
Ann. Funct. Anal. 7 (2016), no. 1, 150–157

http://dx.doi.org/10.1215/20088752-3428355

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

THE CONVEX HULL-LIKE PROPERTY AND
SUPPORTED IMAGES OF OPEN SETS

B. RICCERI

Dedicated to Professor Anthony To-Ming Lau, with esteem and friendship

Communicated by V. Valov

Abstract. In this note, as a particular case of a more general result, we
obtain the following theorem.

Let Ω ⊆ Rn be a nonempty bounded open set, and let f : Ω → Rn be
a continuous function which is C1 in Ω. Then, at least one of the following
assertions holds:

(a) f(Ω) ⊆ conv(f(∂Ω)).
(b) There exists a nonempty open set X ⊆ Ω, with X ⊆ Ω, satisfying the
following property: for every continuous function g : Ω → Rn which is C1

in X, there exists λ̃ ≥ 0 such that, for each λ > λ̃, the Jacobian determinant
of the function g + λf vanishes at some point of X.

As a consequence, if n = 2 and h : Ω → R is a nonnegative function, for
each u ∈ C2(Ω) ∩ C1(Ω) satisfying in Ω the Monge–Ampère equation

uxxuyy − u2
xy = h,

one has

∇u(Ω) ⊆ conv
(
∇u(∂Ω)

)
.
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1. Introduction and preliminaries

Here and in what follows, Ω is a nonempty relatively compact and open set
in a topological space E, with ∂Ω 6= ∅, and Y is a real locally convex Hausdorff
topological vector space. Ω and ∂Ω denote the closure and the boundary of Ω,
respectively. Since Ω is compact, ∂Ω, being closed, is compact, too.

Let us first recall some well-known definitions.
Let S be a subset of Y , and let y0 ∈ S. As usual, we say that S is supported

at y0 if there exists ϕ ∈ Y ∗ \ {0} such that ϕ(y0) ≤ ϕ(y) for all y ∈ S. If this
happens, of course, y0 ∈ ∂S.

Further, extending a maximum principle definition for real-valued functions,
a continuous function f : Ω → Y is said to satisfy the convex hull property in Ω
(see [1], [2] and references therein) if

f(Ω) ⊆ conv
(
f(∂Ω)

)
,

conv(f(∂Ω)) being the closed convex hull of f(∂Ω).
When dim(Y ) <∞, since f(∂Ω) is compact, conv(f(∂Ω)) is compact too and

so conv(f(∂Ω)) = conv(f(∂Ω)).
A function ψ : Y → R is said to be quasiconvex if, for each r ∈ R, the set

ψ−1(]−∞, r]) is convex.
Notice the following proposition.

Proposition 1.1. For each pair A,B of nonempty subsets of Y , the following
assertions are equivalent:

(a1) A ⊆ conv(B).
(a2) For every continuous and quasiconvex function ψ : Y → R, one has

sup
A
ψ ≤ sup

B
ψ.

Proof. Let (a1) hold. Fix any continuous and quasiconvex function
ψ : Y → R. Fix ỹ ∈ A. Then, there is a net {yα} in conv(B) converging to ỹ. So,

for each α, we have yα =
∑k

i=1 λizi, where zi ∈ B, λi ∈ [0, 1] and
∑k

i=1 λi = 1.
By quasiconvexity, we have

ψ(yα) = ψ
( k∑
i=1

λizi

)
≤ max

1≤i≤k
ψ(zi) ≤ sup

B
ψ

and so, by continuity,

ψ(ỹ) = lim
α
ψ(yα) ≤ sup

B
ψ

which yields (a2).
Now, let (a2) hold. Let x0 ∈ A. If x0 /∈ conv(B), by the standard separation

theorem, there would be ψ ∈ Y ∗\{0} such that supconv(B) ψ < ψ(x0), against (a2).
So, (a1) holds. �

Clearly, applying Proposition 1.1, we obtain the following.

Proposition 1.2. For any continuous function f : Ω → Y , the following asser-
tions are equivalent:
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(b1) f satisfies the convex hull property in Ω.
(b2) For every continuous and quasiconvex function ψ : Y → R, one has

sup
x∈Ω

ψ
(
f(x)

)
= sup

x∈∂Ω
ψ
(
f(x)

)
.

In view of Proposition 1.2, we now introduce the notion of the convex hull-like
property for functions defined in Ω only.

Definition 1.3. A continuous function f : Ω → Y is said to satisfy the con-
vex hull-like property in Ω if, for every continuous and quasiconvex function
ψ : Y → R, there exists x∗ ∈ ∂Ω such that

lim sup
x→x∗

ψ
(
f(x)

)
= sup

x∈Ω
ψ
(
f(x)

)
.

We have the following.

Proposition 1.4. Let g : Ω → Y be a continuous function, and let f = g|Ω.
Then, the following assertions are equivalent:

(c1) f satisfies the convex hull-like property in Ω.
(c2) g satisfies the convex hull property in Ω.

Proof. Let (c1) hold. Let ψ : Y → R be any continuous and quasiconvex function.
Then, by Definition 1.3, there exists x∗ ∈ ∂Ω such that

lim sup
x→x∗

ψ
(
f(x)

)
= sup

x∈Ω
ψ
(
f(x)

)
.

But
lim sup
x→x∗

ψ
(
f(x)

)
= ψ

(
g(x∗)

)
,

and hence
sup
x∈∂Ω

ψ
(
g(x)

)
= sup

x∈Ω
ψ
(
g(x)

)
.

So, by Proposition 1.2, (c2) holds.
Now, let (c2) hold. Let ψ : Y → R be any continuous and quasiconvex function.

Then, by Proposition 1.2, one has

sup
x∈∂Ω

ψ
(
g(x)

)
= sup

x∈Ω
ψ
(
g(x)

)
.

Since ∂Ω is compact and ψ ◦ g is continuous, there exists x∗ ∈ ∂Ω such that

ψ
(
g(x∗)

)
= sup

x∈∂Ω
ψ
(
g(x)

)
.

But
ψ
(
g(x∗)

)
= lim

x→x∗
ψ
(
f(x)

)
,

and, by continuity again,

sup
x∈Ω

ψ
(
g(x)

)
= sup

x∈Ω
ψ
(
g(x)

)
and so

lim
x→x∗

ψ
(
f(x)

)
= sup

x∈Ω
ψ
(
f(x)

)
,

which yields (c1). �
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After the above preliminaries, we can declare the aim of this short note: to
establish Theorem 1.5 below jointly with some of its consequences.

Theorem 1.5. For any continuous function f : Ω → Y , at least one of the
following assertions holds:

(i) f satisfies the convex hull-like property in Ω.
(ii) There exists a nonempty open set X ⊆ Ω, with X ⊆ Ω, satisfying the

following property: for every continuous function g : Ω → Y , there exists
λ̃ ≥ 0 such that, for each λ > λ̃, the set (g + λf)(X) is supported at one
of its points.

2. Proof of Theorem 1.5

Assume that (i) does not hold. So, we are assuming that there exists a contin-
uous and quasiconvex function ψ : Y → R such that

lim sup
x→z

ψ
(
f(x)

)
< sup

x∈Ω
ψ
(
f(x)

)
(2.1)

for all z ∈ ∂Ω.
In view of (2.1), for each z ∈ ∂Ω, there exists an open neighborhood Uz of z

such that

sup
x∈Uz∩Ω

ψ
(
f(x)

)
< sup

x∈Ω
ψ
(
f(x)

)
.

Since ∂Ω is compact, there are finitely many z1, . . . , zk ∈ ∂Ω such that

∂Ω ⊆
k⋃
i=1

Uzi . (2.2)

Put

U =
k⋃
i=1

Uzi .

Hence

sup
x∈U∩Ω

ψ
(
f(x)

)
= max

1≤i≤k
sup

x∈Uzi∩Ω
ψ
(
f(x)

)
< sup

x∈Ω
ψ
(
f(x)

)
.

Now, fix a number r so that

sup
x∈U∩Ω

ψ
(
f(x)

)
< r < sup

x∈Ω
ψ
(
f(x)

)
, (2.3)

and set

K =
{
x ∈ Ω : ψ

(
f(x)

)
≥ r

}
.

Since f, ψ are continuous, K is closed in Ω. But, since K ∩U = ∅ and U is open,
in view of (2.2), K is closed in E. Hence, K is compact since Ω is so. By (2.3),
we can fix x̄ ∈ Ω such that ψ(f(x̄)) > r. Notice that the set ψ−1(]−∞, r]) is
closed and convex. So, thanks to the standard separation theorem, there exists a
nonzero continuous linear functional ϕ : Y → R such that

ϕ
(
f(x̄)

)
< inf

y∈ψ−1(]−∞,r])
ϕ(y). (2.4)
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Then, from (2.4), it follows that

ϕ
(
f(x̄)

)
< inf

x∈Ω\K
ϕ
(
f(x)

)
.

Now, choose ρ so that

ϕ
(
f(x̄)

)
< ρ < inf

x∈Ω\K
ϕ
(
f(x)

)
,

and set

X =
{
x ∈ Ω : ϕ

(
f(x)

)
< ρ

}
.

Clearly, X is a nonempty open set contained in K. Now, let g : Ω → Y be any
continuous function. Set

λ̃ = inf
x∈X

ϕ(g(x))− infz∈K ϕ(g(z))

ρ− ϕ(f(x))
.

Fix λ > λ̃. So, there is x0 ∈ X such that

ϕ(g(x0))− infz∈K ϕ(g(z))

ρ− ϕ(f(x0))
< λ.

From this, we get

ϕ
(
g(x0)

)
+ λϕ

(
f(x0)

)
< λρ+ inf

z∈K
ϕ
(
g(z)

)
. (2.5)

By continuity and compactness, there exists x̂ ∈ K such that

ϕ
(
g(x̂) + λf(x̂)

)
≤ ϕ

(
g(x)

)
+ λf(x)) (2.6)

for all x ∈ K. Let us prove that x̂ ∈ X. Arguing by contradiction, assume that
ϕ(f(x̂)) ≥ ρ. Then, taking (2.5) into account, we would have

ϕ
(
g(x0)

)
+ λϕ

(
f(x0)

)
< λϕ

(
f(x̂)

)
+ ϕ

(
g(x̂)

)
,

contradicting (6). So, it is true that x̂ ∈ X, and, by (2.6), the set (g + λf)(X) is
supported at its point g(x̂) + λf(x̂).

3. Applications

The first application of Theorem 1.5 shows a strongly bifurcating behavior of
certain equations in Rn.

Theorem 3.1. Let Ω be a nonempty bounded open subset of Rn, and let f : Ω →
Rn a continuous function.

Then, at least one of the following assertions holds:

(d1) f satisfies the convex hull-like property in Ω.
(d2) There exists a nonempty open set X ⊆ Ω, with X ⊆ Ω, satisfying the

following property: for every continuous function g : Ω → Rn, there exists
λ̃ ≥ 0 such that, for each λ > λ̃, there exist x̂ ∈ X and two sequences
{yk}, {zk} in Rn, with

lim
k→∞

yk = lim
k→∞

zk = g(x̂) + λf(x̂),

such that, for each k ∈ N, one has
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(j) the equation

g(x) + λf(x) = yk

has no solution in X;
(jj) the equation

g(x) + λf(x) = zk

has two distinct solutions uk, vk in X such that

lim
k→∞

uk = lim
k→∞

vk = x̂.

Proof. Apply Theorem 1.5 with E = Y = Rn. Assume that (d1) does not hold.
Let X ⊆ Ω be an open set as in (ii) of Theorem 1.5. Fix any continuous function

g : Ω → Rn. Then, there is some λ̃ ≥ 0 such that, for each λ > λ̃, there
exists x̂ ∈ X such that the set (g + λf)(X) is supported at g(x̂) + λf(x̂). As we
observed at the beginning, this implies that g(x̂) + λf(x̂) lies in the boundary of
(g+λf)(X). Therefore, we can find a sequence {yk} inRn\(g+λf)(X) converging
to g(x̂) + λf(x̂). So, such a sequence satisfies (j). For each k ∈ N, denote by Bk

the open ball of radius 1
k
centered at x̂. Let k be such that Bk ⊆ X. The set

(g + λf)(Bk) is not open since its boundary contains the point g(x̂) + λf(x̂).
Consequently, by the invariance of domain theorem (see [3, p. 705]), the function
g + λf is not injective in Bk. So, there are uk, vk ∈ Bk, with uk 6= vk such that

g(uk) + λf(uk) = g(vk) + λf(vk).

Hence, if we take

zk = g(uk) + λf(uk),

the sequences {uk}, {vk}, {zk} satisfy (jj) and the proof is complete. �

Remark 3.2. Notice that, in general, Theorem 3.1 is no longer true when f : Ω →
Rm with m > n. In this connection, consider the case n = 1, m = 2, Ω = ]0, π[
and f(θ) = (cos θ, sin θ) for θ ∈ [0, π]. So, for each λ > 0, on the one hand, the
function λf is injective, while, on the other hand, λf(]0, π[) is not contained in
conv({f(0), f(π)}).

If S ⊆ Rn is a nonempty open set, x ∈ S, and h : S → Rn is a C1 function,
then we denote by det(Jh(x)) the Jacobian determinant of h at x.

Another important consequence of Theorem 1.5 is as follows.

Theorem 3.3. Let Ω be a nonempty bounded open subset of Rn, and let f : Ω →
Rn be a C1-function.

Then, at least one of the following assertions holds:

(e1) f satisfies the convex hull-like property in Ω.
(e2) There exists a nonempty open set X ⊆ Ω, with X ⊆ Ω, satisfying the

following property: for every continuous function g : Ω → Rn which is C1

in X, there exists λ̃ ≥ 0 such that, for each λ > λ̃, one has

det
(
Jg+λf (x̂)

)
= 0

for some x̂ ∈ X.
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Proof. Assume that (e1) does not hold. Let X be an open set as in (ii) of Theo-
rem 1.5. Let g : Ω → Rn be a continuous function which is C1 in X. Then, there
is some λ̃ ≥ 0 such that, for each λ > λ̃, there exists x̂ ∈ X such that the set
(g+λf)(X) is supported at g(x̂)+λf(x̂). By remarks already made, we infer that
the function g+λf is not a local homeomorphsim at x̂, and so det(Jg+λf (x̂)) = 0
in view of the classical inverse function theorem. �

In turn, here is a consequence of Theorem 3.3 when n = 2.

Theorem 3.4. Let Ω be a nonempty bounded open set of R2, let h : Ω → R
be a continuous function, and let α, β : Ω → R be two C1-functions such that
|αxβy − αyβx|+ |h| > 0 and (αxβy − αyβx)h ≥ 0 in Ω.

Then, any C1-solution (u, v) in Ω of the system{
uxvy − uyvx = h,

βyux − βxuy − αyvx + αxvy = 0
(3.1)

satisfies the convex hull-like property in Ω.

Proof. Arguing by contradiction, assume that (u, v) does not satisfy the convex
hull-like property in Ω. Then, by Theorem 3.3, applied taking f = (u, v) and
g = (α, β), there exist λ > 0 and (x̂, ŷ) ∈ Ω such that

det
(
Jg+λf (x̂, ŷ)

)
= 0.

On the other hand, for each (x, y) ∈ Ω, we have

det
(
Jg+λf (x, y)

)
= (uxvy − uyvx)(x, y)λ

2 + (βyux − βxuy − αyvx + αxvy)(x, y)λ

+ (αxβy − αyβx)(x, y)

and hence

h(x̂, ŷ)λ2 + (αxβy − αyβx)(x̂, ŷ) = 0,

which is impossible in view of our assumptions. �

We conclude by highlighting two applications of Theorem 3.4.

Theorem 3.5. Let Ω be a nonempty bounded open subset of R2, let h : Ω → R
be a continuous nonnegative function, and let w ∈ C2(Ω) be a function satisfying
in Ω the Monge–Ampère equation

wxxwyy − w2
xy = h.

Then, the gradient of w satisfies the convex hull-like property in Ω.

Proof. It is enough to observe that (wx, wy) is a C
1-solution in Ω of the system

(3.1) with α(x, y) = −y and β(x, y) = x and that such α, β satisfy the assump-
tions of Theorem 3.4. �

Theorem 3.6. Let Ω be a nonempty bounded open subset of R2, and let
β : Ω → R be a C1-function. Assume that there exists another C1-function
α : Ω → R so that the function αxβy − αyβx vanishes at no point of Ω.
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Then, for any function u ∈ C1(Ω) ∩ C0(Ω) satisfying in Ω the equation

βyux − βxuy = 0,

one has

sup
Ω
u = sup

∂Ω
u

and

inf
Ω
u = inf

∂Ω
u.

Proof. Observe that the function (u, 0) satisfies the system (3.1) with h = 0
and that the assumptions of Theorem 3.4 are fulfilled. So, (u, 0) satisfies the
convex hull-like property in Ω. Since u ∈ C0(Ω), the conclusion follows from
Proposition 1.4. �
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