x) =
∑n−1

j=1 aj sin(jx) and Kn(f) denotes the nth Fourier sum of f .
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Theorem 3.6. Ln[Un](f)(x) can be written as

Ln[Un](f)(x) =
[
Cn(f)

]
(x) +

cos(x)

n+ 1

n−2∑
j=0

(
aj+1Uj

(
cos(x)

))
,

where Uj denotes the jth Chebyshev polynomial of the second kind.

Remark 3.7. These examples justify the usage of preconditioners in the spectral
approximation problems since the computation of the eigenvalue sequence is given
explicitly when using these preconditioners; that is, while we apply the truncation
method to compute the spectrum of operators discussed above, we shall make use
of the eigenvalues of the preconditioners Bn, which are simpler in the sense that
the explicit form is available. This is useful in the computations.

3.2. Ten martini conjecture. We conclude this section by mentioning one im-
portant future possibility of the above results. Consider the Schrödinger operator
defined by

Ã(u) = −ü+ V · u
on some suitable subspace of L2(R), where V is an essentially bounded function
called the potential. The classical Borg theorem states that the Schrödinger op-
erator with periodic potential has a connected essential spectrum if and only if
the periodic potential reduces to a constant (see [14] and references therein).

If the operator Ã is discretized by replacing differentiation by finite differences,
then we get a bounded operator A on l2(Z), and after some scaling by a constant
and translating by a constant multiple of the identity operator, A is defined by

A
(
{xn}n∈Z

)
= {xn−1 + xn+1 + vnxn}n∈Z,

where vn is a periodic bounded sequence called the potential. The discretized
version of Borg’s theorem (see [10]) states that the essential spectrum of A is
connected if and only if the p-periodic potential (vj)j∈Z is constant.

The well-known ten martini conjecture asserted by Barry Simon states the fol-
lowing: If we consider the almost-periodic Mathieu potential, say, vj = cos(2πjα),
where α is an irrational number, then the spectrum of the associated operator is
a Cantor-like set. This conjecture was settled, and many modified proofs are also
available in the literature (see [2] and references therein for more details). Here
we propose one possible approach to prove this conjecture.

Consider a sequence of rational numbers αn that converges to α. The operators
An with potential cos(2πjαn) will converge to the operator A with potential
cos(2πjα) in norm. Even though A is not periodic, each An is periodic and will
have spectral gaps for each n. The major task is to estimate the size and number
of spectral gaps for each n. If the size decreases and the number increases as n
increases, then we have a large number of smaller spectral gaps for large n; that
is, the spectrum of An will be obtained after removing these spectral gaps from
the interval. As in the construction of the Cantor set, after each stage, we are
removing more numbers of open intervals. Using An as preconditioners for A,
and proceeding as above, we expect a much simpler proof for the ten martini
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conjecture. However, estimating the size of the spectral gaps and counting their
number remain difficult.

4. Concluding remarks

Finally, we list a few related problems in this regard. We hope that these
problems will lead to future research in this area.

• The search for optimal preconditioners, which might be useful in spectral
approximation problems, is a future possibility for research. The qualities
one is likely to have for the optimal preconditioners are the following. First,
it must give better information regarding the spectrum of the operator
under concern. Second, it must be of practical use; that is, it must have a
better rate of convergence and be useful in computations.

• The random versions and perturbed versions of the spectral approximation
results are the current area of research (see [12]). One further possibility
is to address the preconditioner problems when the operator is subjected
to an analytic perturbation and for random operators.

• The preconditioners for non-self-adjoint operators can be considered with
modifying the notion of convergence in the language of disks instead of
intervals. Also, one can look at the preconditioner as a finite rank and
small norm perturbation. Another important problem is to develop the
theory of preconditioners for unbounded operators.
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