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Abstract. Let Ω be a bounded measurable set in Rn. The best polynomial
approximation operator was recently extended by Cuenya from Lp to Lp−1.

In this paper, we extend the operator of the best polynomial approximation
from Lp(·)(Ω) to the space Lp(·)−1(Ω).

1. Introduction

Let Ω be a bounded measurable set in Rn. Given a measurable function p :
Ω −→ (0,+∞), Lp(·)(Ω) denotes the set of measurable functions f on Ω such
that, for some positive λ > 0,∫

Ω

( |f(x)|
λ

)p(x)

dx < +∞.

If 1 ≤ p(x) < ∞, then this set becomes a Banach function space when equipped
with the norm

‖f‖p(·) = inf
{
λ > 0 :

∫
Ω

( |f(x)|
λ

)p(x)

dx ≤ 1
}
.

Assume that

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).
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Note that if 0 < p− ≤ p+ < ∞, then Lp(·)(Ω) is the space (not necessary normed)
of all measurable functions f such that

∫
Ω
|f(x)|p(x) dx < ∞.

The Lebesgue spaces with variable exponent and the corresponding variable
Sobolev spaces are of interest for their applications to modeling problems in
physics and in studying variational integrals and partial differential equations
with nonstandard growth condition. Most of the problems in the development of
the theory of Lp(·)-spaces arise from the fact that these spaces are not translation-
invariant (if p 6= const). The use of convolution is also limited; indeed, Young’s
inequality ‖f ∗ g‖p(·) ≤ c‖f‖p(·) · ‖g‖1 holds if and only if p(·) is constant (see
[2], [5]).

Variable exponent Lebesgue spaces on the real line have been developed by
Sharapudinov [11]. These investigations originated in a paper by Tsenov [13].
The question raised by Tsenov and solved by Sharapudinov is the minimization
of ∫ 1

0

∣∣f(x)− g(x)
∣∣p(x) dx,

where f is a fixed function and g varies over a finite-dimensional subspace of
Lp(·)([0, 1]).

Let Πm be the space of all polynomials (algebraic or trigonometric), defined on
Rn and of degree at most m. A polynomial Q ∈ Πm is called the best approxima-
tion of f ∈ Lp(·)(Ω) (1 < p− ≤ p+ < ∞) if and only if∫

Ω

∣∣f(x)−Q(x)
∣∣p(x) dx = inf

S∈Πm

∫
Ω

∣∣f(x)− S(x)
∣∣p(x) dx. (1.1)

For f ∈ Lp(·)(Ω) we set E(f) as the set of all polynomials Q that satisfy (1.1).
It is well known (see [8], [12] in the case of p(·) = const, 1 < p < ∞, and [11] in

the case of Lp(·)[0; 1], 1 < p− ≤ p+ < ∞) that Q ∈ Πm is the best approximation
of f ∈ Lp(·)(Ω) (1 < p− ≤ p+ < ∞) if and only if∫

Ω

p(x)
∣∣f(x)−Q(x)

∣∣p(x)−1
sign

(
f(x)−Q(x)

)
S(x) dx = 0, (1.2)

for every S ∈ Πm. Such a polynomial Q always exists and it is unique. Let us
define the operator T (f) := Q. We observe that if 1 < p− ≤ p+ < ∞, then the
left member of (1.2) is defined even if f ∈ Lp(·)−1(Ω).

Cuenya in [3] proved that, for each f ∈ Lp−1(Ω), p > 1, there exists a polyno-
mial Q ∈ Πm satisfying (1.2). This polynomial will be called an extended polyno-
mial approximant. Cuenya proved that the extended polynomial approximant is
unique. Denote by T (f) the solution of (1.2) for f ∈ Lp−1(Ω) where 1 < p < ∞.
The operator T : Lp−1 → Πm is continuous and, as a consequence, T : Lp−1 → Πm

is the unique extension of T preserving the property of continuity.
In the case of Π0 (class of constant functions) the operator T for 1 ≤

p < ∞ was studied in [10]. In that paper the authors extended the best con-
stant approximation operator to Lp−1(Ω) if p > 1, and to the space of measurable
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functions that are finite almost everywhere if p = 1. Later, in [6] and [7] the au-
thors considered the operator T defined in Orlicz spaces, and in [9] the operator
T was studied in Orlicz–Lorentz spaces.

In the present paper we extend the operator of the best polynomial approxi-
mation from Lp(·)(Ω) to the space Lp(·)−1(Ω), 1 < p− ≤ p+ < ∞.

Throughout, we use C to stand for an absolute positive constant, which may
have different values in different occurrences.

2. Existence of the best polynomial approximation operator
in Lp(·)(Ω)

We begin with the existence of the best polynomial approximation operator
of functions in Lp(·)(Ω). Note that, for this space in the case of Ω = [0; 1], the
existence of the best polynomial approximation was shown by Sharapudinov [11].
An analogous result holds for Lp(·)(Ω). The next two theorems follow standard
techniques. However, for the sake of completeness, detailed proofs of them are
included.

Theorem 2.1. Let f ∈ Lp(·)(Ω), 1 ≤ p− ≤ p+ < ∞. Then there exists Q ∈ Πm

such that ∫
Ω

∣∣f(x)−Q(x)
∣∣p(x) dx = inf

S∈Πm

∫
Ω

∣∣f(x)− S(x)
∣∣p(x) dx.

Proof. Indeed, let I = infS∈Πm

∫
Ω
|f(x)−S(x)|p(x) dx. Then there exists a sequence

of polynomials {Sn|n ∈ N} ⊂ Πn such that∫
Ω

∣∣f(x)− Sn(x)
∣∣p(x) dx → I, n → +∞.

Since |t|p(x) is convex with respect to t for all fixed x, we have∫
Ω

∣∣Sn(x)/2
∣∣p(x) dx ≤

∫
Ω

(∣∣Sn(x)/2− f(x)/2
∣∣+ ∣∣f(x)/2∣∣)p(x) dx

≤ 1

2

∫
Ω

∣∣Sn(x)− f(x)
∣∣p(x) dx+

1

2

∫
Ω

∣∣f(x)∣∣p(x) dx.
By the last estimation we conclude that ‖Sn‖p(·) ≤ C1(f), where C1(f) is constant
depending on f . Since Πm is a finite-dimensional space, all norms defined on it
are equivalent and, consequently, we have ‖Sn‖∞ ≤ C2(f), where

‖Sn‖∞ = sup
x∈Ω

∣∣Sn(x)
∣∣.

Therefore, we can choose a subsequence {Snk
|k ∈ N} which converges uniformly

to Q ∈ Πn.
By Lebesgue’s dominated convergence theorem we have

I = lim
k→+∞

∫
Ω

∣∣f(x)− Snk
(x)

∣∣p(x) dx =

∫
Ω

∣∣f(x)−Q(x)
∣∣p(x) dx. �

The next theorem gives a necessary and sufficient condition for Q to be the
best polynomial approximation.
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Theorem 2.2. Let f ∈ Lp(·)(Ω), 1 < p− ≤ p+ < +∞. Then Q ∈ Πm is in E(f)
if and only if for every S ∈ Πm we have∫

Ω

p(x)
∣∣f(x)−Q(x)

∣∣p(x)−1
sign

(
f(x)−Q(x)

)
S(x) dx = 0. (2.1)

Proof. At first we prove necessity. For Q ∈ E(f) and S ∈ Πm we denote

FS(t) :=

∫
Ω

∣∣f(x)−Q(x) + tS(x)
∣∣p(x) dx.

Let us prove that we can differentiate this function at the point 0. By using
the well-known inequality (a + b)p ≤ 2p−1(ap + bp) and the mean value theorem,
for all fixed x and for |t| ≤ 1, we get∣∣∣ |f(x)−Q(x) + tS(x)|p(x) − |f(x)−Q(x)|p(x)

t

∣∣∣
=

|t| · p(x) · |f(x)−Q(x) + ξS(x)|p(x)−1| sign(f(x)−Q(x) + ξS(x))S(x)|
|t|

≤ C0 ·
∣∣S(x)∣∣(∣∣f(x)−Q(x)

∣∣p(x)−1
+
∣∣S(x)∣∣p(x)−1)

.

Since |S(x)|(|f(x) − Q(x)|p(x)−1 + |S(x)|p(x)−1) is an integrable function, we are
allowed to differentiate inside the integral. Therefore,

F ′
S(0) =

∫
Ω

p(x)
∣∣f(x)−Q(x)

∣∣p(x)−1
sign

(
f(x)−Q(x)

)
S(x) dx.

Assuming that FS(0) = mint∈R FS(t), we have F
′
S(0) = 0; this proves the necessity

of condition (2.1).
Let us now prove sufficiency. Note that FS(t) on R is a convex function with

respect to t. Indeed, for a, b ≥ 0 such that a+ b = 1, using convexity of the |t|p(x)
for all fixed x and monotonicity of the integral, we have

FS(at1 + bt2)

=

∫
Ω

∣∣f(x)−Q(x) + (at1 + bt2)S(x)
∣∣p(x) dx

=

∫
Ω

∣∣(a+ b)
(
f(x)−Q(x)

)
+ at1S(x) + bt2S(x)

∣∣p(x) dx
=

∫
Ω

∣∣a(f(x)−Q(x) + t1S(x)
)
+ b

(
f(x)−Q(x) + t2S(x)

)∣∣p(x) dx
≤

∫
Ω

(
a
∣∣f(x)−Q(x) + t1S(x)

∣∣p(x) dx+ b
∣∣f(x)−Q(x) + t2S(x)

∣∣p(x)) dx
= a

∫
Ω

∣∣f(x)−Q(x) + t1S(x)
∣∣p(x) dx+ b

∫
Ω

∣∣f(x)−Q(x) + t2S(x)
∣∣p(x) dx

= aFS(t1) + bFS(t2).
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Consequently, by condition (2.1) we conclude that F ′
S(0) = 0. By combining the

two facts that FS is convex and F ′
S(0) = 0, we conclude that

FS(0) = min
t∈[0,∞)

FS(t).

This means that Q is the best polynomial approximation of f . The sufficiency
of condition (2.1) is proved. �

The following theorem connects a modular of a function and a modular of the
best polynomial approximation. In the case of p(·) = const, the theorem was
proved in [4]. Note that this estimation does not depend on the behavior of the
exponent p(·).

Theorem 2.3. Let f ∈ Lp(·)(Ω), 1 < p− ≤ p+ < ∞, and Q ∈ E(f). Then∫
Ω

∣∣Q(x)
∣∣p(x)−1∣∣S(x)∣∣ dx ≤ C

∫
Ω

∣∣f(x)∣∣p(x)−1∣∣S(x)∣∣ dx, (2.2)

for all S ∈ Πm such that S (or −S) and Q have the same sign for all t ∈ Ω where
Q(t)S(t) 6= 0.

Proof. Suppose that S ∈ Πm and S(x)Q(x) > 0 when S(x)Q(x) 6= 0.
Let A = {x ∈ Ω|f(x) > Q(x)}, B = Ω\A, and H(x) = |f(x)−Q(x)|p(x)−1S(x).

Using (2.1), we obtain ∫
A

p(x)H(x) dx =

∫
B

p(x)H(x) dx.

Let A1 = A ∩ {x ∈ Ω|Q(x) ≥ 0}, A2 = A\A1, B1 = B ∩ {x ∈ Ω|Q(x) ≥ 0},
and B2 = B\B1.

By the above equality we have∫
A1∪A2

p(x)H(x) dx =

∫
B1∪B2

p(x)H(x) dx,∫
A1

p(x)H(x) dx+

∫
A2

p(x)H(x) dx =

∫
B1

p(x)H(x) +

∫
B2

p(x)H(x) dx, (2.3)∫
A1

p(x)H(x) dx−
∫
B2

p(x)H(x) dx =

∫
B1

p(x)H(x) dx−
∫
A2

p(x)H(x) dx.

Consider∫
Ω

p(x)
∣∣Q(x)

∣∣p(x)−1∣∣S(x)∣∣ dx =

∫
Ω

p(x)
∣∣Q(x)−f(x)+f(x)

∣∣p(x)−1∣∣S(x)∣∣ dx. (2.4)

By using the well-known inequalities (a + b)p−1 ≤ 2p−2(ap−1 + bp−1), when
p − 1 ≥ 1, and (a + b)p−1 ≤ ap−1 + bp−1, when 0 < p − 1 < 1, and taking into
account that 1 < p− ≤ p+ < +∞, we conclude, for all fixed x, that∫

Ω

p(x)
∣∣Q(x)− f(x) + f(x)

∣∣p(x)−1∣∣S(x)∣∣ dx
≤ C

(∫
Ω

∣∣Q(x)− f(x)
∣∣p(x)−1∣∣S(x)∣∣ dx+

∫
Ω

∣∣f(x)∣∣p(x)−1∣∣S(x)∣∣ dx)
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= C
( 2∑

i=1

∫
Ai

∣∣H(x)
∣∣ dx+

2∑
i=1

∫
Bi

∣∣H(x)
∣∣ dx+

∫
Ω

∣∣f(x)∣∣p(x)−1∣∣S(x)∣∣ dx). (2.5)

Note that, for all x ∈ A1 ∪B2, we have |Q− f | ≤ |f |. Then we obtain∫
A1∪B2

∣∣H(x)
∣∣ dx ≤

∫
A1∪B2

∣∣f(x)∣∣p(x)−1∣∣S(x)∣∣ dx. (2.6)

Since S(x) · Q(x) ≥ 0, taking into account that for all x ∈ A2, Q(x) < 0, and
considering (2.4) and (2.6), we obtain∫

A2

∣∣H(x)
∣∣ dx+

∫
B1

∣∣H(x)
∣∣ dx =

∫
A2

(
−H(x)

)
dx+

∫
B1

H(x) dx

=

∫
A1

H(x) dx−
∫
B2

H(x) dx

=

∫
A1

∣∣H(x)
∣∣ dx+

∫
B2

∣∣H(x)
∣∣ dx

≤
∫
A1∪B2

∣∣f(x)∣∣p(x)−1∣∣S(x)∣∣ dx.
By (2.4), (2.5), (2.6), and the last estimation we get (2.2). We can obtain an

estimation for all x, for which Q(x)S(x) ≤ 0, in an analogous way. �

Corollary 2.4. Let f ∈ Lp(·)(Ω), 1 < p− ≤ p+ < ∞. If Q ∈ E(f), then∫
Ω

∣∣Q(x)
∣∣p(x) dx ≤ C‖Q‖∞

∫
Ω

∣∣f(x)∣∣p(x)−1
dx.

Proof. If we take Q = S in Theorem 2.3, then we obtain the desired result. �

3. Extension and uniqueness of the best polynomial
approximation operator to Lp(·)−1(Ω)

Definition 3.1. Let 1 < p− ≤ p+ < ∞ and f ∈ Lp(·)−1(Ω). We say that Q ∈ Πm

is the best polynomial approximant of f if (1.2) holds.

In this section we will discuss the existence of the extended polynomial approx-
imant in Lp(·)−1(Ω) when 1 < p− ≤ p+ < ∞.

Theorem 3.2. Let f ∈ Lp(·)−1(Ω), 1 < p− ≤ p+ < ∞. Then there exists Q ∈ Πm

such that for all S ∈ Πm the following holds:∫
Ω

p(x)
∣∣f(x)−Q(x)

∣∣p(x)−1
sign

(
f(x)−Q(x)

)
S(x) dx = 0, (3.1)∫

Ω

∣∣Q(x)
∣∣p(x) dx ≤ C‖Q‖∞

∫
Ω

∣∣f(x)∣∣p(x)−1
dx. (3.2)

While we prove Theorem 3.2, let us prove auxiliary lemmas.
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Lemma 3.3. Let {fn}+∞
n=1 be a sequence of elements from Lp(·)(Ω), 1 < p− ≤

p+ < ∞, for which there exists a constant C0 > 0 such that, for all n ∈ N,∫
Ω

∣∣fn(x)∣∣p(x)−1
dx ≤ C0.

Then the set {‖Q‖∞ : Q ∈ E(fn), n ∈ N} is bounded.

Proof. By Corollary 2.4 we have∫
Ω

∣∣Q(x)
∣∣p(x) dx ≤ C‖Q‖∞

∫
Ω

∣∣fn(x)∣∣p(x)−1
dx ≤ C · C0‖Q‖∞. (3.3)

On the other hand, since Πm is a finite-dimensional space, norms ‖ · ‖∞ and
‖ · ‖p(·) on Πm are equivalent. Then from (3.3) we obtain∫

Ω

∣∣Q(x)
∣∣p(x) dx ≤ C1‖Q‖p(·).

Without restriction of generality suppose that C1‖Q‖p(·) ≥ 1. Thus, we have

1 ≥
∫
Ω

∣∣∣ Q(x)

(C1‖Q‖p(·))1/p(x)
∣∣∣p(x) dx ≥

∫
Ω

∣∣∣ Q(x)

(C1‖Q‖p(·))1/p−
∣∣∣p(x) dx.

Consequently, by definition of the norm in the space Lp(·)(Ω), we get

‖Q‖p(·) ≤
(
C1‖Q‖p(·)

)1/p− .
This means that the set of ‖Q‖p(·) numbers is bounded. If we once more use

the equivalency of ‖ · ‖∞ and ‖ · ‖p(·) norms, then the proof is completed. �

Lemma 3.4. Let fn, f be functions in Lp(·)−1(Ω) such that∫
Ω

∣∣fn(x)− f(x)
∣∣p(x)−1

dx → 0, (3.4)

and also let gn, g be measurable functions such that |gn| ≤ C0 for all n and gn → g
as n → ∞. Then there exists a subsequence nk such that∫

Ω

∣∣fnk
(x)

∣∣p(x)−1
gnk

dx →
∫
Ω

∣∣f(x)∣∣p(x)−1
g(x) dx, as k → ∞.

Proof. For any measurable set E ⊂ Ω we have∫
E

∣∣fn(x)∣∣p(x)−1
dx =

∫
E

∣∣fn(x)− f(x) + f(x)
∣∣p(x)−1

dx

≤ C
(∫

E

∣∣fn(x)− f(x)
∣∣p(x)−1

dx+

∫
E

∣∣f(x)∣∣p(x)−1
dx

)
.

By (3.4) and the last estimation for any ε > 0 there exists δ > 0 such that, for
any E ⊂ Ω, |E| < δ and for any n ∈ N, we have∫

E

∣∣fn(x)∣∣p(x)−1
dx < ε.

Since |fn(x) − f(x)|p(x)−1 converges by L1(Ω)-norm to 0, then there exists
a subsequence fnk

which converges to f almost everywhere. Now, by Egorov’s
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theorem, for δ > 0 there exists E ⊂ Ω, |E| < δ, such that the sequence
{|fnk

(x)|p(x)−1gnk
(x)} uniformly converges to |f(x)|p(x)−1g(x) on Ω\E.

We have ∫
Ω

∣∣fnk
(x)

∣∣p(x)−1
gnk

(x) dx−
∫
Ω

∣∣f(x)∣∣p(x)−1
g(x) dx

=

∫
Ω\E

(∣∣fnk
(x)

∣∣p(x)−1
gnk

(x)−
∣∣f(x)∣∣p(x)−1

g(x)
)
dx

+

∫
E

(∣∣fnk
(x)

∣∣p(x)−1
gnk

(x) dx−
∣∣f(x)∣∣p(x)−1

g(x)
)
dx.

From the last equality, the proof of the lemma easily follows. �

Proof of Theorem 3.2. Supposing that f ∈ Lp(·)−1(Ω), and considering the se-
quence

fn = min
(
max(f,−n), n

)
,

it is easy to see that fn ∈ Lp(x)(Ω) for all n ∈ N. Then by Theorems 2.1 and 2.2
there exists Qn ∈ Πm such that we have∫

Ω

p(x)
∣∣fn(x)−Qn(x)

∣∣p(x)−1
sign

(
fn(x)−Qn(x)

)
S(x) dx = 0,

for all n ∈ N and S ∈ Πm. Also, by Corollary 2.4 we have∫
Ω

∣∣Qn(x)
∣∣p(x) dx ≤ C‖Qn‖∞

∫
Ω

∣∣fn(x)∣∣p(x)−1
dx.

Observe that

lim
n→+∞

∫
Ω

∣∣fn(x)− f(x)
∣∣p(x)−1

dx = 0.

Hence, it follows that there exists a positive number C0 > 0 such that∫
Ω

∣∣fn(x)∣∣p(x)−1
dx ≤ C0.

Then by Lemma 3.3 we obtain uniform boundedness of the sequence ‖Qn‖∞.
Therefore, there exists a subsequence Qnk

which uniformly converges on Ω to
a polynomial Q ∈ Πm. By using Lemma 3.4 and simple limiting arguments we
obtain (3.1) and (3.2). �

Theorem 3.5. For every f ∈ Lp(·)−1(Ω), 1 < p− ≤ p+ < ∞, there exists a unique
extended best polynomial approximant.

Proof. Let f ∈ Lp(·)−1(Ω), let Q1, Q2 be extended polynomial approximants, and
let Q1 6= Q2. By (3.1), for all S ∈ Πm, we have∫

Ω

p(x)
∣∣f(x)−Q1(x)

∣∣p(x)−1
sign

(
f(x)−Q1(x)

)
S(x) dx

=

∫
Ω

p(x)
∣∣f(x)−Q2(x)

∣∣p(x)−1
sign

(
f(x)−Q2(x)

)
S(x) dx = 0.
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Consider the polynomial Q = Q1 −Q2 and the sets

D =
{
x ∈ Ω|Q1(x) > Q2(x)

}
,

F =
{
x ∈ Ω|Q1(x) < Q2(x)

}
,

G =
{
x ∈ Ω|Q1(x) = Q2(x)

}
.

On the set D we have Q(x) > 0 and f(x) − Q1(x) < f(x) − Q2(x) and, thus,
(|z|p(x)−1 sign(z) is monotone)∣∣f(x)−Q1(x)

∣∣p(x)−1
sign

(
f(x)−Q1(x)

)
Q(x)

<
∣∣f(x)−Q2(x)

∣∣p(x)−1
sign

(
f(x)−Q2(x)

)
Q(x).

Hence, ∫
D

p(x)
∣∣f(x)−Q1(x)

∣∣p(x)−1
sign

(
f(x)−Q1(x)

)
Q(x) dx

<

∫
D

p(x)
∣∣f(x)−Q2(x)

∣∣p(x)−1
sign

(
f(x)−Q2(x)

)
Q(x) dx. (3.5)

Analogously on the set F , we have Q(x) < 0 and f(x)−Q2(x) < f(x)−Q1(x).
Then ∣∣f(x)−Q1(x)

∣∣p(x)−1
sign

(
f(x)−Q1(x)

)
Q(x)

<
∣∣f(x)−Q2(x)

∣∣p(x)−1
sign

(
f(x)−Q2(x)

)
Q(x)

and ∫
F

p(x)
∣∣f(x)−Q1(x)

∣∣p(x)−1
sign

(
f(x)−Q1(x)

)
Q(x) dx

<

∫
F

p(x)
∣∣f(x)−Q2(x)

∣∣p(x)−1
sign

(
f(x)−Q2(x)

)
Q(x) dx. (3.6)

Note that |G| = 0; then by (3.5) and (3.6) we get

0 =

∫
Ω

p(x)
∣∣f(x)−Q1(x)

∣∣p(x)−1
sign

(
f(x)−Q1(x)

)
Q(x)

<

∫
Ω

p(x)
∣∣f(x)−Q2(x)

∣∣p(x)−1
sign

(
f(x)−Q2(x)

)
Q(x) dx = 0,

which is a contradiction. �

Note that the extended polynomial approximant operator T : Lp(·)−1 → Πm is
nonlinear. Next, we will show that this operator is continuous.

Theorem 3.6. Let hn, h ∈ Lp(·)−1(Ω), 1 < p− ≤ p+ < ∞, such that∫
Ω

∣∣hn(x)− h(x)
∣∣p(x)−1

dx → 0, n → ∞;

then T (hn) → T (h), n → ∞.
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Proof. Let us consider a {Qn}-sequence of polynomials which are the extended
approximants Qn = T (hn) for each hn.

Analogously to the proof of Lemma 3.3, we can conclude that the sequenceQn is
uniformly bounded. Therefore, we can choose a subsequence Qnk

which converges
to a polynomial Q. Also, we can select a subsequence of hnk

, which we will denote
again by hnk

, that converges to h almost everywhere. For Qnk
= T (hnk

) and any
S ∈ Πm, by Theorem 3.2 we have∫

Ω

p(x)
∣∣hnk

(x)−Qnk
(x)

∣∣p(x)−1
sign

(
hnk

(x)−Qnk
(x)

)
S(x) dx = 0.

By using Lemma 3.4 we obtain∫
Ω

p(x)
∣∣h(x)−Q(x)

∣∣p(x)−1
sign

(
h(x)−Q(x)

)
S(x) dx = 0,

and taking into account Theorem 3.5, Q = T (h). According to the discussion, the
limit (by norm of C(Ω)) of any convergent subsequence of Qn is Q. Therefore, we
obtain the proof the theorem. �
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