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Abstract. We determine when contractive idempotents in the measure alge-
bra of a locally compact group commute. We consider a dynamical version of
the same result. We also look at some properties of groups of measures whose
identity is a contractive idempotent.

Let G be a locally compact group. When G is abelian, Cohen [1] characterized all
of the idempotents in the measure algebra M(G). For nonabelian G, the idempo-
tent probabilities were characterized by Kawada and Itô [3], while the contractive
idempotents were characterized by Greenleaf [2]. We give an exact statement of
their results in Theorem 0.1 below. For certain compact groups, the central idem-
potent measures were characterized by Rider [7], in a manner which is pleasingly
reminiscent of Cohen’s result on abelian groups. Rider points out a counterex-
ample to his result when some assumptions are dropped. This has motivated our
Example 1.3(i) below.

Discussion of contactive idempotents has been conducted in the setting of lo-
cally compact quantum groups by Neufang, Salmi, Skalski, and the present author
[5].
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Under certain assumptions, results of Stromberg [10] and Muhkerjea [4] show
that convolution powers of a probability measure converge either to an idempotent
or to 0 (see Theorem 2.1 and Remark 2.5 below). We study limits of convolution
powers of products of contractive idempotents whose supports generate a compact
subgroup.

We close with a study of certain groups of measures identified by Greenleaf [2]
and Stokke [9] whose identities are contractive idempotents.

0.1. Notation and background. We will always let G denote a locally com-
pact group with measure algebra M(G). We let K(G) denote the collection of all
compact subgroups of G. For K in K(G), we let mK denote the normalized Haar
measure on K as an element of M(G). We will identify the group algebra L1(K)
as a subalgebra of M(G) via the identification f 7→ fmK ; that is, for u ∈ C0(G),
we define ∫

G

u d(fmK) =

∫
K

u(k)f(k) dk,

where dk = dmK(k). For K in K(G), we let K̂1 denote the space of multiplicative

characters on K. Hence K̂1 is the dual group of K/[K,K], where [K,K] is the

closed commutator subgroup. If K is abelian, we will write K̂ for K̂1.
Let us recall what is known about contractive idempotents.

Theorem 0.1.

(i) (Kawada and Itô [3]) If µ in M(G) is a probability with µ ∗ µ = µ, then
there is K in K(G) with µ = mK.

(ii) (Greenleaf [2]) If µ in M(G) is nonzero and contractive, ‖µ‖ ≤ 1, and

µ ∗ µ = µ, then there is K in K(G) and ρ in K̂1 for which µ = ρmK.

Observe that all measures above are self-adjoint:∫
G

u d(ρmK)
∗ =

∫
K

u(k−1)ρ(k) dk =

∫
K

u(k)ρ(k) dk =

∫
G

u d(ρmK)

thanks to unimodularity of the compact group K.

1. Main result

In order to proceed, let us consider some conditions under which products of
groups are groups.

Lemma 1.1. Let K1, K2 ∈ K(G). Then the following are equivalent:

(i) K1K2 = {k1k2 : k1 ∈ K1, k2 ∈ K2} ∈ K(G),
(ii) K1K2 is closed under inversion, and
(iii) K1K2 = K2K1.

Proof. Note first that K1K2 is always a compact subset of G which contains the
identity e. If (i) holds, then (ii) holds. We have that (K1K2)

−1 = K2K1, which
immediately shows the equivalence of (ii) and (iii). Finally, if (iii) holds, then it
is clear that K1K2 is closed under multiplication. Thus, since (iii) implies (ii),
we see that K1K2 is closed under multiplication and inversion, and hence we
obtain (i). �
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We observe that K1K2 ∈ K(G) in the following situations:

(i) K1 ⊂ K2, and
(ii) K1 ⊂ NG(K2) = {s ∈ G : sK2s

−1 = K2}.
IfK1∩K2 = {e} andK1K2 ∈ K(G), then (K1, K2) is referred to as a matched pair
(see [12]), and K1K2 is a Zappa–Szép product (see [14], [11]). Indeed, we note that
the representation k1k2 of an element of K1K2 is unique, for if k1k2 = k′

1k
′
2, then

(k′
1)

−1k1 = k′
2k

−1
2 = e. Since, in general, we will not assume that K1 ∩K2 = {e},

or even that this intersection is normal in K1K2, when the latter is a group, our
situation appears to generalize that of a matched pair.

Is there a “nice” characterization of when K1K2 ∈ K(G)?
To proceed, we will use a nonnormal form of the Weyl integration formula. If

H is a locally compact group and L ∈ K(H), then any continuous multiplicative
function δ : L → R>0 is trivial. Thus the modular function ∆ of H satisfies
∆|L = 1, which is the modular function of L. Hence the left homogeneous space
H/L admits a left H-invariant Haar measure mH/L. We have for u in Cc(H) that∫

H

u(h) dh =

∫
H/L

∫
L

u(hl) dl d(hL), (1.1)

where d(hL) = dmH/L(hL).

Theorem 1.2. Let K1, K2 ∈ K(G), ρ1 ∈ (̂K1)1, and ρ2 ∈ (̂K2)1. Then ρ1mK1 and
ρ2mK2 commute if and only if one of the following cases holds for K = K1 ∩K2:

(i) ρ1|K 6= ρ2|K, in which case (ρ1mK1) ∗ (ρ2mK2) = 0, or
(ii) ρ1|K = ρ2|K, K1K2 ∈ K(G), and the function

ρ : K1K2 → C given by ρ(k1k2) = ρ1(k1)ρ2(k2) for k1 in K1 and k2 in K2

defines a character, in which case (ρ1mK1) ∗ (ρ2mK2) = ρmK1K2.

In particular, the idempotent probabilities mK1 and mK2 commute if and only
if K1K2 ∈ K(G), in which case we have mK1 ∗mK2 = mK1K2.

Proof. We let ν = (ρ1mK1) ∗ (ρ2mK2). Notice that

ρ1mK1 and ρ2mK2 commute if and only if ν∗ = ν. (1.2)

For u in C0(G) we have∫
G

u dν =

∫
K1

∫
K2

u(k1k2)ρ1(k1)ρ(k2) dk1 dk2

=

∫
K1/K

∫
K

∫
K2

u(k1kk2)ρ1(k1k)ρ(k2) dk2 dk d(k1K)

(1.3)

=

∫
K1/K

∫
K2

u(k1k2)

∫
K

ρ1(k1k)ρ2(k
−1k2) dk dk2 d(k1K)

=

∫
K1/K

∫
K2

[∫
K

ρ1(k)ρ2(k) dk
]
u(k1k2)ρ1(k1)ρ2(k2) dk2 d(k1K).

The orthogonality of characters entails that the quantity
∫
K
ρ1(k)ρ2(k) dk is either

1 or 0, depending on whether ρ1|K = ρ2|K or not. In the latter case, we see that
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ν = 0, and hence (ρ2mK2) ∗ (ρ1mK1) = ν∗ = 0 = ν, and we see that condition (i)
holds.

Hence for the remainder of the proof, let us suppose that ρ1|K = ρ2|K . Then the
function ρ : K1K2 → T given as in (ii) is well defined. Indeed, if k1k2 = k′

1k
′
2, then

(k′
1)

−1k1 = k′
2k

−1
2 ∈ K, and our assumption allows us to apply ρ1 to the left, and

ρ2 to the right, to gain the same result. Furthermore, (k1, k2) 7→ ρ1(k1)ρ2(k2) =
ρ(k1k2) : K1 ×K2 → T is continuous and hence factors continuously through the
topological quotient space K1K2 of K1 ×K2.

We now wish to show that supp ν = K1K2. The inclusion supp ν ⊆ K1K2

is standard. Conversely, if ko
1 in K1, k

o
2 in K2, and ε > 0 are given and we let

u, v ∈ C0(G) satisfy

u ≥ 0 and u(ko
1k

o
2) > ε > 0, and v|K1K2 = ρ̄,

then we may find open Uj in Kj containing ko
j , for j = 1, 2, so that U1 × U2 ⊆

{(k1, k2) ∈ K1 ×K2 : u(k1k2) > ε}, and our assumptions entail that∫
G

uv dν =

∫
K1

∫
K2

u(k1k2) dk1 dk2

≥
∫
U1

∫
U2

u(k1k2) dk1 dk2 ≥ mK1(U1)mK2(U2)ε > 0.

Hence K1K2 ⊆ supp ν. Notice that if it were the case that ν = 0, this would
contradict our present calculation of supp ν, and hence the assumption that
ρ1|K = ρ2|K . Thus ν = 0 only when ρ1|K 6= ρ2|K , showing that (i) fully charac-
terizes this situation. We observe that

supp ν∗ = (supp ν)−1 = K2K1. (1.4)

Let us now assume that ρ1mK1 and ρ2mK2 commute. Then, by (1.2), ν = ν∗

and hence by (1.4) and Lemma 1.1, we have that K1K2 ∈ K(G). To complete the
calculation we observe the following isomorphism of left K1-spaces, generalizing
the second isomorphism theorem of groups:

K1K2/K2
∼= K1/K, kK2 7→ kK. (1.5)

Hence for w ∈ C(K1K2), which is constant of left cosets of K2, we have∫
K1K2/K2

w(k) d(kK2) =
∫
K1/K

w(k1) d(k1K) for the unique choices of left-

invariant probability measures on the homogeneous spaces. We thus find that,
for u in C0(G), ∫

G

u dν =

∫
K1/K

∫
K2

u(k1k2)ρ(k1k2) dk2 d(k1K)

=

∫
K1K2/K2

∫
K2

u(k1k2)ρ(k1k2) dk2 d(kK2) (1.6)

=

∫
K1K2

u(k)ρ(k) dk =

∫
G

u d(ρmK1K2),

and so ν = ρmK1K2 . Since ν ∗ ν = ν, as ρ1mK1 and ρ2mK2 commute, and
mK1K2 is the normalized Haar measure of a compact subgroup, it follows that
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(ρmK1K2) ∗ (ρmK1K2) = (ρ ∗ ρ)mK1K2 , whence ρ = ρ ∗ ρ. We could simply
appeal to Theorem 0.1(ii), to see that, since ‖ν‖ ≤ ‖ρ1mK1‖‖ρ2mK2‖ = 1,

ρ ∈ ̂(K1K2)1. However, let us give a direct verification, using only the present
tools. We may interchange the roles ofK1 andK2 above, and define ρ̃ : K2K1 → T
by ρ̃(k2k1) = ρ2(k2)ρ1(k1), which, like ρ, is well defined and continuous. We also
see, by the computation (1.6), that ν = ρ̃mK2K1 = ρ̃mK1K2 . Hence ρ̃ = ρ on
K1K2. But it then follows that ρ is a homomorphism: if k = k1k2, l = l1l2,
k1, l1 ∈ K1, k2, l2 ∈ K2, then we have k2l1 = l′1k

′
2 for some l′1 in K1 and k′

2 in K2,
and hence

ρ(k1k2l1l2) = ρ1(k1l
′
1)ρ2(k

′
2l2) = ρ1(k1)ρ(l

′
1k

′
2)ρ2(l2)

= ρ1(k1)ρ̃(k2l1)ρ2(l2) = ρ1(k1)ρ2(k2)ρ1(l1)ρ2(l2) = ρ(k1k2)ρ(l1l2).

Conversely, if the conditions of (ii) are assumed, then computations (1.3) and
(1.6) show that (ρ1mK1) ∗ (ρ2mK2) = ρmK1K2 and show the same with the roles
of ρ1mK1 and ρ2mK2 , reversed. �

Example 1.3. (i) Let G = K o A, where A is a compact group acting as con-
tinuous automorphisms on the group K, so we obtain group law (k, α)(k′, β) =
(kα(k′), αβ). We identify K and A with their cannonical copies in G. Suppose

there is ρ in K̂1 for which ρ ◦ α 6= ρ for some α in A, and hence for α on an open
subset of A. (A specific example would be to take K = T, A = {id, σ} where
σ(t) = t−1, and ρ(t) = tn where n ∈ Z \ {0}.) Then for u ∈ C(G) we obtain for ρ
as above, ∫

G

u d
[
(ρmK) ∗mA

]
=

∫
K

∫
A

u(k, α)ρ(k) dα dk,

while, since the modular function on the compact group A qua automorphisms
on K is 1, we have∫

G

u d
[
mA ∗ (ρmK)

]
=

∫
A

∫
K

u
(
α(k), α

)
ρ(k) dk dα

=

∫
A

∫
K

u(k, α)ρ ◦ α−1(k) dk dα.

Thus ρmK and mA do not commute. The only assumption missing from Theo-
rem 1.2 is that (k, α) 7→ ρ(k) is not a character on G.

(ii) Let n ≥ 5, and let Sn denote the symmetric group on a set of n elements,
let Sn−1 denote the stabilizer subgroup of any fixed element, and let C be the
cyclic subgroup generated by any full n-cycle. Then Sn = Sn−1C, as may be easily
checked, and {Sn−1, C} is a “nontrivial” matched pair in the sense that neither
subgroup is normal in G.

We note that the only nontrivial coabelian normal subgroup of Sn is An =

ker sgn, as An is simple and of index 2; hence (̂Sn)1 = {1, sgn}. Hence if ρ2

in Ĉ \ {1} satisfies ρ2 6= sgn |C , then, for any ρ1 in (̂Sn−1)1, it follows from
Theorem 1.2 that (ρ1mSn−1) ∗ (ρ2mC) 6= (ρ2mC) ∗ (ρ1mSn−1).
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2. Dynamical considerations

If S is a subset of G, let 〈S〉 denote the smallest closed subgroup containing S.

Theorem 2.1 (Stromberg [10]). If µ is a probability in M(G), for which K =
〈suppµ〉 ∈ K(G), then the weak* limit, limn→∞ µ∗n, exists if and only if suppµ
is contained in no coset of a closed proper normal subgroup of K. Moreover, this
limit equals the Haar measure mK.

We observe that suppµ∗ = (suppµ)−1, and hence in the assumptions above we
have limn→∞(µ∗)∗n = mK , too.

Since supp(mK ∗ mL) = KL, as was checked in the proof of Theorem 1.2, it
follows that for K,L in K(G) for which 〈KL〉 is compact, we have limn→∞(mK ∗
mL)

∗n = m〈KL〉 = limn→∞(mL ∗ mK)
∗n. For example, in S = SU(2), any two

distinct (maximal) tori T1 and T2 generate S. Indeed, the only subgroups of S with
nontrivial connected components are tori, or S itself. Hence mS = limn→∞(mT1 ∗
mT2)

∗n.
Furthermore, we can deduce from the observation above that mL and mK

commute if and only if KL = 〈KL〉, giving the special case of Theorem 1.2.
Motivated by the above considerations, we consider the following dynamical

result.

Theorem 2.2. Let Kj ∈ K(G) and ρj ∈ (̂Kj)1 for j = 1, . . . ,m for which
L = 〈K1 · · ·Km〉 ∈ K(G). Then the weak* limit

lim
n→∞

[
(ρ1mK1) ∗ · · · ∗ (ρmmKm)

]∗n
always exists. It is ρmL, provided there is a ρ in L̂1 for which ρ|Kj

= ρj for each j,
and 0 otherwise.

Proof. We let ν = (ρ1mK1)∗· · ·∗(ρmmKm). Then each ν∗n, being a product of con-
tractive elements, satisfies ‖ν∗n‖ ≤ 1. The Peter–Weyl theorem tells us that the
algebra Trig(L) consiting of matrix coefficients of finite-dimensional unitary rep-
resentations, is uniformly dense in in C(L). Hence, since supp ν ⊆ L and ‖ν‖ ≤ 1,
and ‖ν∗n‖ ≤ 1 for each n, it suffices to determine, for any finite-dimensional
unitary representation π : L → U(d), the nature of the limit

lim
n→∞

π(ν∗n) = lim
n→∞

∫
L

π(l) dν∗n(l) in Md(C). (2.1)

It is well known, and simple to compute, that each

π(ν∗n) = π(ν)n =
[
π(ρ1mK1) · · · π(ρ1mK1)

]n
.

For each j = 1, . . . ,m, the Schur orthogonality relation tell us that

π(ρjmKj
) =

∫
Kj

ρj(k)π(k) dk = pj,

where pj is the orthogonal projection onto the space of vectors ξ for which π(k)ξ =

ρj(k)ξ for each k in Kj. Hence it follows that

π(ν) = p1 · · · pm and π(ν∗n) = (p1 · · · pn)n.
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Since each pj is contractive, the eigenvalues of π(ν) are of modulus not exceed-
ing 1. Furthermore, if ‖π(ν)ξ‖2 = ‖ξ‖2 (Hilbertian norm), then we find that

‖ξ‖2 = ‖p1 · · · pmξ‖2 ≤ ‖p2 · · · pmξ‖2 ≤ · · · ≤ ‖pmξ‖2 ≤ ‖ξ‖2,

and so equality holds at each place. But we see then that ξ is in the range of pm,
hence of pj−1 if it is in the range of pj, and thus in the mutual range Rπ of each of
p1, . . . , pm. In particular, each eigenvalue of π(ν) is either 1 or has modulus strictly
less than 1. Hence, if we consider the Jordan form of π(ν) = p1 · · · pm, we see that
limn→∞ π(ν)n = q, where q is the necessarily contractive, hence orthogonal, range
projection onto Rπ. But then, for ξ in Rπ and kj in Kj, j = 1, . . . ,m, we have

π(k1 · · · kn)ξ = π(k1) · · · π(km)ξ = ρ1(k1) · · · ρn(kn)ξ.

If we have ξ 6= 0, then Cξ is π(K1 · · ·Km)-invariant, and hence π-invariant as

L = 〈K1 · · ·Km〉. Moreover, there is, then, ρ in L̂1 for which π(l)ξ = ρ(l)ξ, and
it follows that ρ|Kj

= ρj. Notice that this ρ is determined independently of the
choice of ξ, and hence even the choice of π. In particular, if no such ρ exists (i.e.,
for every finite-dimensional unitary representation, Rπ = {0}), then we have
limn→∞ ν∗n = 0, in the weak* sense. When this ρ does exists, we see for u in
C0(G) that each

∫
G
u d(ν∗n) is given by the nm-fold iterated integral∫

K1

· · ·
∫
Km

· · ·
∫
K1

· · ·
∫
Km

u(k11 · · · k1m · · · kn1 · · · knm)

ρ1(k11) · · · ρm(k1m) · · · ρ1(kn1) · · · ρm(knm) dknm · · · dkn1 · · · dk1m · · · dk11
(2.2)

=

∫
K1

· · ·
∫
Km

· · · · · ·
∫
K1

· · ·
∫
Km

u(k11 · · · knm)ρ(k11 · · · knm) dknm · · · dk11

=

∫
G

uρ d
(
[mK1 ∗ · · · ∗mKm ]

∗n).
It is easy to verify, as in the proof of Theorem 1.2, that sup(mK1 ∗ · · · ∗mKm) =
K1 · · ·Km. Hence, by Theorem 2.1, we obtain the weak* limit

lim
n→∞

ν∗n = ρmL

as desired. �

In fact, the above result generalizes the necessity direction of Theorem 1.2.

Corollary 2.3. Let Kj and ρj, j = 1, . . . ,m, be as in Theorem 2.2 above, and let
L = K1 · · ·Km. If ν = (ρ1mK1) ∗ · · · ∗ (ρmmKm) is idempotent, then either ν = 0

or L = 〈L〉 ∈ K(G) and there is ρ in L̂1 with ρ|Kj
= ρj for each j.

Proof. Suppose ν 6= 0. By a similar method as in the proof of Theorem 1.2, we
see that supp ν = L. Moreover, if ν is idempotent, then limn→∞ ν∗n = ν. Hence
we obtain that L = 〈L〉, and there exists a multiplicative character ρ on L, as
promised, thanks to Theorem 2.2. �

Though Corollary 2.3 generalizes the necessity direction of Theorem 1.2, the
proof of the earlier result is more self-contained, and does not rely on Stromberg’s
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result. Furthermore, the sufficiency direction of Theorem 1.2 cannot be general-
ized so easily, even with probability idempotent measures.

Example 2.4. The special orthogonal group S = SO(3) admits the well-known
Euler angle decomposition: S = T1T2T1, where

T1 =

k1(t) =

1 0 0
0 cos t − sin t
0 sin t cos t

 : 0 ≤ t ≤ 2π

 and

T2 =

k2(t) =

cos t − sin t 0
sin t cos t 0
0 0 1

 : 0 ≤ t ≤ 2π

 .

We note that the multiplication T1×(T2/{I, k2(π)})×T1 → S is a diffeomorphism.
For u in C(S), we have∫

T1

∫
T2

∫
T1

u d(mT1 ∗mT2 ∗mT1) =

∫ 2π

0

∫ 2π

0

∫ 2π

0

u
(
k1(t1)k2(t2)k1(t3)

)dt3 dt2 dt1
8π3

,

whereas the Haar measure mS gives the integral∫
S

u dmS =

∫ 2π

0

∫ π

0

∫ 2π

0

u
(
k1(t1)k2(t2)k1(t3)

)
sin t2

dt3 dt2 dt1
8π2

.

Hence, considering T1-spherical functions (i.e., u in C(T1\S/T1)), we see that

mT1T2T1 = mS 6= mT1 ∗mT2 ∗mT1 .

Remark 2.5. We note the following result, shown (implicitly) by Muhkerjea [4,
Theorem 2]. If µ is a probability in M(G), for which 〈suppµ〉 /∈ K(G), then the
weak* limit satisfies limn→∞ µ∗n = 0.

Hence if K1, . . . , Km in K(G) have 〈K1 · · ·Km〉 /∈ K(G), we see that
limn→∞(mK1 ∗ · · · ∗ mKm)

∗n = 0, which is rather antithetical to having mK1 ∗
· · · ∗mKm be an idempotent.

As a simple example, consider any two nontrivial finite subgroups K and L
of discrete groups Γ and Λ, and consider each as a subgroup of the free product
Γ ∗Λ. For a Lie theoretic example, consider the Iwasawa decomposition KAN of
S = SL2(R). Compute that if a ∈ A \ {I}, then aKa−1 6= K. Since K is maximal
compact, we see that 〈KaKa−1〉 /∈ K(S).

It is the case that if for K1, . . . , Km in K(G) we have H = 〈K1 · · ·Km〉 /∈ K(G),

then for ρj in (̂Kj)1, j = 1, . . . ,m, the weak* limit satisfies

lim
n→∞

[
(ρ1mK1) ∗ · · · ∗ (ρmmKm)

]∗n
= 0. (2.3)

In the case that ρi|Ki∩Kj
6= ρj|Ki∩Kj

for some i 6= j, we have (ρ1mK1) ∗ · · · ∗
(ρmmKm) = 0, as may be computed, by a straightforward adaptation of (1.3). If
there is a continuous multiplicative character ρ : H → T such that ρ|Kj

= ρj for
each j, then the computation (2.2) and Mukherjea’s theorem give the result. In
presence or absence of these assumptions, (2.3) follows from a result which should
appear in a future work of Neufang, Salmi, Skalski, and the present author. In
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fact, the same result implies Theorem 2.2. However, the proof given in the present
note uses simpler methods.

3. On groups of measures

Greenleaf’s motivation for studying idempotent measures was their use in the
study of contractive homomorphisms L1(H) → M(G). In doing so, he required
a description of certain groups of measures, given in Theorem 3.1 below. We are
interested in determining how these groups interact under convolution product
with each other. Stokke [9] conducted a study of Greenleaf’s groups, and also
devised a more general class of groups (see (3.1)). We show that the latter class
is indeed more general.

For any subgroup H of G, let

NG(H) = {g ∈ G : gHg−1 = H} and

ZG(H) = {g ∈ G : gh = hg for all h in H}

denote its normalizer and centralizer, respectively. Notice that, for another sub-
group L, we have L ⊆ ZG(H) if and only if H ⊆ ZG(L). Notice too that for
the topological closure H, we have NG(H) = NG(H) and ZG(H) = ZG(H), and
hence these subgroups are closed.

Given K in K(G) and ρ in K̂1, we let

NK,ρ = NG(K) ∩NG(ker ρ)

and then let q : NK,ρ → NK,ρ/ ker ρ be the quotient map. We let

GK,ρ = q−1
(
ZNK,ρ/ ker ρ(K/ ker ρ)

)
.

Hence g in GK,ρ normalizes both K and ker ρ and commutes with elements of K
modulo ker ρ. We then consider, in M(G), the subgroup

ΓρmK
=

{
zδg ∗ (ρmK) : z ∈ T and g ∈ GK,ρ

}
.

We remark that GK,ρ = {g ∈ G : δg ∗ (ρmK) = (ρmK) ∗ δg}, and ΓρmK
is a

topological group with the weak*-topology on M(G) and multiplication zδg ∗
(ρmK) ∗ z′δg′ ∗ (ρmK) = zz′δgg′ ∗ (ρmK).

Theorem 3.1.

(i) (Greenleaf [2]) Any closed group of contractive measures has identity of
the form ρmK of Theorem 0.1(ii) and is a subgroup of ΓρmK

.
(ii) (Stokke [9], after [2]) The map

(z, g) 7→ zδg ∗ (ρmK) : T×GK,ρ → ΓρmK

is continuous and open and with compact kernel {(ρ(k), k) : k ∈ K} ∼= K.

Remark 3.2. We give a mild simplification of Stokke’s argument, which will help
us below.

(i) Let

ΩK,ρ = (T×GK,ρ)/
{(

ρ(k), k
)
: k ∈ K

}
.
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Then the one-point compactification ΩK,ρ t {∞} (resp., topological coproduct, if
GK,ρ is compact) is homeomorphic to ΓρmK

∪ {0}.
Indeed, consider the semigroup homomorphism on (T × GK,ρ) t {∞} given

by (z, g) 7→ zδg ∗ (ρmK), ∞ 7→ 0, which has kernel {(ρ(k), k) : k ∈ K} at
the identity—a fact which we will take for granted, thanks to arguments in [9]
and [2]. It suffices to verify that this semigroup homorphism is continuous and
that ΓρmK

∪ {0} is weak*-compact. Let (zi, gi) be a net in T × GK,ρ such that
ziδgi ∗ (ρmK) → µ in i. If (gi) is unbounded in GK,ρ, we may pass to subnet and
assume gi → ∞. But then, for u in C0(G), (u(gi·)) converges to zero uniformly on
compact sets, thanks to uniform continuity of u. It follows that µ = 0. Otherwise,
(gi) is bounded in GK,ρ, and by passing to subnet, we may assume that (zi, gi) →
(z, g) in T×GK,ρ. But then, for u in C0(G), (u(gi·)) converges to u(g·) uniformly
on compact sets, and it follows that µ = zδg ∗ (ρmK). Notice that any limit point
of a net in ΓρmK

is in ΓρmK
∪ {0}, so the latter set is weak*-closed, and hence

weak*-compact, as it is a subset of the weak*-compact unit ball of M(G).
(ii) If H is any closed subgroup of GK,ρ, then(

(T×H)/
{(

ρ(k), k
)
: k ∈ K ∩H

})
t {∞}

is homeomorphic to {zδg ∗ (ρmK) : z ∈ T and g ∈ H} ∪ {0}. Moreover, the latter
set is weak*-compact. These facts are immediate from (i) above.

For a set Σ of contractive measures, let [Σ] denote the smallest weak*-closed
semigroup containing Σ.

Proposition 3.3. Suppose that K1, K2, ρ1, and ρ2 satisfy the conditions of The-
orem 1.2(ii), and let ρ be as given there. Then

[Γρ1mK1
∗ Γρ2mK2

] ∩ ΓρmK1K2
=

{
zδg ∗ (ρmK1K2) : z ∈ T, g ∈ 〈H1H2〉

}
,

where H1 = GK1,ρ1 ∩GK1K2,ρ and H2 = GK2,ρ2 ∩GK1K2,ρ.

Proof. Let us record some observations about contractive idempotents. First we
have that supp(ρmK) = K. If g in G and z in T are such that zδg∗(ρmK) = ρ′mK′ ,
then gK = supp(zδg ∗ (ρmK)) = supp(ρ′mK′) = K ′, so K = K ′ and g ∈ K.

To see the inclusion of the first set into the second, let g1 ∈ GK1,ρ1 , g2 ∈ GK2,ρ2 .
Then we compute

δg1 ∗ (ρ1mK1) ∗ δg2 ∗ (ρ2mK2) = δg1 ∗ (ρmK1K2) ∗ δg2 = δg1g2 ∗ δg−1
2

∗ (ρmK1K2) ∗ δg2 ,

where δg−1
2

∗ (ρmK1K2) ∗ δg2 is a contractive idempotent. If we assume that there

is g in GK1K2,ρ and z in T, for which

δg1g2 ∗ δg−1
2

∗ (ρmK1K2) ∗ δg2 = zδg ∗ (ρmK1K2),

then it follows from the argument in the paragraph above that g−1g1g2 ∈ K1K2.
Hence g−1g1 ∈ K1K2 ⊆ GK1K2,ρ so g1 ∈ H1. Also, as g ∈ NG(K1K2), we have
g2 ∈ K1K2g ⊆ GK1K2,ρ, and we obtain that g2 ∈ H2. By Remark 3.2(ii), any
nonzero limit of products of elements of {zδg ∗ (ρmK1K2) : z ∈ T, g ∈ 〈H1H2〉}
remains in that set.
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To see the reverse inclusion, we let g1 ∈ H1 and g2 ∈ H2 and we observe that

δg1g2 ∗ (ρmK1K2) = δg1 ∗ (ρmK1K2) ∗ δg2 = δg1 ∗ (ρ1mK1) ∗ δg2 ∗ (ρ2mK2).

We use Remark 3.2(i), to see that nonzero limits of products of such elements
remain in ΓρmK1K2

.
Either argument above can be easily redone, multiplied by elements of T. �

Example 3.4. (i) In the notation above, suppose that GK1,ρ1 = G. This happens,
for example, if K1 is in the center of G. Indeed, then ker ρ1 is in the center
of G, and K1/ ker ρ1 is in the center of G/ ker ρ1. Then, in the assumption of
Proposition 3.3, we have GK1,ρ1 ∩GK1K2,ρ = GK1K2,ρ, and hence

[Γρ1mK1
∗ Γρ2mK2

] ∩ ΓρmK1K2
= ΓρmK1K2

.

(ii) In the notation above, we always have that K1 ⊆ GK1,ρ1 and K2 ⊆ GK2,ρ2 .
Hence, if G = K1K2, then by Proposition 3.3, we have

[Γρ|K1
mK1

∗ Γρ|K2
mK2

] ∩ ΓρmG
= ΓρmG

for any ρ ∈ Ĝ1. This works even for “nontrivial” matched pairs in the sense of
Example 1.3(ii).

(iii) Let T be any nontrivial compact abelian group, let σ be given on T ×T by

σ(t1, t2) = (t2, t1), and let G = (T×T )o{id, σ}. Let ρ1, ρ2 ∈ T̂ (dual group of T ),

so ρ1×ρ2 ∈ T̂ × T . Then NG(T ×{e}) = T ×T is abelian, and hence it is easy to
follow the definition to see GT×{e},ρ1 = T × T . By symmetry, G{e}×T,ρ2 = T × T ,
as well.

On the other hand, NG(T × T ) = G, and σ(ker ρ1 × ρ2) = ker ρ1 × ρ2, so
NG(ker ρ1 × ρ2) = G. Also,

G/ ker ρ1 × ρ2 =
[
(T × T )/ ker ρ1 × ρ2

]
o {id, σ} ∼= ρ1 × ρ2(T × T )× {id, σ}

is abelian; that is, σ acts trivially on the image ρ1×ρ2(T×T ) ∼= (T×T )/ ker ρ1×ρ2.
Hence GT×T,ρ1×ρ2 = G. Thus, by Proposition 3.3, we have

[Γρ1mT×{e} ∗ Γρ2m{e}×T
] ∩ Γ(ρ1×ρ2)mT×T

( Γ(ρ1×ρ2)mT×T
.

We now consider some groups of measures considered in [9]. For K in K(G)
and ρ in K̂1, let

MρmK
=

{
ν ∈ M(G) : ν∗ ∗ ν = ρmK = ν ∗ ν∗}. (3.1)

Notice that, if ν ∈ MρmK
, then the operator ξ 7→ ν ∗ ξ on L2(G) is a partial

isometry with support and range projection ξ 7→ (ρmK) ∗ ξ. Since the injection
ν 7→ (ξ 7→ ν ∗ ξ) from M(G) into bounded operators on L2(G) is injective, it
follows that, for ν in MρmK

, ν ∗ (ρmK) = ν = (ρmK) ∗ ν. We call MρmK
the

intrinsic unitary group at ρmK . It is clear that ΓρmK
⊆ MρmK

.
Our goal is to make a modest determination of the scope of MmK

for an
idempotent probability measure. We begin with an analogue of a well-known
characterization of the structure of the connected component of the invertible
group of a Banach algebra. This lemma plays more of a role in motivating the
methods below than in producing a result that we shall use directly.
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Lemma 3.5. Let H be a locally compact group. Then the connected component
of the identity of Mδe in M(H) is the group

Mδe,0 =
{
expλ1 · · · expλn : λ1, . . . , λn ∈ M(H)ska, n ∈ N

}
,

where M(H)ska = {λ ∈ M(H) : λ∗ = −λ}, the real linear space of skew-adjoint
measures.

Proof. There exists norm-open neighborhoods B of 0 and U of δe, in M(H),
on which exp : B → U is a homeomorphism. There is a logarithm defined on a
neighborhood of δe, and analytic functional calculus shows that these are mutually
inverse. We may suppose that B is symmetric and closed under the adjoint.

If ν ∈ U ∩Mδe , then there is some λ in B for which ν = expλ, and we have
exp(λ∗) = exp(λ)∗ = ν∗ = ν−1 = exp(−λ), and hence λ∗ = −λ, by assumption
on B. If ν = expλ1 · · · expλn, with λ1, . . . , λn ∈ M(H)ska, and ν ′ in Mδe is so
close to ν that ν∗ ∗ν ′ ∈ U , then ν∗ ∗ν ′ = expλn+1 for some λn+1 in M(H)ska. The
subgroup of all such products is hence open in Mδe and clearly connected, and
thus the connected component of δe. �

We say that a locally compact groupH is Hermitian if each self-adjoint element
of L1(H) has a real spectrum. See [6] for notes on the class of Hermitian groups.

Proposition 3.6. Let K ∈ K(G).

(i) If NG(K) ) K, then ΓmK
( MmK

.
(ii) If NG(K)/K contains either a nondiscrete closed abelian subgroup or a

closed non-Hermitian subgroup, then the connected component of the iden-
tity MmK ,0 is unbounded.

Proof. We let H = NG(K)/K. We notice, in passing, that NG(K) = GK,1. Con-
sider the map ϕ : M(H) → M(G) given for u in C0(G) by∫

G

u dϕ(ν) =

∫
H

∫
K

u(gk) dk dgK,

where we remark, in passing, that this quantity is equal to
∫
NG(K)

u(g) dg, thanks

to the Weyl integration formula. Since arbitrary elements of C0(H) may be repre-
sented as gK 7→

∫
K
u(gk) dk, as above, we see that ϕ is injective, even isometric.

In particular, using the definitions of the groups, it is easy to see that

MmK
⊇ ϕ(MδeH

) and ΓmK
= ϕ(ΓδeH

) = Tϕ(δH),

where δH = {δh : h ∈ H}.
(i) To see that the inclusion ΓmK

⊆ MmK
is proper, it suffices to see that ΓδeH

is a proper subgroup of MδeH
. Since H contains at least two elements, the real

dimension of M(H)ska is at least 2. Since exp is analytic and a homeomorphism on

a neighborhood B̃ of 0 in M(H)ska, MδeH
contains a manifold of real dimension

at least 2. But since δH is norm discrete, we can pick B̃ small enough so that

exp(B̃) ∩ ΓδeH
⊂ TδeH . Hence exp(B̃) 6⊂ ΓδeH

.
(ii) If there exists ν = ν∗ in M(H) with a nonreal spectrum, then the one-

parameter subgroup {exp(itν)}t∈R is unbounded and a subgroup of MδeH
. The
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Wiener–Pitt phenomenon shows that if H contains a closed nondiscrete abelian
subgroup A, then such a ν exists. Indeed, if ν = ν∗ in M(A) ⊆ M(H), then the
Fourier–Steiltjes transform satisfies ν̂ = ν̂∗ = ν̂, and we appeal to Section 6.4 in
[8]. If H contains a closed non-Hermitian subgroup, then we can choose ν to be
absolutely continuous with respect to the Haar measure of that subgroup. �

It is not clear whether or not MmK
is always locally compact with respect to

the weak* topology.

Remark 3.7. (i) The proof of (i) above tells us that if NG(K)/K is infinite, then
MmK

contains manifolds of arbitrarily high dimension. Thus we see that MmK

is not Lie, in this case.
(ii) If NG(K) is compact, and hence so too is H = NG(K)/K with dual object

Ĥ, then MmK
∼= MδeH

is isomorphic to a subgroup of the product of unitary
groups

∏
π∈Ĥ U(dπ), containing the dense restricted product subgroup, consist-

ing of all elements which are Idπ for all but finitely many indices π. Indeed, the
Fourier–Steiltjes transform ν 7→ (π(ν))π∈Ĥ : M(H) → `∞-

⊕
π∈Ĥ Mdπ(C) (nota-

tion as in (2.1)) injects MδeH
into the product group. Furthermore, consider u

in
∏

π∈Ĥ U(dπ), where uπ = Idπ for all but π1, . . . , πn in Ĥ, and uπk
= [uij,k] in

U(dπk
) for k = 1, . . . , n. Consider the element of M(H), given by

νu = δe +
n∑

k=1

dπk

( dπk∑
i,j=1

uij,kπk,ij −
dπk∑
j=1

πk,jj

)
mH ,

where each set {πk,ij}
dπk
i,j=1 is comprised of matrix coefficients of πk with respect

to an orthonormal basis for the space on which it acts. This element satisfies
π(νu) = uπ for all π. Notice that νu ∗ νu′ = νuu′ and ν∗

u = νu∗ .
Notice that if we have an isomorphism MδeH

with
∏

π∈Ĥ U(dπ), then M(H)
will be isomorphic to a C*-algebra (every matrix is a linear combination of four
unitaries, and we appeal to the open mapping theorem to see that the Fourier–
Steiltjes transform is surjective), and hence Arens-regular. It then follows from
the hereditary properties of Arens regularity, and the main result of [13], that H
is finite. In particular, since the Fourier–Steiltjes transform is weak*–weak* con-
tinuous, we conclude for infinite compact H that MδeH

is not weak*-compact.
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