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IN ORLICZ SPACES

URIEL KAUFMANN,1 JULIO D. ROSSI,2* and RAUL VIDAL1

Communicated by S. Barza

Abstract. We show decay bounds of the form∫
Rd

φ
(
u(x, t)

)
dx ≤ Ct−µ

for integrable and bounded solutions to the nonlocal evolution equation

ut(x, t) =

∫
Rd

J(x, y)G
(
u(y, t)− u(x, t)

)(
u(y, t)− u(x, t)

)
dy + f

(
u(x, t)

)
.

Here G is a nonnegative and even function, and f verifies f(ξ)ξ ≤ 0 for all
ξ ≥ 0. We remark that G is not assumed to be homogeneous. The function
φ and the exponent µ depend on G via adequate hypotheses, while J is a
nonnegative kernel satisfying suitable assumptions.

1. Introduction

In this paper we deal with the long-time behavior of bounded solutions to the
equation

ut(x, t) =

∫
Rd
J(x, y)G

(
u(y, t)− u(x, t)

)(
u(y, t)− u(x, t)

)
dy + f

(
u(x, t)

)
, (1.1)

with (x, t) ∈ Rd × (0,∞) and a nonnegative initial condition

u(·, 0) = u0(·) ∈ L1(Rd) ∩ L∞(Rd). (1.2)
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Here J is a nonnegative symmetric and smooth kernel satisfying some suitable
assumptions (see Lemma 2.2 below), and G : R → [0,∞) is an even function.
The nonlinearity f is assumed to verify that f(ξ)ξ ≤ 0 for all ξ ≥ 0.

Under these conditions it can be proved as in [1] that problem (1.1) has a
unique solution that is nonnegative, integrable, and bounded. In fact, we have
that ∥∥u(·, t)∥∥

L∞(Rd) ≤
∥∥u(·, 0)∥∥

L∞(Rd) :=M > 0.

Now we introduce the following condition. Suppose there exist a C1 Young
function φ : R → [0,∞) and an even function θ : R → [0,∞), such that

G(ξ − η)(ξ − η)
(
φ′(ξ)− φ′(η)

)
≥ θ(ξ − η) (1.3)

for all 0 ≤ ξ, η ≤M .
We remark that we are not assuming that G is homogeneous of any kind (as

happens, for example, for G(ξ) = |ξ|p−2).
We will prove in our main result (see Theorem 3.2) that, for all t sufficiently

large, the solution u of (1.1) satisfies the decay estimate∫
Rd
φ
(
u(x, t)

)
dx ≤ Ct−µ, (1.4)

where µ > 0 is given explicitly and depends on φ, θ, and d. As a consequence of
this result we are also able to provide decay bounds for the Orlicz norm of the
solutions (see Corollary 3.6).

Let us end this introduction with a brief description of the ideas used in the
proofs and the connection with previous results. To study the decay of solutions
to nonlocal nonlinear evolution equations like (1.1), we will use energy methods
as the ones introduced in [10]. Note that the kernel J is smooth (therefore we do
not have a regularizing effect; see [1]) and not in convolution form (hence Fourier
methods like the ones used in [3] cannot be applied). Let us mention that nonlocal
problems analogous to the p-Laplacian (i.e., withG(ξ) = |ξ|p−2) have already been
studied in the literature. In [1] they were considered under the assumption that
J is a convolution kernel, while in Theorem 4.2 in [10] decay estimates similar to
those in Theorem 3.2 were obtained in the case p ∈ [2, d) and f ≡ 0. Let us note
that the bounds stated here for the particular case G(ξ) = |ξ|p−2 do not impose
any restriction on p (see Remark 3.3 below). Nonlocal problems have been recently
widely used to model diffusion processes (see [7] and [6] for a general nonlocal
vector calculus) and are closely connected with real applications. We mention, for
example, peridynamics, a recent nonlocal model for elasticity. For extra references
concerning applications, we refer, for instance, to [2], [9], [12], and [13], and the
recent book [1].

Concerning singular kernels (that are related to fractional type operators) we
quote [4] and [5], and the references therein.

The rest of the paper is organized as follows: In Section 2 we collect some
preliminary results, including a key lemma (Lemma 2.2) that provides a decom-
position of a function in a smooth and a rough part, whose norms are controlled
by a double integral involving J and |u(x) − u(y)|p (it is here where we need to
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assume extra conditions on J). Finally, in Section 3 we prove our main result,
Theorem 3.2, where we show the bound (1.4) for an explicit µ that depends on
suitable conditions that we assume for the functions θ and φ that appear in (1.3).

2. Preliminary results

As usual, we say that φ : R → [0,∞) is a Young function if φ is convex and
even, φ(0) = 0, and limξ→∞ φ(ξ) = ∞. Following [8], we say that a Young function
φ is of upper type p, for some p > 1, if there exists a constant Cφ > 0 such that

φ(λξ) ≤ Cφλ
pφ(ξ)

for every λ > 1 and every ξ ≥ 0. We also set φ−1(ξ) := inf{η : φ(η) > ξ}.
We will need the following lemma, which gives a sort of interpolation inequality.

Lemma 2.1. Let φ, φ∗ be two Young functions such that, for all ξ ≥ 0,

φ−1(ξ) ≥ Cξλ
(
φ−1
∗ (ξ)

)1−λ
(2.1)

for some λ ∈ (0, 1) and C > 0. Then for all f ∈ L1(Rd) ∩ Lφ∗(Rd) it holds that

‖f‖Lφ(Rd) ≤
2

C
‖f‖λL1(Rd)‖f‖

1−λ
Lφ∗ (Rd). (2.2)

Proof. Let

ψ(ξ) := ξ1/(1−λ) and ϕ(ξ) := (ξ/C)1/λ.

We observe that∥∥|f |1−λ
∥∥
Lφ∗◦ψ(Rd) = inf

{
λ > 0 :

∫
Rd
φ∗

(
ψ
( |f |1−λ

λ

))
≤ 1

}
= inf

{
λ > 0 :

∫
Rd
φ∗

( |f |
ψ(λ)

)
≤ 1

}
= inf

{
µ1−λ > 0 :

∫
Rd
φ∗

( |f |
µ

)
≤ 1

}
= ‖f‖1−λ

Lφ∗ (Rd),

and it is easy to check that∥∥|f |λ∥∥
Lϕ(Rd) = ‖f‖λL1(Rd)/C.

Note also that (2.1) says that

ϕ−1(ξ)(φ∗ ◦ ψ)−1(ξ) ≤ φ−1(ξ).

Therefore, from the above-mentioned facts and Hölder’s inequality (e.g., [11, The-
orem 2.3]), we get that

‖f‖Lφ(Rd) =
∥∥|f |λ|f |1−λ

∥∥
Lφ(Rd)

≤ 2
∥∥|f |λ∥∥

Lϕ(Rd)

∥∥|f |1−λ
∥∥
Lφ∗◦ψ(Rd)

=
2

C
‖f‖λL1(Rd)‖f‖

1−λ
Lφ∗ (Rd).

This concludes the proof. �
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We state for the sake of completeness the following decomposition result (for
the proof we refer to [10, Theorem 2.1]).

Lemma 2.2. Let p ∈ [1,∞), and let J(·, ·) : Rd × Rd → R be a symmetric
nonnegative function such that

(HJ1) there exists 0 < C <∞ such that

sup
y∈Rd

∫
Rd
J(x, y) dx ≤ C;

(HJ2) there exist c1, c2 > 0 and a function a ∈ C1(Rd,Rd) satisfying

sup
x∈Rd,

1≤i,j≤d

∣∣∂xiaj(x)∣∣ <∞;

and {
y ∈ Rd :

∣∣y − a(x)
∣∣ ≤ c2

}
⊂

{
y ∈ Rd : J(x, y) > c1

}
.

Then, for any u ∈ Lp(Rd) there exist two functions v and w such that

u = v + w

and

‖∇v‖p
Lp(Rd) + ‖w‖p

Lp(Rd) ≤ C(J, p)

∫
Rd

∫
Rd
J(x, y)

∣∣u(x)− u(y)
∣∣p dy dx. (2.3)

3. Proof of the decay bounds

First, let us show that
∫
Rd φ(u(x, t)) dx is decreasing in time.

Lemma 3.1. Let J(·, ·) : Rd ×Rd → R be a symmetric nonnegative function, let
φ be a C1 Young function, and assume that G : R → [0,∞) is even and such that
there exist θ : R → [0,∞) even and M > 0 such that

G(ξ − η)(ξ − η)
(
φ′(ξ)− φ′(η)

)
≥ θ(ξ − η) (3.1)

for all 0 ≤ ξ, η ≤ M . Suppose f is such that f(ξ)ξ ≤ 0 for all ξ ≥ 0. If u is the
solution of (1.1) with a nonnegative initial datum u(·, 0) with ‖u(·, 0)‖L∞(Rd) ≤M ,
then

d

dt

∫
Rd
φ
(
u(x, t)

)
dx+

1

2
〈Aθu, u〉 ≤ 0,

where

〈Aθu, u〉 :=
∫
Rd

∫
Rd
J(x, y)θ

(
u(y, t)− u(x, t)

)
dy dx. (3.2)

Proof. We observe first that the assumption f(ξ)ξ ≤ 0 for every ξ ≥ 0 implies
that f(ξ)φ′(ξ) ≤ 0 for every ξ ≥ 0. Indeed, if ξ ≥ 0, φ′(ξ) ≥ 0 and hence
sg(f(ξ)φ′(ξ)) = sg(f(ξ)ξ).
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Now let us now compute the following derivative with respect to t:

d

dt

∫
Rd
φ
(
u(x, t)

)
dx

=

∫
Rd
φ′(u(x, t))ut(x, t) dx

=

∫
Rd
φ′(u(x, t)) ∫

Rd
J(x, y)G

(
u(y, t)− u(x, t)

)(
u(y, t)− u(x, t)

)
dy dx

+

∫
Rd
f
(
u(x, t)

)
φ′(u(x, t)) dx

≤
∫
Rd

∫
Rd
φ′(u(x, t))J(x, y)G(u(y, t)− u(x, t)

)(
u(y, t)− u(x, t)

)
dy dx

= −1

2

∫
Rd

∫
Rd
J(x, y)G

(
u(y, t)− u(x, t)

)(
u(y, t)− u(x, t)

)
×

(
φ′(u(y, t))− φ′(u(x, t))) dy dx

≤ −1

2

∫
Rd

∫
Rd
J(x, y)θ

(
u(y, t)− u(x, t)

)
dy dx,

where the last equality follows as in Lemma 2.1 in [10], and where in order to
get the last inequality we have used (3.1). Hence, we have obtained the desired
conclusion. �

Theorem 3.2. Let J , G, and f be as in Lemma 3.1, and let u be the solution
of (1.1) with a nonnegative initial datum u(·, 0) such that ‖u(·, 0)‖L∞(Rd) ≤ M .
Suppose there exist k1, k2 > 0 such that

θ(ξ) ≥ k1ξ
p and φ(ξ) ≤ k2ξ

q

for all 0 ≤ ξ ≤M and some 1 < q ≤ p. Then∫
Rd
φ
(
u(x, t)

)
dx ≤ Ct−µ (3.3)

for all t sufficiently large, where

µ :=
d(q − 1)

d(p− q) + p
.

Proof. Along this proof we denote by C a constant that may change from one
line to another but that is independent of the relevant quantities.

Let α ∈ (0, 1) and β ∈ (0, 1] be given by

1

p
=
α

p∗
+ 1− α,

1

q
=
β

p
+ 1− β,

where as usual

p∗ =
dp

d− p
if p < d

and

p∗ = +∞ if p > d.
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Note that

α =
1

p′
p∗

p∗ − 1
=

d(p− 1)

d(p− 1) + p
if p < d,

α =
1

p′
if p > d,

β =
p

q′(p− 1)
=
q − 1

q

p

p− 1
.

Let 〈Apu, u〉 be given by

〈Apu, u〉 :=
∫
Rd

∫
Rd
J(x, y)

∣∣u(y, t)− u(x, t)
∣∣p dy dx,

that is, (3.2) with θ(ξ) = |ξ|p.
Now, let us write

u := v + w,

with v and w as in the decomposition lemma (Lemma 2.2). Interpolating two
times, using the aforementioned lemma and Lemma 3.1 we deduce that(

k−1
2

∫
Rd
φ(u)

)1/q

≤ ‖u‖Lq(Rd) ≤ ‖u‖1−β
L1(Rd)‖u‖

β
Lp(Rd)

≤ C‖u‖β
Lp(Rd) = C‖v + w‖β

Lp(Rd)

≤ C
(
‖v‖Lp(Rd) + ‖w‖Lp(Rd)

)β
≤ C

(
‖v‖β

Lp(Rd) + ‖w‖β
Lp(Rd)

)
≤ C

(
‖v‖β(1−α)

L1(Rd) ‖v‖
βα

Lp∗ (Rd) + ‖w‖β
Lp(Rd)

)
≤ C

(
‖v‖βα

Lp∗ (Rd) + ‖w‖β
Lp(Rd)

)
≤ C

(∥∥|∇v|∥∥βα

Lp(Rd) + ‖w‖β
Lp(Rd)

)
≤ C

(
〈Apu, u〉βα/p + 〈Apu, u〉β/p

)
≤ C

(
〈Aθu, u〉βα/p + 〈Aθu, u〉β/p

)
≤ C

([
− d

dt

(∫
Rd
φ(u)

)]βα/p
+
[
− d

dt

(∫
Rd
φ(u)

)]β/p)
.

We now set

X(t) :=

∫
Rd
φ
(
u(x, t)

)
dx.

From our previous computations we get

X(t) ≤ C
([
−X ′(t)

]βα/p
+
[
−X ′(t)

]β/p)q
≤ C

([
−X ′(t)

]βαq/p
+
[
−X ′(t)

]βq/p)
.
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If for 0 ≤ ξ we define H(ξ) := C(ξβαq/p + ξβq/p), then we have

X ′(t) ≤ −H−1
(
X(t)

)
.

We observe next that if ξ ≤ K =
∫
Rd φ(u(x, 0)) dx there exists C = C(K) > 0

such that H−1(ξ) ≥ Cξγ with γ := p/(βαq). Then

X ′(t) ≤ −C
(
X(t)γ

)
,

and thus integrating we get

X(t) ≤ Ct−1/(γ−1),

and this ends the proof of the theorem. �

Remark 3.3. For the case of pure powers our results read as follows: Let

G(ξ) := |ξ|p−2

for some p > 1. We choose φ(ξ) := |ξ|q with q ∈ (1, 2], and θ(ξ) := q(q−1)
M2−q |ξ|p.

Suppose 0 ≤ η ≤ ξ ≤M (the case 0 ≤ ξ ≤ η ≤M is analogous since G and θ are
even). We have that

G(ξ − η)(ξ − η)
(
φ′(ξ)− φ′(η)

)
= q(ξ − η)p

(ξq−1 − ηq−1)

ξ − η

≥ q(q − 1)

M2−q
(ξ − η)p = θ(ξ − η),

and hence (3.1) holds. Let us observe that we impose no condition on p. Indeed,
in the statement of Theorem 3.2 we only need p ≥ q > 1, and hence given any
p > 1 we can always pick q ∈ (1,min(2, p)]. Thus, our results extend the ones
in [10], where similar bounds were obtained for f ≡ 0 and G(ξ) = |ξ|p−2 with
p ∈ [2, d).

Remark 3.4. As an example of functions G verifying our conditions that are not
necessarily homogeneous, we mention that we may consider any even function G
satisfying

G(ξ) ≥ kξp−2

for ξ ≥ 0 and some k > 0 and p > 1. For instance, let

G(ξ) := |ξ|p−2h(ξ),

where h : R → [0,∞) is an even function with infξ≥0 h(ξ) > 0. Indeed, given such
a G, we take

φ(ξ) := |ξ|q, θ(ξ) := k
q(q − 1)

M2−q
|ξ|p

with q ∈ (1,min(2, p)]. Then, clearly the assumptions for φ and θ in Theorem 3.2
are satisfied, and one can also check that (3.1) holds, arguing as in the previous
remark.
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Remark 3.5. Let us note that if in addition to the hypotheses of Theorem 3.2 it
also holds that

φ(ξ) ≥ kξr

for all 0 ≤ ξ ≤M with r ≥ q, from (3.3) we get that

‖u‖Lr(Rd) ≤ Ct−µ/r for all t sufficiently large. (3.4)

The previous results also provide decay estimates for the Orlicz norm of the
solutions of (1.1).

Corollary 3.6. Let J , G, and f be as in Theorem 3.2, and let u be the solution
to (1.1) with a nonnegative initial datum u(·, 0) such that ‖u(·, 0)‖L∞(Rd) ≤M .

(i) If

c1ξ
r ≤ φ(ξ) ≤ c2ξ

r
λ(r−1)+1

for all 0 ≤ ξ ≤M and some r ≥ q and λ ∈ (0, 1), then

‖u‖Lφ(Rd) ≤ Ct−µ(1−λ)/r for all t sufficiently large.

(ii) If φ is of upper type s, then

‖u‖Lφ(Rd) ≤ Ct−µ/s for all t sufficiently large.

Proof. Let ξ ≥ 0. In order to prove (i) we take φ∗(ξ) := ξr and we note that

φ(ξ) ≤ Cξ
r

λ(r−1)+1 implies that φ−1(ξ) ≥ Cξλ(φ−1
∗ ))1−λ. Hence, by Lemma 2.1 and

conservation of mass we derive that

‖u‖Lφ(Rd) ≤ C‖u‖1−λ
Lr(Rd),

and so (i) follows now from (3.4).
Let us prove (ii). We first note that if φ is of upper type s, then

‖u‖Lφ(Rd) ≤

{
Cφ(

∫
Rd φ(u))

1/s if ‖u‖Lφ(Rd) ≤ 1,∫
Rd φ(u) if ‖u‖Lφ(Rd) > 1.

(3.5)

Indeed, if ‖u‖Lφ(Rd) > 1, then this is immediate from the convexity of φ. On the
other hand, if ‖u‖Lφ(Rd) ≤ 1, then we have

1 =

∫
Rd
φ
( u

‖u‖φ

)
≤ Cφ

‖u‖sφ

∫
Rd
φ(u),

and this proves (3.5).
Moreover, (ii) is a direct consequence of (3.3) and (3.5), and thus the corollary

is proved. �
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