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Abstract. We show that, given a compact Hausdorff space Ω, there is a
compact group G and a homeomorphic embedding of Ω into G, such that the
restriction map A(G) → C(Ω) is a complete quotient map of operator spaces.
In particular, this shows that there exist compact groups which contain infinite
cb-Helson subsets, answering a question raised by Choi and Samei. A negative
result from that paper is also improved.

1. Introduction

The notion of a cb-Helson subset of a locally compact group was introduced
in [4], in connection with the study of quotients of Fourier algebras. For instance,
the following result can be obtained by an easy modification of the proof of [4,
Theorem B].

Theorem 1.1 (Corollary of work in [4]). Let G be a SIN group, and let J be
a closed ideal in the Fourier algebra A(G). Suppose that A(G)/J is completely
boundedly isomorphic to a closed subalgebra of B(H) for some Hilbert space H.
Then there is a cb-Helson subset E ⊂ G such that J = {f ∈ A(G) : f |E = 0}.

We defer the definition of a cb-Helson set to Section 2. For now, we note that
such sets appear to be rather hard to come by: finite subsets of locally compact
groups have the cb-Helson property, but hitherto no infinite cb-Helson sets were
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known to exist. Uncountable Helson sets can be found in T and R, using clas-
sical constructions of Fourier analysis (see, e.g., [12, Theorem 5.6.6]). By Herz’s
restriction theorem, these give uncountable Helson sets in any locally compact
group that contains a closed copy of either T or R. In contrast, every cb-Helson
subset of a locally compact abelian group must be finite (see [4, Theorem C]).

The purpose of this note is twofold. First, we strengthen [4, Theorem C] as
follows.

Theorem 1.2. Let G be a locally compact group, and let Gd be the same group
equipped with the discrete topology. Suppose that Gd is amenable. Then every
cb-Helson subset of G is finite.

(This applies, in particular, to any locally compact G which contains a solvable
subgroup of finite index.) Second, answering a question raised in [4], we show that
infinite cb-Helson sets do exist, albeit inside some “pathologically large” groups.

Theorem 1.3. Let Ω be a compact Hausdorff space. Then there is a compact,
connected group G and a cb-Helson subset of G that is homeomorphic to Ω.

Theorem 1.3 can be thought of as an analogue of a folklore result for “classical”
Helson sets, which, roughly speaking, says that each compact Hausdorff space Ω
can be homeomorphically embedded as a Helson set inside some compact abelian
group. Note that if we restrict attention to particular compact abelian groups,
then there can be topological restrictions on the possible Helson subsets: for
instance, a Helson subset of T cannot contain any closed subset homeomorphic
to [0, 1] (cf. [12, Remark 5.6.8]).

One drawback of Theorem 1.3 is that we create groups specially for the purpose
of containing certain spaces as cb-Helson subsets, rather than finding “natural”
examples of groups that contain infinite cb-Helson subsets. In particular, the fol-
lowing questions remain open (the second of which was suggested by the referee).

Questions.

(1) Is there a connected, linear Lie group that contains an infinite cb-Helson
subset?

(2) Does there exist an infinite index set I and some n ∈ N such that
∏

i∈IUn

contains an infinite cb-Helson subset?

Let us say something about the proofs. Theorem 1.2 is a quick consequence
of some hard (but standard) results in the theory of operator spaces; its proof
will be given in Section 3. In contrast, the proof of Theorem 1.3 is much longer,
but only uses basic tools. The arguments are not difficult once one thinks of the
right idea; the key part is based on the standard embedding of a dual operator
space inside a product of matrix algebras. We will actually prove a more precise
statement, given as Theorem 4.1.

2. Notation and preliminaries

2.1. Notation and terminology. If X is a Banach space, then ball(X) denotes
its closed unit ball. If B is a unital C∗-algebra, then U(B) denotes its unitary
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group. IfH is a Hilbert space, then we write U(H) instead ofU(B(H)). We use Un

as an abbreviation for U(Cn), that is, the usual group of n× n unitary matrices.
Similarly, we write Mn as an abbreviation for Mn(C).

Given a family (Xi)i∈I of Banach spaces, we shall write
∏B

i∈IXi for the Banach
space direct product of this family, which is sometimes called the `∞-direct sum.
This is just to avoid ambiguity since we shall also be dealing with sets or groups
that arise as Cartesian products (in the usual sense) of sets or groups.

All topological groups are assumed to be a priori Hausdorff; if G is a topological
group, then Gd denotes the same group equipped with the discrete topology.

The abbreviation WOT stands for weak operator topology (on B(H) for some
given Hilbert space H). Given a topological group G and a Hilbert space H, a
representation π : G y H is said to be unitary if π(G) ⊆ U(H), and said to
be WOT-continuous if π : G → (B(H),WOT) is continuous as a map between
topological spaces. For most of what we do, G is locally compact, but it is use-
ful to have terminology which is well defined, without having to establish local
compactness.

Given a family (σi)i∈I of unitary representations of a common group G, with σi :
G y Hi, we define the direct product of this family (sometimes called the direct
sum) as follows. Let H := `2-

⊕
i∈I Hi be the `2-direct sum of the representation

spaces. Given x = (xi)i∈I ∈ G and ξ = (ξi)i∈I ∈ H, let[
σ(x)(ξ)

]
i
:= σi(xi)(ξi) (i ∈ I).

Clearly, σ is also a unitary representation: we often denote it by
∏

i∈I σi.

Remark 2.1. Let G be a topological group. Then the direct product of a family
of WOT-continuous unitary representations of G is itself WOT-continuous. In
the locally compact setting, this is often deduced as an application of the corre-
spondence between WOT-continuous representations of a locally compact group
G and nondegenerate ∗-representations of L1(G). However, it is not hard to give
a proof which works for arbitrary topological groups; since we did not see this
proof in the sources we consulted, it is included in the Appendix for the reader’s
interest.

If π : G → U(Hπ) is a unitary representation of a (topological) group, we
denote by VNπ(G) the WOT-closed subalgebra of B(Hπ) generated by the subset
π(G). Given ξ, η ∈ Hπ we denote by ξ ∗π η the function g 7→ (π(g)ξ | η). If π
is furthermore WOT-continuous, then each function of the form ξ ∗π η belongs
to Cb(G), and the map ξ ⊗ η 7→ ξ ∗π η gives rise to a bounded linear map
Hπ ⊗̂Hπ → Cb(G). If, furthermore, we assume that G is locally compact, then
we can appeal to the machinery of coefficient spaces as in, for example, Arsac’s
thesis [1]: in particular, VNπ(G) has a canonical predual Aπ(G), which is the
image of the map Hπ ⊗̂Hπ → Cb(G) equipped with the quotient norm.

2.2. Helson sets and cb-Helson sets. Let E be a closed subset of a locally
compact group G; let A(G) denote the Fourier algebra of G, as defined in [6].
(Recall that if G is locally compact and abelian, then A(G) is naturally identified

with the space of Fourier transforms of integrable functions on the dual group Ĝ.)
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Restriction of functions defines a contractive algebra homomorphism A(G) →
C0(E), whose kernel we denote by IG(E); let AG(E) be the quotient algebra
A(G)/IG(E). There is a natural, injective homomorphism incG,E : AG(E) →
C0(E), which in general need not be surjective.

Definition 2.2. We say that E is a Helson subset of G or a Helson set for short,
if incG,E : A(G) → C0(E) is surjective, and hence an isomorphism of Banach
spaces.

Equivalently: E is a Helson subset of G if and only if each continuous function
on E that vanishes at infinity can be extended to some function in the Fourier
algebra of G.

Most of the operator space theory needed for this paper will be explained as
we need it: all necessary background that is not explained here can be found
in the standard references [2], [5], and [10]. Let us recall briefly what is meant
by the natural operator space structures on the spaces C0(G) and AG(E). Since
C0(E) and VN(G) are C∗-algebras, they have canonical operator space structures;
VN(G) is a weak-star closed subspace of B(L2(G)), and hence its predual A(G)
has an operator space structure, whose dual (as an operator space) coincides with
the original operator space structure on VN(G); and finally, AG(E) is a quotient
of A(G), so it carries a natural quotient operator space structure.

Definition 2.3. We say that E is a cb-Helson subset of G, or a cb-Helson set for
short, if incG,E : AG(E) → C0(E) is an isomorphism of operator spaces.

Remark 2.4. Since the natural operator space structure on C0(E) is minimal, the
map incG,E : AG(E) → C0(E) is automatically completely bounded. (In fact, it is
completely contractive.) Thus E is a cb-Helson set if and only if incG,E : AG(E) →
C0(E) is surjective and has completely bounded inverse.

2.3. Warning remarks on terminology. There seems to be some disagreement
in the literature over the precise definition of Helson sets in noncompact groups.
The original result of Helson that motivated the term Helson set was in the
context of closed subsets of compact abelian groups. However, once one moves to
locally compact abelian groups, terminology seems to differ. Some authors require
that Helson subsets be compact as part of the definition; our convention, that
they need not be compact, is in accordance with [7].

There is also the notion of a Sidon subset E in a discrete abelian group Γ,
which, roughly speaking, requires that functions on E extend to elements of the
Fourier–Stieltjes algebra B(Γ) with a control of norm. It turns out that every
Sidon subset of a discrete abelian group is automatically a Helson subset in our
sense (see [12, Theorem 5.7.3]). We prefer to keep the two concepts distinct.

It is actually easy to find examples of infinite cb-Sidon sets (where the defi-
nition is the obvious analogue of the cb-Helson condition). Let F∞ denote the
free group on a countably infinite number of generators, and let E denote the
set of generators: then the restriction map B(F∞) → `∞(E) is a complete quo-
tient map, since it can be viewed as the adjoint of the known complete isometry
max `1(E) ↪→ C∗(F∞).
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3. Calculations with cb-Helson constants

Classically, a useful tool for studying Helson sets has been to quantify “how
Helson they are,” by associating a “Helson constant” to each closed subset of a
given group. This has an obvious analogue for cb-Helson sets, as given by the
following definition from [4].

Definition 3.1 (cb-Helson constants). Let E be a cb-Helson subset of a locally
compact group G. The cb-Helson constant of E, which we denote by Helcb(E), is
defined to be ‖ inc−1

G,E ‖cb.

We adopt the convention that if E is a closed subset of G and not a cb-Helson
subset, then Helcb(E) = +∞.

Remark 3.2. Let E be a closed subset of G.

(i) By basic operator space theory, Helcb(E) = 1 if and only if the restriction
map A(G) → C0(E) is a complete quotient map of operator spaces.

(ii) If F is a closed subset of E, then it follows from Tietze’s extension theorem
that Helcb(F ) ≤ Helcb(E) (see [4, Lemma 2.2] for the details).

Now, by Remark 3.2(ii), Theorem 1.2 will follow from the following result on
cb-Helson constants of finite subsets in certain groups.

Proposition 3.3. Let G be a locally compact group such that Gd is amenable.
Let F ⊂ G be a finite subset of size n ≥ 2. Then Helcb(F ) ≥ n/(2

√
n− 1).

Proof. To ease notation, we abbreviate incG,F to incF and AG(F ) to A(F ). We say
identified as an abbreviation for “identified completely isometrically as operator
spaces.”

We identify C(F ) with min `n∞ and hence identify C(F )∗ with max `n1 . Since
A(G) → A(F ) is a complete quotient map (by definition), we may identify A(F )∗

with the closed linear span inside VN(G) of {λx : x ∈ F}. Now consider C∗
δ(G),

the norm-closed subalgebra of B(L2(G)) generated by the set of left translation
operators {λx : x ∈ G}. Since Gd is amenable, C∗(Gd) is nuclear (see [8]); and
since C∗(Gd) quotients onto C∗

δ(G), it follows that C∗
δ(G) is also nuclear. Thus

A(F )∗ is identified with a closed subspace of a nuclear C∗-algebra, and so (see
[10, Corollary 12.6])

inf
V⊂K(`2)

distcb
(
A(F )∗, V

)
= 1, (1)

where the infimum is taken over all n-dimensional subspaces of K(`2).
Let V ⊂ K(`2) be an n-dimensional subspace of K(`2). Then by a result of

Pisier ([9, Theorem 7]),

distcb(max `n1 , V ) ≥ n

2
√
n− 1

. (2)

By basic properties of cb-Banach–Mazur distance,

distcb(max `n1 , V ) ≤ distcb
(
max `n1 ,A(F )∗

)
distcb

(
A(F )∗, V

)
.
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Combining this with (1) and (2) yields n/(2
√
n− 1) ≤ distcb(max `n1 ,A(F )∗).

Since

distcb
(
max `n1 ,A(F )∗

)
= distcb

(
min `n∞,A(F )

)
≤ ‖ incF ‖cb‖ inc−1

F ‖cb
= Helcb(F ),

the proof is complete. �

Remark 3.4. The theme of getting lower bounds on the Helson constants of finite
sets is very standard in the study of the classical Helson condition. For instance,
to prove that a closed nontrivial arc in T is not Helson, one considers larger and
larger finite subsets, each of which is an “arithmetic progression,” and then shows
that the Helson constant of a finite arithmetic progression in T tends to infinity
as the number of points in the progression grows.

Remark 3.5. The proof of Proposition 3.3, and hence the proof of Theorem 1.2,
works for any locally compact group G such that C∗

δ(G) is an exact C∗-algebra.
However, I do not know if this actually encompasses any new examples not cov-
ered by Theorem 1.2. In fact, after this paper was submitted, I learned of the
preprint [11] by Ruan and Wiersma. As a special case of their results, they
show that, whenever G is a locally compact amenable group for which Gd is
not amenable, such as SO(n,R) for all n ≥ 3, the algebra C∗

δ(G) is not even
locally reflexive, and hence a priori cannot be exact. See Example 4.1(3) and
Theorem 4.3 in their paper for further details.

4. Theorem 1.3: A stronger version and some initial reductions

Our goal in the rest of this paper is to prove the following result, which implies
Theorem 1.3.

Theorem 4.1 (Embedding theorem, precise version). Let Ω be a compact Haus-
dorff space. Then there exists a family (n(i))i∈I of positive integers such that,
when we define G to be the group

∏
i∈IUn(i) with the product topology, there is a

continuous injection from j : Ω → G such that Helcb(j(Ω)) = 1.

The proof of the theorem will be broken down into two propositions. Before
giving all the details, let us provide some motivation. We saw in the previous
section that, in order to find large finite sets with small cb-Helson constant, we
need to find maps max `n1 → VN(G) which are not too far from being embeddings
of operator spaces, and which send the standard basis vectors of `n1 to elements
of λ(G) ⊂ ball(VN(G)). Well, max `1 has a completely isometric embedding into

C∗(F∞), which embeds as a C∗-subalgebra of
∏B

n≥1M2n(C), which in turn embeds
as a C∗-subalgebra of VN(SU(2,C)). Although this embedding does not seem
to send the standard basis of `1 to elements of λ(SU(2,C)), it does embed the
standard basis of `1 into

∏
n≥1U2n, and the latter is a compact group when given

the product topology. Since we want an embedding of Ω into λ(G) ⊂ ball(VN(G))
for some compact G, the natural Ansatz is to take G =

∏
n≥1U2n and hope that

the details work out.
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Now we return to the task of proving Theorem 4.1. As we have already seen,
a natural way to get complete quotient maps onto C(Ω) is to dualize and look
for completely isometric, w∗–w∗ continuous embeddings of C(Ω)∗ = M(Ω).

Remark 4.2. We already used, in a small way, the standard result that if V is a
minimal operator space, then the dual operator space structure on V∗ coincides
with the maximal operator space structure. However, for the proofs that follow,
we do not actually need to know this.

The first step is to observe that, in some sense, it suffices to get a good embed-
ding of M(Ω) into VNπ(G) for a suitable WOT-continuous unitary representation
π : G → Hπ.

Proposition 4.3. Let G be a compact group. Suppose the following exist: a faith-
ful, WOT-continuous, unitary representation π : G → U(Hπ); and a complete
isometry J : M(Ω) → B(Hπ) which is w∗–w∗ continuous and maps {δω : ω ∈ Ω}
to a subset of π(G).

For each ω ∈ Ω, let j(ω) be the unique element of G such that J(δω) = π(j(ω)).
Then

(i) j : Ω → G is a continuous injection with closed range;
(ii) J∗(h)(ω) = h(j(ω)) for all ω ∈ Ω;
(iii) Helcb(j(Ω)) = 1.

Proof. Since J is injective, so is j. Next we show that j is continuous, which will
imply that j(Ω) is compact and hence closed in G. Let B denote ball(B(Hπ))
equipped with the relative WOT. Since π : G → B is a continuous map from a
compact space to a Hausdorff one, it is a homeomorphism onto its range. There-
fore, to show that j : Ω → G is continuous, it suffices to show that π◦j : Ω → B is
continuous. Let ev denote the map ω 7→ δω, so that π◦ j = J ◦ev. It is straightfor-
ward to check that when M(Ω) is given the w∗-topology, ev : Ω → M(Ω) is con-
tinuous (just look at preimages of sub-basic open sets). Since J : M(Ω) → B(Hπ)
is w∗–w∗ continuous and contractive, it follows that J ◦ ev : Ω → (ball(Hπ),w

∗)
is continuous. But the relative w∗-topology and the relative WOT coincide on
ball(Hπ), so J ◦ ev : Ω → B is continuous as required. This completes the proof
of part (i).

Part (ii) is a straightforward consequence of the definitions of Aπ(G) and
VNπ(G) and the pairing between them. In more detail: since 〈π(g), ξ ∗π η〉 =
(ξ∗πη)(g) for each g ∈ G, 〈π(g), h〉VNπ −Aπ = h(g) for all g ∈ G and all h ∈ Aπ(G).
Hence, by the definition of j,

h
(
j(ω)

)
=

〈
J(δω), h

〉
VNπ −Aπ

=
〈
δω, J∗(h)

〉
M(Ω)−C(Ω)

= J∗(h)(ω),

as required. Thus (ii) is proved.
Finally, let R : A(G) → C(j(Ω)) be the completely contractive map given by

restriction of functions, and let j∗ denote the completely isometric isomorphism
C(j(Ω)) → C(Ω) induced by j. Then, by part (ii),

j∗R(h)(ω) = h
(
j(ω)

)
= J∗(h)(ω)

(
h ∈ A(G), ω ∈ Ω

)
.
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Let ı : Aπ(G) → A(G) be the natural inclusion map; this is well defined and a
complete isometry since G is compact. Then R◦ ı = (j∗)−1 ◦J∗, and J∗ : Aπ(G) →
C(Ω) is a complete quotient map (since its adjoint J is a complete isometry);
a quick check now shows that R is also a complete quotient map, as required.
This finishes the proof of part (iii). �

Proposition 4.4 (An embedding in a product of matrix algebras). Let Ω be a
compact Hausdorff space. Then there exists a family (Hi)i∈I of finite-dimensional

Hilbert spaces, such that when we take M :=
∏B

i B(Hi), there is a completely
isometric, w∗–w∗ continuous embedding J : (minC(Ω))∗ → M such that J(δω) ∈∏

i U(Hi) for all ω ∈ Ω.

The proof of this proposition consists of modifying the construction in [3] of
the standard dual of an operator space, in the special case of C(Ω). Since the
details are straightforward but somewhat lengthy, the proof of this proposition
will be deferred to the next section.

Proof of Theorem 4.1. Let (Hi)i∈I, M, and J be as provided by Proposition 4.4.
Take G = U(M) =

∏
i U(Hi) and define j : Ω → G by J(δω) = π(j(ω)). Equip

each U(Hi) with the relative WOT, and equip G with the product topology. Since
each Hi is finite-dimensional, each U(Hi) is compact, and so G is compact.

Let H = `2-
⊕

i∈IHi, and let θ : M → B(H) be the natural, w∗–w∗ contin-
uous inclusion. By abuse of notation we also use θ to denote the corresponding
representation G → U(H). We claim that (i) θ : G y H is WOT-continuous and
(ii) VNθ(G) = θ(M). If both of these hold, then the hypotheses of Proposition 4.3
are satisfied, and hence j(Ω) is a cb-Helson subset of G with cb-Helson constant 1.

To prove (i), for each i ∈ I, let θi : G → U(Hi) be the coordinate projection: this
is WOT-continuous by definition of the product topology. Hence, by Remark 2.1,
the direct product

∏
i θi : G y H is also WOT-continuous. It is easily checked

that
∏

i θi coincides with θ, so we have proved (i).
To prove (ii), note that the inclusion VNθ(G) ⊆ θ(M) is trivial. On the other

hand, since each element of a unital C∗-algebra A is a linear combination of four
elements of U(A), we have θ(M) ⊆ lin θ(U(M)) = lin(θ(G)) ⊆ VNθ(G), giving
the converse inclusion. (As pointed out by the referee, one could instead appeal to
more general results on coefficient spaces of products of representations; see, e.g.,
[1, Corollaire 3.13].) This completes the proof of (ii), and hence completes the
proof of the theorem. �

Theorem 4.1 is a cb-analogue of a folklore result in the classical theory of Helson
sets, which says that any compact space arises as a Helson subset of a product
of (many!) copies of T. To emphasize the analogy, we state a more long-winded
version of the classical result.

Proposition 4.5 (Probably folklore). Let Ω be a compact Hausdorff space. Let
Γ = U(C(Ω))d (i.e., the unitary group of C(Ω) equipped with the discrete topol-
ogy), and let G be the Pontryagin dual of Γ, regarded as a subset of ball(`∞(Γ)).
Define J : M(Ω) → `∞(Γ) by J(µ)(γ) =

∫
Ω
γ dµ, and let j(ω) = J(δω). Then
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(i) j(Ω) is a compact subset of G;
(ii) J : M(Ω) → `∞(Γ) is w∗–w∗ continuous and bounded below;
(iii) if we identify A(G) with `1(Γ), then the restriction map A(G) → C(j(Ω))

is just J∗.

In particular, j(Ω) is a Helson subset of G.

We omit the proof, which is straightforward bookkeeping (for part (ii) we use
the fact that any element of ball(C(Ω)) can be written as u1 + u2 + i(v1 + v2) for
some u1, u2, v1, v2 ∈ Γ; if we use [12, Lemma 5.5.1], one can actually show that
J is an isometry). I do not know an exact reference for the precise statement
above, but the construction and the method have appeared independently many
times in the literature. For instance, as pointed out in [7, Section 5], the group G
can be seen as the free compact abelian group generated by Ω, in an appropriate
category-theoretic sense.

5. The proof of Proposition 4.4

We must find a w∗–w∗ continuous and completely isometric embedding J :
(minC(Ω))∗ → M, where M is a product of matrix algebras, such that

J(δω) ∈ U(M) for all ω ∈ Ω. (3)

Let us temporarily ignore the requirement (3). Then there is a standard way
to embed (minC(Ω))∗ w∗–w∗ continuously and completely isometrically into a
product of matrix algebras: this is a by-product of the definition of the standard
dual of a given operator space (see [3]).

With minor modifications this embedding procedure can be made to also sat-
isfy (3). Here are the details. Given an operator space V and p ∈ N, the standard
norm on Mp(V

∗) is defined as follows: given µ = [µst] ∈ Mp(V), let Tµ : V → Mk

be the linear map v 7→ [µst(v)], and define ‖µ‖(SD) to be ‖Tµ‖cb. To get (3), we
note that if V is a unital C∗-algebra equipped with its canonical operator space
structure, the cb-norm of Tµ can be determined by testing on unitary matrices
with entries in V. Although this follows from the Russo–Dye theorem, we shall
give a more hands-on approach.

Lemma 5.1 (Determining ‖Tµ‖cb). Let V be a unital C∗-algebra, and let µ ∈
Mp(V

∗). Then

‖µ‖(SD) = ‖Tµ‖cb = sup
n∈N

sup
{∥∥(Tµ)n(u)

∥∥
Mn(Mp)

: u ∈ U
(
Mn(V)

)}
.

Proof. We use the following well-known trick: since V is a unital C∗-algebra, for
each a ∈ ball(V) the block matrix

Ua :=

[
(1− aa∗)1/2 a

−a∗ (1− a∗a)1/2

]
is well defined and unitary in M2(V).
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Let n ∈ N, and let E12 : M2n(V) → Mn(V) be compression to the (1, 2) entry
when we identify M2n(V) with M2(Mn(V)). By abuse of notation, we also use E12

to denote the corresponding compression map M2n(Mp) → Mn(Mp).
Let µ ∈ Mp(V

∗). Since E12 ◦ (Tµ)2n = (Tµ)n ◦ E12, we have∥∥(Tµ)n
∥∥ = sup

{∥∥(Tµ)n(v)
∥∥
Mn(Mp)

: v ∈ ball
(
Mn(V)

)}
= sup

{∥∥E12(Tµ)2n(Uv)
∥∥
Mn(Mp)

: v ∈ ball
(
Mn(V)

)}
≤ sup

{∥∥(Tµ)2n(Uv)
∥∥
M2n(Mp)

: v ∈ ball
(
Mn(V)

)}
≤ sup

{∥∥(Tµ)2n(u)
∥∥
M2n(Mp)

: u ∈ U
(
M2n(V)

)}
≤ sup

r∈N
sup

{∥∥(Tµ)r(u)
∥∥
Mr(Mp)

: u ∈ U
(
Mr(V)

)}
≤ ‖Tµ‖cb.

Taking the supremum over all n on the left-hand side, the result follows. �

Now we specialize to the case V = C(Ω). We can identify Mn(C(Ω)) (com-
pletely isometrically) with C(Ω;Mn), and under this identification U(Mn(C(Ω)))
is identified with C(Ω;Un). To ease notation, we denote this unitary group by Γn.
Then, given u = [uij] ∈ Γn, define Jn,u : M(Ω) → Mn by

Jn,u(µ) :=
[
µ(uij)

]
. (4)

If µ = [µst] ∈ Mp(M(Ω)), then the canonical shuffle Mp(Mn) ∼= Mn(Mp) maps
(Jn,u)p(µ) to (Tµ)n(u), and so by Lemma 5.1 we get

sup
n

sup
u∈Γn

∥∥(Jn,u)p(µ)∥∥ = sup
n

sup
u∈Γn

∥∥(Tµ)n(u)
∥∥ = ‖µ‖(SD). (5)

Let M :=
∏B

n∈N
∏B

u∈Γn
Mn, and define J : M(Ω) −→ M to be the direct

product of the maps Jn,u. Equation (5) implies that, for each p ∈ N, we have∥∥Jp(µ)∥∥ = ‖µ‖(SD) for all µ ∈ Mp

(
M(Ω)

)
,

so that J : M(Ω) → M is a complete isometry. Note that for each ω ∈ Ω,
Ju(δω) = u(ω) ∈ Un, and hence J(δω) ∈ U(M). So, to complete the proof of
Proposition 4.4, there is only one thing left to check.

Lemma 5.2. J is w∗–w∗ continuous.

The analogous statement for the canonical embedding of a dual operator space
can be found in [3, Proposition 2.1], and a description of the pre-adjoint is given
without proof after [3, Proposition 3.1]. For sake of completeness, we give the
details.

Proof of Lemma 5.2. Let Tn denote the space of trace class operators on Cn,
equipped with its canonical norm. Then

M∗ = `1-
⊕
n

⊕
u∈C(Ω;Un)

Tn,
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and for any S = (Sn,u) ∈ M∗ and µ ∈ M(Ω) we have〈
J∗(S), µ

〉
M(Ω)∗−M(Ω)

=
∑
n∈N

∑
u∈Γn

Tr
(
Sn,uJu(µ)

)
. (6)

Define h ∈ C(Ω) by

h(ω) =
∑
n∈N

∑
u∈Γn

Tr
[
Sn,uu(ω)

]
(ω ∈ Ω).

The sum is absolutely convergent, uniformly in ω, since
∑

n∈N
∑

u∈Γn
‖Sn,u‖1 < ∞

by our assumption on S. Therefore, we have

µ(h) =
∑
n∈N

∑
u∈Γn

µ
(
Tr

[
Sn,uu(·)

])
=

∑
n∈N

∑
u∈Γn

Tr
(
Sn,uJu(µ)

)
, (7)

and combining (6) and (7) gives 〈J∗(S), µ〉 = µ(h). Thus J∗(M∗) ⊆ C(Ω) =
M(Ω)∗ as required. (In fact, our argument constructs the pre-adjoint J∗ explicitly,
as J∗(S) := h.) �

Appendix: Products of WOT-continuous representations

The arguments that follow are surely not new. We include them because they
highlight that local compactness plays no role in Remark 2.1.

Throughout, I is a fixed indexing set, not necessarily countable. Let (Hi)i∈I
be a family of Hilbert spaces, and let M :=

∏B
i B(Hi). Of course, ball(M) =∏

i ball(B(Hi)) as sets. Form the `2-direct sum H = `2-
⊕

i∈I Hi. If we regard M
as a von Neumann subalgebra of B(H) in the natural way, via block-diagonal
embedding, then we may equip ball(M) with the relative WOT inherited from
B(H), which will be denoted by τ . On the other hand, if we let τi be the rel-
ative WOT on ball(B(Hi)) for each i ∈ I, this gives us a product topology on∏

i∈I ball(Hi) = ball(M).

Lemma A.1 (Products of unit balls in the WOT). The identity map id :
(ball(M), τ) →

∏
i∈I(ball(B(Hi)), τi) is a homeomorphism.

Proof. We start by showing that id is continuous. By the universal property of
product topologies, it suffices to show that for each k ∈ I the coordinate projec-
tion Pk : ball(M) → ball(B(Hk)) is continuous for the respective weak operator
topologies. But this follows immediately from the identity Pk(T )ξk = T ık(ξk),
where ık : Hk ↪→ H is the natural embedding of Hilbert spaces.

Note that ball(B(H)) is compact and Hausdorff in the relative WOT; and since
M is WOT-closed in B(H), it is easily checked that ball(M) is WOT-closed
in ball(B(H)). Hence (ball(M), τ) is compact and Hausdorff, so that id, being
a continuous surjection from a compact space to a Hausdorff space, is an open
mapping. �

Now let G be a topological group and, for each i ∈ I, let σi : Gi → U(Hi) be
a WOT-continuous unitary representation. Let σ =

∏
i σi be the direct product
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representation G → U(H). By the universal property of product topologies, σ :
G →

∏
i(ball(B(Hi)), τi) is continuous. Applying Lemma A.1, we conclude that

σ is WOT-continuous as required.
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