Ann. Funct. Anal. 7 (2016), no. 1, 136-149
http://dx.doi.org/10.1215/20088752-3428247
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

COMMUTING CONTRACTIVE IDEMPOTENTS IN MEASURE ALGEBRAS

NICO SPRONK
Dedicated to Professor Anthony To-Ming Lau, in honor of his contributions to, and leadership in, the international abstract harmonic analysis community, the Canadian mathematical community, and my career

Communicated by K. F. Taylor

Abstract

We determine when contractive idempotents in the measure algebra of a locally compact group commute. We consider a dynamical version of the same result. We also look at some properties of groups of measures whose identity is a contractive idempotent.

Let G be a locally compact group. When G is abelian, Cohen [1] characterized all of the idempotents in the measure algebra $\mathrm{M}(G)$. For nonabelian G, the idempotent probabilities were characterized by Kawada and Itô [3], while the contractive idempotents were characterized by Greenleaf [2]. We give an exact statement of their results in Theorem 0.1 below. For certain compact groups, the central idempotent measures were characterized by Rider [7], in a manner which is pleasingly reminiscent of Cohen's result on abelian groups. Rider points out a counterexample to his result when some assumptions are dropped. This has motivated our Example 1.3(i) below.

Discussion of contactive idempotents has been conducted in the setting of locally compact quantum groups by Neufang, Salmi, Skalski, and the present author [5].

[^0]We observe that $K_{1} K_{2} \in \mathcal{K}(G)$ in the following situations:
(i) $K_{1} \subset K_{2}$, and
(ii) $K_{1} \subset N_{G}\left(K_{2}\right)=\left\{s \in G: s K_{2} s^{-1}=K_{2}\right\}$.

If $K_{1} \cap K_{2}=\{e\}$ and $K_{1} K_{2} \in \mathcal{K}(G)$, then $\left(K_{1}, K_{2}\right)$ is referred to as a matched pair (see [12]), and $K_{1} K_{2}$ is a Zappa-Szép product (see [14], [11]). Indeed, we note that the representation $k_{1} k_{2}$ of an element of $K_{1} K_{2}$ is unique, for if $k_{1} k_{2}=k_{1}^{\prime} k_{2}^{\prime}$, then $\left(k_{1}^{\prime}\right)^{-1} k_{1}=k_{2}^{\prime} k_{2}^{-1}=e$. Since, in general, we will not assume that $K_{1} \cap K_{2}=\{e\}$, or even that this intersection is normal in $K_{1} K_{2}$, when the latter is a group, our situation appears to generalize that of a matched pair.

Is there a "nice" characterization of when $K_{1} K_{2} \in \mathcal{K}(G)$?
To proceed, we will use a nonnormal form of the Weyl integration formula. If H is a locally compact group and $L \in \mathcal{K}(H)$, then any continuous multiplicative function $\delta: L \rightarrow \mathbb{R}^{>0}$ is trivial. Thus the modular function Δ of H satisfies $\left.\Delta\right|_{L}=1$, which is the modular function of L. Hence the left homogeneous space H / L admits a left H-invariant Haar measure $m_{H / L}$. We have for u in $\mathcal{C}_{c}(H)$ that

$$
\begin{equation*}
\int_{H} u(h) d h=\int_{H / L} \int_{L} u(h l) d l d(h L), \tag{1.1}
\end{equation*}
$$

where $d(h L)=d m_{H / L}(h L)$.
Theorem 1.2. Let $K_{1}, K_{2} \in \mathcal{K}(G), \rho_{1} \in \widehat{\left(K_{1}\right)_{1}}$, and $\rho_{2} \in \widehat{\left(K_{2}\right)_{1}}$. Then $\rho_{1} m_{K_{1}}$ and $\rho_{2} m_{K_{2}}$ commute if and only if one of the following cases holds for $K=K_{1} \cap K_{2}$:
(i) $\left.\rho_{1}\right|_{K} \neq\left.\rho_{2}\right|_{K}$, in which case $\left(\rho_{1} m_{K_{1}}\right) *\left(\rho_{2} m_{K_{2}}\right)=0$, or
(ii) $\left.\rho_{1}\right|_{K}=\left.\rho_{2}\right|_{K}, K_{1} K_{2} \in \mathcal{K}(G)$, and the function
$\rho: K_{1} K_{2} \rightarrow \mathbb{C}$ given by $\rho\left(k_{1} k_{2}\right)=\rho_{1}\left(k_{1}\right) \rho_{2}\left(k_{2}\right)$ for k_{1} in K_{1} and k_{2} in K_{2}
defines a character, in which case $\left(\rho_{1} m_{K_{1}}\right) *\left(\rho_{2} m_{K_{2}}\right)=\rho m_{K_{1} K_{2}}$.
In particular, the idempotent probabilities $m_{K_{1}}$ and $m_{K_{2}}$ commute if and only if $K_{1} K_{2} \in \mathcal{K}(G)$, in which case we have $m_{K_{1}} * m_{K_{2}}=m_{K_{1} K_{2}}$.
Proof. We let $\nu=\left(\rho_{1} m_{K_{1}}\right) *\left(\rho_{2} m_{K_{2}}\right)$. Notice that

$$
\begin{equation*}
\rho_{1} m_{K_{1}} \text { and } \rho_{2} m_{K_{2}} \text { commute if and only if } \nu^{*}=\nu . \tag{1.2}
\end{equation*}
$$

For u in $\mathcal{C}_{0}(G)$ we have

$$
\begin{align*}
\int_{G} u d \nu & =\int_{K_{1}} \int_{K_{2}} u\left(k_{1} k_{2}\right) \rho_{1}\left(k_{1}\right) \rho\left(k_{2}\right) d k_{1} d k_{2} \\
& =\int_{K_{1} / K} \int_{K} \int_{K_{2}} u\left(k_{1} k k_{2}\right) \rho_{1}\left(k_{1} k\right) \rho\left(k_{2}\right) d k_{2} d k d\left(k_{1} K\right) \\
& =\int_{K_{1} / K} \int_{K_{2}} u\left(k_{1} k_{2}\right) \int_{K} \rho_{1}\left(k_{1} k\right) \rho_{2}\left(k^{-1} k_{2}\right) d k d k_{2} d\left(k_{1} K\right) \tag{1.3}\\
& =\int_{K_{1} / K} \int_{K_{2}}\left[\int_{K} \rho_{1}(k) \overline{\rho_{2}(k)} d k\right] u\left(k_{1} k_{2}\right) \rho_{1}\left(k_{1}\right) \rho_{2}\left(k_{2}\right) d k_{2} d\left(k_{1} K\right) .
\end{align*}
$$

The orthogonality of characters entails that the quantity $\int_{K} \rho_{1}(k) \overline{\rho_{2}(k)} d k$ is either 1 or 0 , depending on whether $\left.\rho_{1}\right|_{K}=\left.\rho_{2}\right|_{K}$ or not. In the latter case, we see that
$\nu=0$, and hence $\left(\rho_{2} m_{K_{2}}\right) *\left(\rho_{1} m_{K_{1}}\right)=\nu^{*}=0=\nu$, and we see that condition (i) holds.

Hence for the remainder of the proof, let us suppose that $\left.\rho_{1}\right|_{K}=\left.\rho_{2}\right|_{K}$. Then the function $\rho: K_{1} K_{2} \rightarrow \mathbb{T}$ given as in (ii) is well defined. Indeed, if $k_{1} k_{2}=k_{1}^{\prime} k_{2}^{\prime}$, then $\left(k_{1}^{\prime}\right)^{-1} k_{1}=k_{2}^{\prime} k_{2}^{-1} \in K$, and our assumption allows us to apply ρ_{1} to the left, and ρ_{2} to the right, to gain the same result. Furthermore, $\left(k_{1}, k_{2}\right) \mapsto \rho_{1}\left(k_{1}\right) \rho_{2}\left(k_{2}\right)=$ $\rho\left(k_{1} k_{2}\right): K_{1} \times K_{2} \rightarrow \mathbb{T}$ is continuous and hence factors continuously through the topological quotient space $K_{1} K_{2}$ of $K_{1} \times K_{2}$.

We now wish to show that $\operatorname{supp} \nu=K_{1} K_{2}$. The inclusion $\operatorname{supp} \nu \subseteq K_{1} K_{2}$ is standard. Conversely, if k_{1}^{o} in K_{1}, k_{2}^{o} in K_{2}, and $\varepsilon>0$ are given and we let $u, v \in \mathcal{C}_{0}(G)$ satisfy

$$
u \geq 0 \quad \text { and } \quad u\left(k_{1}^{o} k_{2}^{o}\right)>\varepsilon>0, \quad \text { and }\left.\quad v\right|_{K_{1} K_{2}}=\bar{\rho},
$$

then we may find open U_{j} in K_{j} containing k_{j}^{o}, for $j=1,2$, so that $U_{1} \times U_{2} \subseteq$ $\left\{\left(k_{1}, k_{2}\right) \in K_{1} \times K_{2}: u\left(k_{1} k_{2}\right)>\varepsilon\right\}$, and our assumptions entail that

$$
\begin{aligned}
\int_{G} u v d \nu & =\int_{K_{1}} \int_{K_{2}} u\left(k_{1} k_{2}\right) d k_{1} d k_{2} \\
& \geq \int_{U_{1}} \int_{U_{2}} u\left(k_{1} k_{2}\right) d k_{1} d k_{2} \geq m_{K_{1}}\left(U_{1}\right) m_{K_{2}}\left(U_{2}\right) \varepsilon>0 .
\end{aligned}
$$

Hence $K_{1} K_{2} \subseteq \operatorname{supp} \nu$. Notice that if it were the case that $\nu=0$, this would contradict our present calculation of $\operatorname{supp} \nu$, and hence the assumption that $\left.\rho_{1}\right|_{K}=\left.\rho_{2}\right|_{K}$. Thus $\nu=0$ only when $\left.\rho_{1}\right|_{K} \neq\left.\rho_{2}\right|_{K}$, showing that (i) fully characterizes this situation. We observe that

$$
\begin{equation*}
\operatorname{supp} \nu^{*}=(\operatorname{supp} \nu)^{-1}=K_{2} K_{1} . \tag{1.4}
\end{equation*}
$$

Let us now assume that $\rho_{1} m_{K_{1}}$ and $\rho_{2} m_{K_{2}}$ commute. Then, by (1.2), $\nu=\nu^{*}$ and hence by (1.4) and Lemma 1.1, we have that $K_{1} K_{2} \in \mathcal{K}(G)$. To complete the calculation we observe the following isomorphism of left K_{1}-spaces, generalizing the second isomorphism theorem of groups:

$$
\begin{equation*}
K_{1} K_{2} / K_{2} \cong K_{1} / K, \quad k K_{2} \mapsto k K . \tag{1.5}
\end{equation*}
$$

Hence for $w \in \mathcal{C}\left(K_{1} K_{2}\right)$, which is constant of left cosets of K_{2}, we have $\int_{K_{1} K_{2} / K_{2}} w(k) d\left(k K_{2}\right)=\int_{K_{1} / K} w\left(k_{1}\right) d\left(k_{1} K\right)$ for the unique choices of leftinvariant probability measures on the homogeneous spaces. We thus find that, for u in $\mathcal{C}_{0}(G)$,

$$
\begin{align*}
\int_{G} u d \nu & =\int_{K_{1} / K} \int_{K_{2}} u\left(k_{1} k_{2}\right) \rho\left(k_{1} k_{2}\right) d k_{2} d\left(k_{1} K\right) \\
& =\int_{K_{1} K_{2} / K_{2}} \int_{K_{2}} u\left(k_{1} k_{2}\right) \rho\left(k_{1} k_{2}\right) d k_{2} d\left(k K_{2}\right) \tag{1.6}\\
& =\int_{K_{1} K_{2}} u(k) \rho(k) d k=\int_{G} u d\left(\rho m_{K_{1} K_{2}}\right),
\end{align*}
$$

and so $\nu=\rho m_{K_{1} K_{2}}$. Since $\nu * \nu=\nu$, as $\rho_{1} m_{K_{1}}$ and $\rho_{2} m_{K_{2}}$ commute, and $m_{K_{1} K_{2}}$ is the normalized Haar measure of a compact subgroup, it follows that
$\left(\rho m_{K_{1} K_{2}}\right) *\left(\rho m_{K_{1} K_{2}}\right)=(\rho * \rho) m_{K_{1} K_{2}}$, whence $\rho=\rho * \rho$. We could simply appeal to Theorem 0.1 (ii), to see that, since $\|\nu\| \leq\left\|\rho_{1} m_{K_{1}}\right\|\left\|\rho_{2} m_{K_{2}}\right\|=1$, $\rho \in\left(\widehat{K_{1} K_{2}}\right)_{1}$. However, let us give a direct verification, using only the present tools. We may interchange the roles of K_{1} and K_{2} above, and define $\tilde{\rho}: K_{2} K_{1} \rightarrow \mathbb{T}$ by $\tilde{\rho}\left(k_{2} k_{1}\right)=\rho_{2}\left(k_{2}\right) \rho_{1}\left(k_{1}\right)$, which, like ρ, is well defined and continuous. We also see, by the computation (1.6), that $\nu=\tilde{\rho} m_{K_{2} K_{1}}=\tilde{\rho} m_{K_{1} K_{2}}$. Hence $\tilde{\rho}=\rho$ on $K_{1} K_{2}$. But it then follows that ρ is a homomorphism: if $k=k_{1} k_{2}, l=l_{1} l_{2}$, $k_{1}, l_{1} \in K_{1}, k_{2}, l_{2} \in K_{2}$, then we have $k_{2} l_{1}=l_{1}^{\prime} k_{2}^{\prime}$ for some l_{1}^{\prime} in K_{1} and k_{2}^{\prime} in K_{2}, and hence

$$
\begin{aligned}
\rho\left(k_{1} k_{2} l_{1} l_{2}\right) & =\rho_{1}\left(k_{1} l_{1}^{\prime}\right) \rho_{2}\left(k_{2}^{\prime} l_{2}\right)=\rho_{1}\left(k_{1}\right) \rho\left(l_{1}^{\prime} k_{2}^{\prime}\right) \rho_{2}\left(l_{2}\right) \\
& =\rho_{1}\left(k_{1}\right) \tilde{\rho}\left(k_{2} l_{1}\right) \rho_{2}\left(l_{2}\right)=\rho_{1}\left(k_{1}\right) \rho_{2}\left(k_{2}\right) \rho_{1}\left(l_{1}\right) \rho_{2}\left(l_{2}\right)=\rho\left(k_{1} k_{2}\right) \rho\left(l_{1} l_{2}\right)
\end{aligned}
$$

Conversely, if the conditions of (ii) are assumed, then computations (1.3) and (1.6) show that $\left(\rho_{1} m_{K_{1}}\right) *\left(\rho_{2} m_{K_{2}}\right)=\rho m_{K_{1} K_{2}}$ and show the same with the roles of $\rho_{1} m_{K_{1}}$ and $\rho_{2} m_{K_{2}}$, reversed.

Example 1.3. (i) Let $G=K \rtimes A$, where A is a compact group acting as continuous automorphisms on the group K, so we obtain group law $(k, \alpha)\left(k^{\prime}, \beta\right)=$ $\left(k \alpha\left(k^{\prime}\right), \alpha \beta\right)$. We identify K and A with their cannonical copies in G. Suppose there is ρ in \widehat{K}_{1} for which $\rho \circ \alpha \neq \rho$ for some α in A, and hence for α on an open subset of A. (A specific example would be to take $K=\mathbb{T}, A=\{\mathrm{id}, \sigma\}$ where $\sigma(t)=t^{-1}$, and $\rho(t)=t^{n}$ where $n \in \mathbb{Z} \backslash\{0\}$.) Then for $u \in \mathcal{C}(G)$ we obtain for ρ as above,

$$
\int_{G} u d\left[\left(\rho m_{K}\right) * m_{A}\right]=\int_{K} \int_{A} u(k, \alpha) \rho(k) d \alpha d k
$$

while, since the modular function on the compact group A qua automorphisms on K is 1 , we have

$$
\begin{aligned}
\int_{G} u d\left[m_{A} *\left(\rho m_{K}\right)\right] & =\int_{A} \int_{K} u(\alpha(k), \alpha) \rho(k) d k d \alpha \\
& =\int_{A} \int_{K} u(k, \alpha) \rho \circ \alpha^{-1}(k) d k d \alpha
\end{aligned}
$$

Thus ρm_{K} and m_{A} do not commute. The only assumption missing from Theorem 1.2 is that $(k, \alpha) \mapsto \rho(k)$ is not a character on G.
(ii) Let $n \geq 5$, and let S_{n} denote the symmetric group on a set of n elements, let S_{n-1} denote the stabilizer subgroup of any fixed element, and let C be the cyclic subgroup generated by any full n-cycle. Then $S_{n}=S_{n-1} C$, as may be easily checked, and $\left\{S_{n-1}, C\right\}$ is a "nontrivial" matched pair in the sense that neither subgroup is normal in G.

We note that the only nontrivial coabelian normal subgroup of S_{n} is $A_{n}=$ ker sgn, as A_{n} is simple and of index 2 ; hence $\widehat{\left(S_{n}\right)_{1}}=\{1, \operatorname{sgn}\}$. Hence if ρ_{2} in $\widehat{C} \backslash\{1\}$ satisfies $\rho_{2} \neq\left.\operatorname{sgn}\right|_{C}$, then, for any ρ_{1} in $\widehat{\left(S_{n-1}\right)_{1}}$, it follows from Theorem 1.2 that $\left(\rho_{1} m_{S_{n-1}}\right) *\left(\rho_{2} m_{C}\right) \neq\left(\rho_{2} m_{C}\right) *\left(\rho_{1} m_{S_{n-1}}\right)$.

2. Dynamical considerations

If S is a subset of G, let $\langle S\rangle$ denote the smallest closed subgroup containing S.
Theorem 2.1 (Stromberg [10]). If μ is a probability in $\mathrm{M}(G)$, for which $K=$ $\langle\operatorname{supp} \mu\rangle \in \mathcal{K}(G)$, then the weak* limit, $\lim _{n \rightarrow \infty} \mu^{* n}$, exists if and only if $\operatorname{supp} \mu$ is contained in no coset of a closed proper normal subgroup of K. Moreover, this limit equals the Haar measure m_{K}.

We observe that $\operatorname{supp} \mu^{*}=(\operatorname{supp} \mu)^{-1}$, and hence in the assumptions above we have $\lim _{n \rightarrow \infty}\left(\mu^{*}\right)^{* n}=m_{K}$, too.

Since $\operatorname{supp}\left(m_{K} * m_{L}\right)=K L$, as was checked in the proof of Theorem 1.2, it follows that for K, L in $\mathcal{K}(G)$ for which $\langle K L\rangle$ is compact, we have $\lim _{n \rightarrow \infty}\left(m_{K} *\right.$ $\left.m_{L}\right)^{* n}=m_{\langle K L\rangle}=\lim _{n \rightarrow \infty}\left(m_{L} * m_{K}\right)^{* n}$. For example, in $S=\mathrm{SU}(2)$, any two distinct (maximal) tori T_{1} and T_{2} generate S. Indeed, the only subgroups of S with nontrivial connected components are tori, or S itself. Hence $m_{S}=\lim _{n \rightarrow \infty}\left(m_{T_{1}} *\right.$ $\left.m_{T_{2}}\right)^{* n}$.

Furthermore, we can deduce from the observation above that m_{L} and m_{K} commute if and only if $K L=\langle K L\rangle$, giving the special case of Theorem 1.2.

Motivated by the above considerations, we consider the following dynamical result.
Theorem 2.2. Let $K_{j} \in \mathcal{K}(G)$ and $\rho_{j} \in \widehat{\left(K_{j}\right)_{1}}$ for $j=1, \ldots, m$ for which $L=\left\langle K_{1} \cdots K_{m}\right\rangle \in \mathcal{K}(G)$. Then the weak* limit

$$
\lim _{n \rightarrow \infty}\left[\left(\rho_{1} m_{K_{1}}\right) * \cdots *\left(\rho_{m} m_{K_{m}}\right)\right]^{* n}
$$

always exists. It is ρm_{L}, provided there is a ρ in \widehat{L}_{1} for which $\left.\rho\right|_{K_{j}}=\rho_{j}$ for each j, and 0 otherwise.

Proof. We let $\nu=\left(\rho_{1} m_{K_{1}}\right) * \cdots *\left(\rho_{m} m_{K_{m}}\right)$. Then each $\nu^{* n}$, being a product of contractive elements, satisfies $\left\|\nu^{* n}\right\| \leq 1$. The Peter-Weyl theorem tells us that the algebra $\operatorname{Trig}(L)$ consiting of matrix coefficients of finite-dimensional unitary representations, is uniformly dense in in $\mathcal{C}(L)$. Hence, since supp $\nu \subseteq L$ and $\|\nu\| \leq 1$, and $\left\|\nu^{* n}\right\| \leq 1$ for each n, it suffices to determine, for any finite-dimensional unitary representation $\pi: L \rightarrow \mathrm{U}(d)$, the nature of the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \pi\left(\nu^{* n}\right)=\lim _{n \rightarrow \infty} \int_{L} \pi(l) d \nu^{* n}(l) \quad \text { in } M_{d}(\mathbb{C}) \tag{2.1}
\end{equation*}
$$

It is well known, and simple to compute, that each

$$
\pi\left(\nu^{* n}\right)=\pi(\nu)^{n}=\left[\pi\left(\rho_{1} m_{K_{1}}\right) \cdots \pi\left(\rho_{1} m_{K_{1}}\right)\right]^{n} .
$$

For each $j=1, \ldots, m$, the Schur orthogonality relation tell us that

$$
\pi\left(\rho_{j} m_{K_{j}}\right)=\int_{K_{j}} \rho_{j}(k) \pi(k) d k=p_{j},
$$

where p_{j} is the orthogonal projection onto the space of vectors ξ for which $\pi(k) \xi=$ $\overline{\rho_{j}(k)} \xi$ for each k in K_{j}. Hence it follows that

$$
\pi(\nu)=p_{1} \cdots p_{m} \quad \text { and } \quad \pi\left(\nu^{* n}\right)=\left(p_{1} \cdots p_{n}\right)^{n}
$$

Since each p_{j} is contractive, the eigenvalues of $\pi(\nu)$ are of modulus not exceeding 1. Furthermore, if $\|\pi(\nu) \xi\|_{2}=\|\xi\|_{2}$ (Hilbertian norm), then we find that

$$
\|\xi\|_{2}=\left\|p_{1} \cdots p_{m} \xi\right\|_{2} \leq\left\|p_{2} \cdots p_{m} \xi\right\|_{2} \leq \cdots \leq\left\|p_{m} \xi\right\|_{2} \leq\|\xi\|_{2}
$$

and so equality holds at each place. But we see then that ξ is in the range of p_{m}, hence of p_{j-1} if it is in the range of p_{j}, and thus in the mutual range R_{π} of each of p_{1}, \ldots, p_{m}. In particular, each eigenvalue of $\pi(\nu)$ is either 1 or has modulus strictly less than 1 . Hence, if we consider the Jordan form of $\pi(\nu)=p_{1} \cdots p_{m}$, we see that $\lim _{n \rightarrow \infty} \pi(\nu)^{n}=q$, where q is the necessarily contractive, hence orthogonal, range projection onto R_{π}. But then, for ξ in R_{π} and k_{j} in $K_{j}, j=1, \ldots, m$, we have

$$
\pi\left(k_{1} \cdots k_{n}\right) \xi=\pi\left(k_{1}\right) \cdots \pi\left(k_{m}\right) \xi=\overline{\rho_{1}\left(k_{1}\right)} \cdots \overline{\rho_{n}\left(k_{n}\right)} \xi
$$

If we have $\xi \neq 0$, then $\mathbb{C} \xi$ is $\pi\left(K_{1} \cdots K_{m}\right)$-invariant, and hence π-invariant as $L=\left\langle K_{1} \cdots K_{m}\right\rangle$. Moreover, there is, then, ρ in \widehat{L}_{1} for which $\pi(l) \xi=\rho(l) \xi$, and it follows that $\left.\rho\right|_{K_{j}}=\rho_{j}$. Notice that this ρ is determined independently of the choice of ξ, and hence even the choice of π. In particular, if no such ρ exists (i.e., for every finite-dimensional unitary representation, $R_{\pi}=\{0\}$), then we have $\lim _{n \rightarrow \infty} \nu^{* n}=0$, in the weak* sense. When this ρ does exists, we see for u in $\mathcal{C}_{0}(G)$ that each $\int_{G} u d\left(\nu^{* n}\right)$ is given by the $n m$-fold iterated integral

$$
\begin{align*}
\int_{K_{1}} & \cdots \int_{K_{m}} \cdots \int_{K_{1}} \cdots \int_{K_{m}} u\left(k_{11} \cdots k_{1 m} \cdots k_{n 1} \cdots k_{n m}\right) \\
& \rho_{1}\left(k_{11}\right) \cdots \rho_{m}\left(k_{1 m}\right) \cdots \rho_{1}\left(k_{n 1}\right) \cdots \rho_{m}\left(k_{n m}\right) d k_{n m} \cdots d k_{n 1} \cdots d k_{1 m} \cdots d k_{11} \tag{2.2}\\
= & \int_{K_{1}} \cdots \int_{K_{m}} \cdots \cdots \int_{K_{1}} \cdots \int_{K_{m}} u\left(k_{11} \cdots k_{n m}\right) \rho\left(k_{11} \cdots k_{n m}\right) d k_{n m} \cdots d k_{11} \\
= & \int_{G} u \rho d\left(\left[m_{K_{1}} * \cdots * m_{K_{m}}\right]^{* n}\right) .
\end{align*}
$$

It is easy to verify, as in the proof of Theorem 1.2, that $\sup \left(m_{K_{1}} * \cdots * m_{K_{m}}\right)=$ $K_{1} \cdots K_{m}$. Hence, by Theorem 2.1, we obtain the weak* limit

$$
\lim _{n \rightarrow \infty} \nu^{* n}=\rho m_{L}
$$

as desired.
In fact, the above result generalizes the necessity direction of Theorem 1.2
Corollary 2.3. Let K_{j} and $\rho_{j}, j=1, \ldots, m$, be as in Theorem 2.2 above, and let $L=K_{1} \cdots K_{m}$. If $\nu=\left(\rho_{1} m_{K_{1}}\right) * \cdots *\left(\rho_{m} m_{K_{m}}\right)$ is idempotent, then either $\nu=0$ or $L=\langle L\rangle \in \mathcal{K}(G)$ and there is ρ in \widehat{L}_{1} with $\left.\rho\right|_{K_{j}}=\rho_{j}$ for each j.

Proof. Suppose $\nu \neq 0$. By a similar method as in the proof of Theorem 1.2, we see that $\operatorname{supp} \nu=L$. Moreover, if ν is idempotent, then $\lim _{n \rightarrow \infty} \nu^{* n}=\nu$. Hence we obtain that $L=\langle L\rangle$, and there exists a multiplicative character ρ on L, as promised, thanks to Theorem 2.2.

Though Corollary 2.3 generalizes the necessity direction of Theorem 1.2, the proof of the earlier result is more self-contained, and does not rely on Stromberg's
result. Furthermore, the sufficiency direction of Theorem 1.2 cannot be generalized so easily, even with probability idempotent measures.

Example 2.4. The special orthogonal group $S=\mathrm{SO}(3)$ admits the well-known Euler angle decomposition: $S=T_{1} T_{2} T_{1}$, where

$$
\begin{aligned}
& T_{1}=\left\{k_{1}(t)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos t & -\sin t \\
0 & \sin t & \cos t
\end{array}\right]: 0 \leq t \leq 2 \pi\right\} \quad \text { and } \\
& T_{2}=\left\{k_{2}(t)=\left[\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right]: 0 \leq t \leq 2 \pi\right\}
\end{aligned}
$$

We note that the multiplication $T_{1} \times\left(T_{2} /\left\{I, k_{2}(\pi)\right\}\right) \times T_{1} \rightarrow S$ is a diffeomorphism. For u in $\mathcal{C}(S)$, we have

$$
\int_{T_{1}} \int_{T_{2}} \int_{T_{1}} u d\left(m_{T_{1}} * m_{T_{2}} * m_{T_{1}}\right)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} u\left(k_{1}\left(t_{1}\right) k_{2}\left(t_{2}\right) k_{1}\left(t_{3}\right)\right) \frac{d t_{3} d t_{2} d t_{1}}{8 \pi^{3}},
$$

whereas the Haar measure m_{S} gives the integral

$$
\int_{S} u d m_{S}=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} u\left(k_{1}\left(t_{1}\right) k_{2}\left(t_{2}\right) k_{1}\left(t_{3}\right)\right) \sin t_{2} \frac{d t_{3} d t_{2} d t_{1}}{8 \pi^{2}}
$$

Hence, considering T_{1}-spherical functions (i.e., u in $\mathcal{C}\left(T_{1} \backslash S / T_{1}\right)$), we see that

$$
m_{T_{1} T_{2} T_{1}}=m_{S} \neq m_{T_{1}} * m_{T_{2}} * m_{T_{1}} .
$$

Remark 2.5. We note the following result, shown (implicitly) by Muhkerjea [4, Theorem 2]. If μ is a probability in $\mathrm{M}(G)$, for which $\langle\operatorname{supp} \mu\rangle \notin \mathcal{K}(G)$, then the weak* limit satisfies $\lim _{n \rightarrow \infty} \mu^{* n}=0$.

Hence if K_{1}, \ldots, K_{m} in $\mathcal{K}(G)$ have $\left\langle K_{1} \cdots K_{m}\right\rangle \notin \mathcal{K}(G)$, we see that $\lim _{n \rightarrow \infty}\left(m_{K_{1}} * \cdots * m_{K_{m}}\right)^{* n}=0$, which is rather antithetical to having $m_{K_{1}} *$ $\cdots * m_{K_{m}}$ be an idempotent.

As a simple example, consider any two nontrivial finite subgroups K and L of discrete groups Γ and Λ, and consider each as a subgroup of the free product $\Gamma * \Lambda$. For a Lie theoretic example, consider the Iwasawa decomposition $K A N$ of $S=\mathrm{SL}_{2}(\mathbb{R})$. Compute that if $a \in A \backslash\{I\}$, then $a K a^{-1} \neq K$. Since K is maximal compact, we see that $\left\langle K a K a^{-1}\right\rangle \notin \mathcal{K}(S)$.

It is the case that if for K_{1}, \ldots, K_{m} in $\mathcal{K}(G)$ we have $H=\left\langle K_{1} \cdots K_{m}\right\rangle \notin \mathcal{K}(G)$, then for ρ_{j} in $\widehat{\left(K_{j}\right)_{1}}, j=1, \ldots, m$, the weak* limit satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\left(\rho_{1} m_{K_{1}}\right) * \cdots *\left(\rho_{m} m_{K_{m}}\right)\right]^{* n}=0 . \tag{2.3}
\end{equation*}
$$

In the case that $\left.\rho_{i}\right|_{K_{i} \cap K_{j}} \neq\left.\rho_{j}\right|_{K_{i} \cap K_{j}}$ for some $i \neq j$, we have $\left(\rho_{1} m_{K_{1}}\right) * \cdots *$ $\left(\rho_{m} m_{K_{m}}\right)=0$, as may be computed, by a straightforward adaptation of (1.3). If there is a continuous multiplicative character $\rho: H \rightarrow \mathbb{T}$ such that $\left.\rho\right|_{K_{j}}=\rho_{j}$ for each j, then the computation (2.2) and Mukherjea's theorem give the result. In presence or absence of these assumptions, (2.3) follows from a result which should appear in a future work of Neufang, Salmi, Skalski, and the present author. In
fact, the same result implies Theorem 2.2. However, the proof given in the present note uses simpler methods.

3. On groups of measures

Greenleaf's motivation for studying idempotent measures was their use in the study of contractive homomorphisms $\mathrm{L}^{1}(H) \rightarrow \mathrm{M}(G)$. In doing so, he required a description of certain groups of measures, given in Theorem 3.1 below. We are interested in determining how these groups interact under convolution product with each other. Stokke [9] conducted a study of Greenleaf's groups, and also devised a more general class of groups (see (3.1)). We show that the latter class is indeed more general.

For any subgroup H of G, let

$$
\begin{aligned}
N_{G}(H) & =\left\{g \in G: g H g^{-1}=H\right\} \quad \text { and } \\
Z_{G}(H) & =\{g \in G: g h=h g \text { for all } h \text { in } H\}
\end{aligned}
$$

denote its normalizer and centralizer, respectively. Notice that, for another subgroup L, we have $L \subseteq Z_{G}(H)$ if and only if $H \subseteq Z_{G}(L)$. Notice too that for the topological closure \bar{H}, we have $N_{G}(\bar{H})=N_{G}(H)$ and $Z_{G}(\bar{H})=Z_{G}(H)$, and hence these subgroups are closed.

Given K in $\mathcal{K}(G)$ and ρ in \widehat{K}_{1}, we let

$$
N_{K, \rho}=N_{G}(K) \cap N_{G}(\operatorname{ker} \rho)
$$

and then let $q: N_{K, \rho} \rightarrow N_{K, \rho} / \operatorname{ker} \rho$ be the quotient map. We let

$$
G_{K, \rho}=q^{-1}\left(Z_{N_{K, \rho} / \operatorname{ker} \rho}(K / \operatorname{ker} \rho)\right)
$$

Hence g in $G_{K, \rho}$ normalizes both K and ker ρ and commutes with elements of K modulo ker ρ. We then consider, in $\mathrm{M}(G)$, the subgroup

$$
\Gamma_{\rho m_{K}}=\left\{z \delta_{g} *\left(\rho m_{K}\right): z \in \mathbb{T} \text { and } g \in G_{K, \rho}\right\} .
$$

We remark that $G_{K, \rho}=\left\{g \in G: \delta_{g} *\left(\rho m_{K}\right)=\left(\rho m_{K}\right) * \delta_{g}\right\}$, and $\Gamma_{\rho m_{K}}$ is a topological group with the weak*-topology on $\mathrm{M}(G)$ and multiplication $z \delta_{g} *$ $\left(\rho m_{K}\right) * z^{\prime} \delta_{g^{\prime}} *\left(\rho m_{K}\right)=z z^{\prime} \delta_{g g^{\prime}} *\left(\rho m_{K}\right)$.
Theorem 3.1.
(i) (Greenleaf [2]) Any closed group of contractive measures has identity of the form ρm_{K} of Theorem 0.1(ii) and is a subgroup of $\Gamma_{\rho m_{K}}$.
(ii) (Stokke [9], after [2]) The map

$$
(z, g) \mapsto z \delta_{g} *\left(\rho m_{K}\right): \mathbb{T} \times G_{K, \rho} \rightarrow \Gamma_{\rho m_{K}}
$$

is continuous and open and with compact kernel $\{(\rho(k), k): k \in K\} \cong K$.
Remark 3.2. We give a mild simplification of Stokke's argument, which will help us below.
(i) Let

$$
\Omega_{K, \rho}=\left(\mathbb{T} \times G_{K, \rho}\right) /\{(\rho(k), k): k \in K\} .
$$

Then the one-point compactification $\Omega_{K, \rho} \sqcup\{\infty\}$ (resp., topological coproduct, if $G_{K, \rho}$ is compact) is homeomorphic to $\Gamma_{\rho m_{K}} \cup\{0\}$.

Indeed, consider the semigroup homomorphism on $\left(\mathbb{T} \times G_{K, \rho}\right) \sqcup\{\infty\}$ given by $(z, g) \mapsto z \delta_{g} *\left(\rho m_{K}\right), \infty \mapsto 0$, which has kernel $\{(\rho(k), k): k \in K\}$ at the identity - a fact which we will take for granted, thanks to arguments in [9] and [2]. It suffices to verify that this semigroup homorphism is continuous and that $\Gamma_{\rho m_{K}} \cup\{0\}$ is weak*-compact. Let $\left(z_{i}, g_{i}\right)$ be a net in $\mathbb{T} \times G_{K, \rho}$ such that $z_{i} \delta_{g_{i}} *\left(\rho m_{K}\right) \rightarrow \mu$ in i. If $\left(g_{i}\right)$ is unbounded in $G_{K, \rho}$, we may pass to subnet and assume $g_{i} \rightarrow \infty$. But then, for u in $\mathcal{C}_{0}(G),\left(u\left(g_{i} \cdot\right)\right)$ converges to zero uniformly on compact sets, thanks to uniform continuity of u. It follows that $\mu=0$. Otherwise, $\left(g_{i}\right)$ is bounded in $G_{K, \rho}$, and by passing to subnet, we may assume that $\left(z_{i}, g_{i}\right) \rightarrow$ (z, g) in $\mathbb{T} \times G_{K, \rho}$. But then, for u in $\mathcal{C}_{0}(G),\left(u\left(g_{i} \cdot\right)\right)$ converges to $u(g \cdot)$ uniformly on compact sets, and it follows that $\mu=z \delta_{g} *\left(\rho m_{K}\right)$. Notice that any limit point of a net in $\Gamma_{\rho m_{K}}$ is in $\Gamma_{\rho m_{K}} \cup\{0\}$, so the latter set is weak*-closed, and hence weak*-compact, as it is a subset of the weak*-compact unit ball of $\mathrm{M}(G)$.
(ii) If H is any closed subgroup of $G_{K, \rho}$, then

$$
((\mathbb{T} \times H) /\{(\rho(k), k): k \in K \cap H\}) \sqcup\{\infty\}
$$

is homeomorphic to $\left\{z \delta_{g} *\left(\rho m_{K}\right): z \in \mathbb{T}\right.$ and $\left.g \in H\right\} \cup\{0\}$. Moreover, the latter set is weak*-compact. These facts are immediate from (i) above.

For a set Σ of contractive measures, let $[\Sigma]$ denote the smallest weak*-closed semigroup containing Σ.

Proposition 3.3. Suppose that K_{1}, K_{2}, ρ_{1}, and ρ_{2} satisfy the conditions of Theorem 1.2(ii), and let ρ be as given there. Then

$$
\left[\Gamma_{\rho_{1} m_{K_{1}}} * \Gamma_{\rho_{2} m_{K_{2}}}\right] \cap \Gamma_{\rho m_{K_{1} K_{2}}}=\left\{z \delta_{g} *\left(\rho m_{K_{1} K_{2}}\right): z \in \mathbb{T}, g \in\left\langle H_{1} H_{2}\right\rangle\right\}
$$

where $H_{1}=G_{K_{1}, \rho_{1}} \cap G_{K_{1} K_{2}, \rho}$ and $H_{2}=G_{K_{2}, \rho_{2}} \cap G_{K_{1} K_{2}, \rho}$.
Proof. Let us record some observations about contractive idempotents. First we have that $\operatorname{supp}\left(\rho m_{K}\right)=K$. If g in G and z in \mathbb{T} are such that $z \delta_{g} *\left(\rho m_{K}\right)=\rho^{\prime} m_{K^{\prime}}$, then $g K=\operatorname{supp}\left(z \delta_{g} *\left(\rho m_{K}\right)\right)=\operatorname{supp}\left(\rho^{\prime} m_{K^{\prime}}\right)=K^{\prime}$, so $K=K^{\prime}$ and $g \in K$.

To see the inclusion of the first set into the second, let $g_{1} \in G_{K_{1}, \rho_{1}}, g_{2} \in G_{K_{2}, \rho_{2}}$. Then we compute
$\delta_{g_{1}} *\left(\rho_{1} m_{K_{1}}\right) * \delta_{g_{2}} *\left(\rho_{2} m_{K_{2}}\right)=\delta_{g_{1}} *\left(\rho m_{K_{1} K_{2}}\right) * \delta_{g_{2}}=\delta_{g_{1} g_{2}} * \delta_{g_{2}^{-1}} *\left(\rho m_{K_{1} K_{2}}\right) * \delta_{g_{2}}$,
where $\delta_{g_{2}-1} *\left(\rho m_{K_{1} K_{2}}\right) * \delta_{g_{2}}$ is a contractive idempotent. If we assume that there is g in $G_{K_{1} K_{2}, \rho}$ and z in \mathbb{T}, for which

$$
\delta_{g_{1} g_{2}} * \delta_{g_{2}^{-1}} *\left(\rho m_{K_{1} K_{2}}\right) * \delta_{g_{2}}=z \delta_{g} *\left(\rho m_{K_{1} K_{2}}\right),
$$

then it follows from the argument in the paragraph above that $g^{-1} g_{1} g_{2} \in K_{1} K_{2}$. Hence $g^{-1} g_{1} \in K_{1} K_{2} \subseteq G_{K_{1} K_{2}, \rho}$ so $g_{1} \in H_{1}$. Also, as $g \in N_{G}\left(K_{1} K_{2}\right)$, we have $g_{2} \in K_{1} K_{2} g \subseteq G_{K_{1} K_{2}, \rho}$, and we obtain that $g_{2} \in H_{2}$. By Remark 3.2(ii), any nonzero limit of products of elements of $\left\{z \delta_{g} *\left(\rho m_{K_{1} K_{2}}\right): z \in \mathbb{T}, g \in\left\langle H_{1} H_{2}\right\rangle\right\}$ remains in that set.

To see the reverse inclusion, we let $g_{1} \in H_{1}$ and $g_{2} \in H_{2}$ and we observe that

$$
\delta_{g_{1} g_{2}} *\left(\rho m_{K_{1} K_{2}}\right)=\delta_{g_{1}} *\left(\rho m_{K_{1} K_{2}}\right) * \delta_{g_{2}}=\delta_{g_{1}} *\left(\rho_{1} m_{K_{1}}\right) * \delta_{g_{2}} *\left(\rho_{2} m_{K_{2}}\right)
$$

We use Remark 3.2(i), to see that nonzero limits of products of such elements remain in $\Gamma_{\rho m_{K_{1} K_{2}}}$.

Either argument above can be easily redone, multiplied by elements of \mathbb{T}.
Example 3.4. (i) In the notation above, suppose that $G_{K_{1}, \rho_{1}}=G$. This happens, for example, if K_{1} is in the center of G. Indeed, then $\operatorname{ker} \rho_{1}$ is in the center of G, and $K_{1} / \operatorname{ker} \rho_{1}$ is in the center of $G / \operatorname{ker} \rho_{1}$. Then, in the assumption of Proposition 3.3, we have $G_{K_{1}, \rho_{1}} \cap G_{K_{1} K_{2}, \rho}=G_{K_{1} K_{2}, \rho}$, and hence

$$
\left[\Gamma_{\rho_{1} m_{K_{1}}} * \Gamma_{\rho_{2} m_{K_{2}}}\right] \cap \Gamma_{\rho m_{K_{1} K_{2}}}=\Gamma_{\rho m_{K_{1} K_{2}}} .
$$

(ii) In the notation above, we always have that $K_{1} \subseteq G_{K_{1}, \rho_{1}}$ and $K_{2} \subseteq G_{K_{2}, \rho_{2}}$. Hence, if $G=K_{1} K_{2}$, then by Proposition 3.3, we have

$$
\left[\Gamma_{\left.\rho\right|_{K_{1}} m_{K_{1}}} * \Gamma_{\left.\rho\right|_{K_{2}} m_{K_{2}}}\right] \cap \Gamma_{\rho m_{G}}=\Gamma_{\rho m_{G}}
$$

for any $\rho \in \widehat{G}_{1}$. This works even for "nontrivial" matched pairs in the sense of Example 1.3(ii).
(iii) Let T be any nontrivial compact abelian group, let σ be given on $T \times T$ by $\sigma\left(t_{1}, t_{2}\right)=\left(t_{2}, t_{1}\right)$, and let $G=(T \times T) \rtimes\{\operatorname{id}, \sigma\}$. Let $\rho_{1}, \rho_{2} \in \widehat{T}$ (dual group of T), so $\rho_{1} \times \rho_{2} \in \widehat{T \times T}$. Then $N_{G}(T \times\{e\})=T \times T$ is abelian, and hence it is easy to follow the definition to see $G_{T \times\{e\}, \rho_{1}}=T \times T$. By symmetry, $G_{\{e\} \times T, \rho_{2}}=T \times T$, as well.

On the other hand, $N_{G}(T \times T)=G$, and $\sigma\left(\operatorname{ker} \rho_{1} \times \rho_{2}\right)=\operatorname{ker} \rho_{1} \times \rho_{2}$, so $N_{G}\left(\operatorname{ker} \rho_{1} \times \rho_{2}\right)=G$. Also,

$$
G / \operatorname{ker} \rho_{1} \times \rho_{2}=\left[(T \times T) / \operatorname{ker} \rho_{1} \times \rho_{2}\right] \rtimes\{\operatorname{id}, \sigma\} \cong \rho_{1} \times \rho_{2}(T \times T) \times\{\operatorname{id}, \sigma\}
$$

is abelian; that is, σ acts trivially on the image $\rho_{1} \times \rho_{2}(T \times T) \cong(T \times T) /$ ker $\rho_{1} \times \rho_{2}$. Hence $G_{T \times T, \rho_{1} \times \rho_{2}}=G$. Thus, by Proposition 3.3, we have

$$
\left[\Gamma_{\rho_{1} m_{T \times\{e\}}} * \Gamma_{\rho_{2} m_{\{e\} \times T}}\right] \cap \Gamma_{\left(\rho_{1} \times \rho_{2}\right) m_{T \times T}} \subsetneq \Gamma_{\left(\rho_{1} \times \rho_{2}\right) m_{T \times T}} .
$$

We now consider some groups of measures considered in [9]. For K in $\mathcal{K}(G)$ and ρ in \widehat{K}_{1}, let

$$
\begin{equation*}
\mathcal{M}_{\rho m_{K}}=\left\{\nu \in \mathrm{M}(G): \nu^{*} * \nu=\rho m_{K}=\nu * \nu^{*}\right\} . \tag{3.1}
\end{equation*}
$$

Notice that, if $\nu \in \mathcal{M}_{\rho m_{K}}$, then the operator $\xi \mapsto \nu * \xi$ on $\mathrm{L}^{2}(G)$ is a partial isometry with support and range projection $\xi \mapsto\left(\rho m_{K}\right) * \xi$. Since the injection $\nu \mapsto(\xi \mapsto \nu * \xi)$ from $\mathrm{M}(G)$ into bounded operators on $\mathrm{L}^{2}(G)$ is injective, it follows that, for ν in $\mathcal{M}_{\rho m_{K}}, \nu *\left(\rho m_{K}\right)=\nu=\left(\rho m_{K}\right) * \nu$. We call $\mathcal{M}_{\rho m_{K}}$ the intrinsic unitary group at ρm_{K}. It is clear that $\Gamma_{\rho m_{K}} \subseteq \mathcal{M}_{\rho m_{K}}$.

Our goal is to make a modest determination of the scope of $\mathcal{M}_{m_{K}}$ for an idempotent probability measure. We begin with an analogue of a well-known characterization of the structure of the connected component of the invertible group of a Banach algebra. This lemma plays more of a role in motivating the methods below than in producing a result that we shall use directly.

Lemma 3.5. Let H be a locally compact group. Then the connected component of the identity of $\mathcal{M}_{\delta_{e}}$ in $\mathrm{M}(H)$ is the group

$$
\mathcal{M}_{\delta_{e}, 0}=\left\{\exp \lambda_{1} \cdots \exp \lambda_{n}: \lambda_{1}, \ldots, \lambda_{n} \in \mathrm{M}(H)_{\text {ska }}, n \in \mathbb{N}\right\}
$$

where $\mathrm{M}(H)_{\text {ska }}=\left\{\lambda \in \mathrm{M}(H): \lambda^{*}=-\lambda\right\}$, the real linear space of skew-adjoint measures.

Proof. There exists norm-open neighborhoods B of 0 and U of δ_{e}, in $\mathrm{M}(H)$, on which $\exp : B \rightarrow U$ is a homeomorphism. There is a logarithm defined on a neighborhood of δ_{e}, and analytic functional calculus shows that these are mutually inverse. We may suppose that B is symmetric and closed under the adjoint.

If $\nu \in U \cap \mathcal{M}_{\delta_{e}}$, then there is some λ in B for which $\nu=\exp \lambda$, and we have $\exp \left(\lambda^{*}\right)=\exp (\lambda)^{*}=\nu^{*}=\nu^{-1}=\exp (-\lambda)$, and hence $\lambda^{*}=-\lambda$, by assumption on B. If $\nu=\exp \lambda_{1} \cdots \exp \lambda_{n}$, with $\lambda_{1}, \ldots, \lambda_{n} \in \mathrm{M}(H)_{\text {ska }}$, and ν^{\prime} in $\mathcal{M}_{\delta_{e}}$ is so close to ν that $\nu^{*} * \nu^{\prime} \in U$, then $\nu^{*} * \nu^{\prime}=\exp \lambda_{n+1}$ for some λ_{n+1} in $\mathrm{M}(H)_{\text {ska }}$. The subgroup of all such products is hence open in $\mathcal{M}_{\delta_{e}}$ and clearly connected, and thus the connected component of δ_{e}.

We say that a locally compact group H is Hermitian if each self-adjoint element of $\mathrm{L}^{1}(H)$ has a real spectrum. See [6] for notes on the class of Hermitian groups.
Proposition 3.6. Let $K \in \mathcal{K}(G)$.
(i) If $N_{G}(K) \supsetneq K$, then $\Gamma_{m_{K}} \subsetneq \mathcal{M}_{m_{K}}$.
(ii) If $N_{G}(K) / K$ contains either a nondiscrete closed abelian subgroup or a closed non-Hermitian subgroup, then the connected component of the identity $\mathcal{M}_{m_{K}, 0}$ is unbounded.
Proof. We let $H=N_{G}(K) / K$. We notice, in passing, that $N_{G}(K)=G_{K, 1}$. Consider the map $\varphi: \mathrm{M}(H) \rightarrow \mathrm{M}(G)$ given for u in $\mathcal{C}_{0}(G)$ by

$$
\int_{G} u d \varphi(\nu)=\int_{H} \int_{K} u(g k) d k d g K
$$

where we remark, in passing, that this quantity is equal to $\int_{N_{G}(K)} u(g) d g$, thanks to the Weyl integration formula. Since arbitrary elements of $\mathcal{C}_{0}(H)$ may be represented as $g K \mapsto \int_{K} u(g k) d k$, as above, we see that φ is injective, even isometric. In particular, using the definitions of the groups, it is easy to see that

$$
\mathcal{M}_{m_{K}} \supseteq \varphi\left(\mathcal{M}_{\delta_{e_{H}}}\right) \quad \text { and } \quad \Gamma_{m_{K}}=\varphi\left(\Gamma_{\delta_{e_{H}}}\right)=\mathbb{T} \varphi\left(\delta_{H}\right),
$$

where $\delta_{H}=\left\{\delta_{h}: h \in H\right\}$.
(i) To see that the inclusion $\Gamma_{m_{K}} \subseteq \mathcal{M}_{m_{K}}$ is proper, it suffices to see that $\Gamma_{\delta_{e_{H}}}$ is a proper subgroup of $\mathcal{M}_{\delta_{e_{H}}}$. Since H contains at least two elements, the real dimension of $\mathrm{M}(H)_{\text {ska }}$ is at least 2. Since exp is analytic and a homeomorphism on a neighborhood \widetilde{B} of 0 in $\mathrm{M}(H)_{\text {ska }}, \mathcal{M}_{\delta_{e_{H}}}$ contains a manifold of real dimension at least 2. But since δ_{H} is norm discrete, we can pick \widetilde{B} small enough so that $\exp (\widetilde{B}) \cap \Gamma_{\delta_{e_{H}}} \subset \mathbb{T} \delta_{e_{H}}$. Hence $\exp (\widetilde{B}) \not \subset \Gamma_{\delta_{e_{H}}}$.
(ii) If there exists $\nu=\nu^{*}$ in $\mathrm{M}(H)$ with a nonreal spectrum, then the oneparameter subgroup $\{\exp (i t \nu)\}_{t \in \mathbb{R}}$ is unbounded and a subgroup of $\mathcal{M}_{\delta_{e_{H}}}$. The

Wiener-Pitt phenomenon shows that if H contains a closed nondiscrete abelian subgroup A, then such a ν exists. Indeed, if $\nu=\nu^{*}$ in $\mathrm{M}(A) \subseteq \mathrm{M}(H)$, then the Fourier-Steiltjes transform satisfies $\hat{\nu}=\widehat{\nu^{*}}=\overline{\hat{\nu}}$, and we appeal to Section 6.4 in [8]. If H contains a closed non-Hermitian subgroup, then we can choose ν to be absolutely continuous with respect to the Haar measure of that subgroup.

It is not clear whether or not $\mathcal{M}_{m_{K}}$ is always locally compact with respect to the weak* topology.

Remark 3.7. (i) The proof of (i) above tells us that if $N_{G}(K) / K$ is infinite, then $\mathcal{M}_{m_{K}}$ contains manifolds of arbitrarily high dimension. Thus we see that $\mathcal{M}_{m_{K}}$ is not Lie, in this case.
(ii) If $N_{G}(K)$ is compact, and hence so too is $H=N_{G}(K) / K$ with dual object \widehat{H}, then $\mathcal{M}_{m_{K}} \cong \mathcal{M}_{\delta_{e_{H}}}$ is isomorphic to a subgroup of the product of unitary groups $\prod_{\pi \in \widehat{H}} \mathrm{U}\left(d_{\pi}\right)$, containing the dense restricted product subgroup, consisting of all elements which are $I_{d_{\pi}}$ for all but finitely many indices π. Indeed, the Fourier-Steiltjes transform $\nu \mapsto(\pi(\nu))_{\pi \in \hat{H}}: \mathrm{M}(H) \rightarrow \ell^{\infty}-\bigoplus_{\pi \in \widehat{H}} M_{d_{\pi}}(\mathbb{C})$ (notation as in (2.1)) injects $\mathcal{M}_{\delta_{e_{H}}}$ into the product group. Furthermore, consider u in $\prod_{\pi \in \widehat{H}} \mathrm{U}\left(d_{\pi}\right)$, where $u_{\pi}=I_{d_{\pi}}$ for all but π_{1}, \ldots, π_{n} in \widehat{H}, and $u_{\pi_{k}}=\left[u_{i j, k}\right]$ in $\mathrm{U}\left(d_{\pi_{k}}\right)$ for $k=1, \ldots, n$. Consider the element of $\mathrm{M}(H)$, given by

$$
\nu_{u}=\delta_{e}+\sum_{k=1}^{n} d_{\pi_{k}}\left(\sum_{i, j=1}^{d_{\pi_{k}}} u_{i j, k} \pi_{k, i j}-\sum_{j=1}^{d_{\pi_{k}}} \pi_{k, j j}\right) m_{H}
$$

where each set $\left\{\pi_{k, i j}\right\}_{i, j=1}^{d_{\pi_{k}}}$ is comprised of matrix coefficients of π_{k} with respect to an orthonormal basis for the space on which it acts. This element satisfies $\pi\left(\nu_{u}\right)=u_{\pi}$ for all π. Notice that $\nu_{u} * \nu_{u^{\prime}}=\nu_{u u^{\prime}}$ and $\nu_{u}^{*}=\nu_{u^{*}}$.

Notice that if we have an isomorphism $\mathcal{M}_{\delta_{e_{H}}}$ with $\prod_{\pi \in \widehat{H}} \mathrm{U}\left(d_{\pi}\right)$, then $\mathrm{M}(H)$ will be isomorphic to a C^{*}-algebra (every matrix is a linear combination of four unitaries, and we appeal to the open mapping theorem to see that the FourierSteiltjes transform is surjective), and hence Arens-regular. It then follows from the hereditary properties of Arens regularity, and the main result of [13], that H is finite. In particular, since the Fourier-Steiltjes transform is weak*-weak* continuous, we conclude for infinite compact H that $\mathcal{M}_{\delta_{e_{H}}}$ is not weak*-compact.

Acknowledgments. The author was supported by NSERC grant 312515-2010. The author is grateful to M. Neufang for pointing him toward the concept of a matched pair, and to M. Neufang, P. Salmi, and A. Skalski for helping him discover a mistake in an earlier version of Theorem 1.2. The author is grateful to R. Stokke for stimulating discussion about, and pointing out some errors in, the last section. Finally, the author would like to thank the anonymous referee for careful reading, thus catching many confusing typographical errors.

References

1. P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212. Zbl 0099.25504. MR0133397. 136
2. F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187-1219. Zbl 0136.11402. MR0194911. 136, 137, 144, 145
3. Y. Kawada and K. Itô, On the probability distribution on a compact group, I, Proc. Phys.-Math. Soc. Japan (3) 22 (1940), 977-998. MR0003462. 136, 137
4. A. Mukherjea, Idempotent probabilities on semigroups, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 142-146. MR0242207. 137, 143
5. M. Neufang, P. Salmi, A. Skalski, and N. Spronk, Contractive idempotents on locally compact quantum groups, Indiana Univ. Math. J. 62 (2013), no. 6, 1983-2002. MR3205538. DOI 10.1512/iumj.2013.62.5178. 136
6. T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. 2: *-Algebras. Cambridge Univ. Press, Cambridge, 2001. MR1819503. DOI 10.1017/CBO9780511574757.003. 147
7. D. Rider, Central idempotent measures on compact groups, Trans. Amer. Math. Soc. 186 (1973), 459-479. Zbl 0274.43002. MR0340961. 136
8. W. Rudin, Fourier Analysis on Groups. Wiley, New York, 1990. MR1038803. DOI 10.1002/9781118165621. 148
9. R. Stokke, Homomorphisms of convolution algebras, J. Funct. Anal. 261 (2011), no. 12, 3665-3695. Zbl 1236.43003. MR2838038. DOI 10.1016/j.jfa.2011.08.014. 137, 144, 145, 146
10. K. Stromberg, Probabilities on a compact group, Trans. Amer. Math. Soc. 94 (1960) 295-309. Zbl 0109.10603. MR0114874. 137, 141
11. J. Szép, Über die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen, Comment. Math. Helv. 22 (1949), 31-33. MR0026654. 138
12. M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra 9 (1981), no. 8, 841-882. Zbl 0456.16011. MR0611561. DOI 10.1080/00927878108822621. 138
13. N. J. Young The irregularity of multiplication in group algebras, Quart. J. Math. Oxford Ser. (2) 24 (1973), 59-62. MR0320756. 148
14. G. Zappa, "Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro" in Atti Secondo Congresso Un. Mat. Ital. (Bologna, 1940), Edizioni Cremonense, Rome, 1942, 119-125. MR0019090. 138

Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

E-mail address: nspronk@uwaterloo.ca

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Mar. 15, 2015; Accepted Aug. 11, 2015.
 2010 Mathematics Subject Classification. Primary 43A05; Secondary 43A77, 43A40.
 Keywords. measure algebra, idempotent, groups of measures.

