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Abstract. In this article we will consider locally convex topologies τ on `1
which are coarser than the weak topology on the unit ball and such that the unit
vector basic sequence (en) is τ -convergent. We characterize these topologies
depending on the τ -fixed point property for left reversible semigroups on (`1,
‖ ·‖1). We will apply our results to the case of different weak∗ topologies on `1.

1. Introduction and preliminaries

Let S be a semigroup. It is said that S is a semitopological semigroup if S is
equipped with a Hausdorff topology such that, for each a ∈ S, the two mappings
from S into S defined by s → as and s → sa are continuous. A semitopological
semigroup S is said to be left reversible if any two nonempty closed right ideals
of S have a nonempty intersection. In other words, a semitopological semigroup
is left reversible if

aS ∩ bS 6= ∅

for every a, b ∈ S. Clearly, every abelian semitopological semigroup and every
semitopological group are left reversible. Also, left amenable and, in particular,
amenable semitopological semigroups are left reversible.
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Let C be a subset of a Banach space (X, ‖ · ‖), and let S be a semitopological
semigroup. A nonexpansive action of S on the set C is a map φ : S × C → C,
denoted by φ(s, u) = s(u) (or su), which satisfies the following:

(i) ts(u) = t(su) for all t, s ∈ S and u ∈ C;
(ii) for all u0 ∈ C, the function s ∈ S → φ(s, u0) ∈ C is continuous;
(iii) for every s ∈ S, the mapping u ∈ C → s(u) ∈ C is nonexpansive.

A subset C is said to verify the fixed point property for left reversible semigroups
if, for every left reversible semitopological semigroup S and for every nonexpansive
action φ : S ×C → C, the set Fix(S) := {u ∈ C : t(u) = u,∀t ∈ S} is nonempty.

Definition 1.1. Let X be a Banach space, and let τ be a topology on X. It is said
that X has the τ -fixed point property (τ -FPP) for left reversible semigroups if ev-
ery closed, convex, and bounded subset C which is τ -compact and τ -sequentially
compact has the fixed point property for left reversible semigroups.

Notice that if X is a separable Banach space and τ is a topology weaker than
the norm topology, then every τ -sequentially compact subset is τ -compact. For
metrizable topologies and for the weak topologies, both compactness concepts
coincide.

Given a nonexpansive mapping T , if we replace the left reversible semigroup
by the discrete and abelian semigroup {T, T 2, T 3, . . .} acting from C to C, Defi-
nition 1.1 becomes the usual definition of the τ -FPP for nonexpansive mappings.

In 1965, W. Kirk proved that every Banach space with weak normal structure
satisfies the w-FPP for unique nonexpansive mappings. In a similar way it can
be proved that weak∗ normal structure implies the weak∗-FPP in dual Banach
spaces.

In the 1970s, Kirk’s result was generalized by T.-C. Lim [8] and by R. Holmes
and A. Lau [3] in the setting of nonexpansive actions for left reversible semigroups;
that is, a weak normal structure implies the w-FPP for left reversible semigroups.

In the case of dual Banach spaces, although particular examples of dual Banach
spaces are known to verify the w∗-FPP for left reversible semigroups (see, e.g.,
[2], [5], [7], [9], [10]), it is still an open problem whether every dual Banach space
with a weak∗ normal structure satisfies the weak∗-fixed point property for left
reversible semigroups (see [5, Open Problem 6.3]).

In 1980, T.-C. Lim [7] proved that the sequence space `1 satisfies the weak
∗-FPP

for left reversible semigroups, where the weak∗ topology is the σ(`1, c0)-topology;
that is, we are considering c0 as the predual of `1. However, there exist uncount-
ably many nonisometric (and nonisomororphic) Banach spaces whose duals can
be isometrically identified with `1. Another well-known predual of `1 is c, the
Banach space of all real convergent sequences. It is also known that `1 fails to
have the σ(`1, c)-FPP for nonexpansive mappings (see [7]), so `1 automatically
fails the σ(`1, c)-FPP for left reversible semigroups. Notice that when we consider
the σ(`1, c0)-topology, the basic sequence (en) is w

∗-convergent to the null vector,
while if we consider the σ(`1, c)-topology, the sequence (en) is w∗-convergent to
the vector (1, 0, 0, . . . ).

In this article, we will consider locally convex topologies τ on `1 that are coarser
than the weak topology on the unit ball and such that the basic sequence (en) is
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convergent; that is, there exists some e ∈ `1 such that τ − limn en = e. For these
topologies we will study the τ -FPP for left reversible semigroups. In fact, we will
characterize the topologies for which the τ -FPP for left reversible semigroups
holds according to the vector e. The results are an extension of those obtained in
[4] (see Theorem 8) for the case of a unique nonexpansive mapping.

Furthermore, in the case where weak∗ topologies are considered (i.e., τ =
σ(`1, X) whenX∗ = `1), we check thatX is isometric toWf = {x ∈ c : 〈f, x〉 = 0}
for some f ∈ `1 with ‖f‖1 = 1. In this case, we characterize the σ(`1, X)-FPP for
left reversible semigroups according to the coordinates of the vector f .

2. Main results

We need to introduce the following notation.
Let X be a Banach space, and let {Bs}s∈A be a decreasing net of bounded

subsets of X. For x ∈ X and s ∈ A we consider

rs(x) := sup
{
‖x− y‖ : y ∈ Bs

}
,

r(x) := inf
{
rs(x) : s ∈ A

}
= lim

s
rs(x).

We define the asymptotic radius and the asymptotic center of a set C with respect
to the family {Bs}s∈A as

r0 := inf
{
r(x) : x ∈ C

}
,

AC
(
{Bs}s∈A, C

)
:=

{
x ∈ C : r(x) = r0

}
.

The following technical lemma was proved in [2]. We include the proof for the
sake of completeness.

Lemma 2.1. Let C be a convex bounded subset of X. Let {Bs}s∈A be a decreasing
net of subsets of C such that AC({Bs}s∈A, C) = C. If C is (norm) separable, then
there exists {xn} ⊂ C such that

lim
n

‖xn − x‖ = r0

for every x ∈ C, where r0 denotes the asymptotic radius of C with respect to the
net {Bs}s.

Proof. Let {yn} be a dense sequence in C, and define yn =
∑n

i=1
yi
n
.

Since y1 ∈ C = AC({Bs}s, C), we can find s1 ∈ S such that

r0 ≤ rs1(y1) ≤ r0 + 1.

Then select any x1 ∈ Bs1 such that ‖x1 − y1‖ ≥ r0 − 1.
Assume that we have constructed x1, x2, . . . , xn−1 such that, for all 1 ≤ j ≤

k ≤ n− 1, we have

r0 −
2

k
+

1

k2
≤ ‖xk − yj‖ ≤ r0 +

1

k2
.

Take sn ∈ S such that rsn(yi) ≤ r0 +
1
n2 , i = 1, . . . , n and rsn(yn) ≤ r0 +

1
n2 .

Select xn ∈ Bsn such that r0 − 1
n2 ≤ ‖xn − yn‖.
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Fix k ≤ n. We then have the following inequalities:

r0 −
1

n2
≤ ‖xn − yn‖ ≤

n∑
i=1

‖xn − yi‖
n

=
‖xn − yk‖

n
+

n∑
i=1,i 6=k

‖xn − yi‖
n

≤ ‖xn − yk‖
n

+
n∑

i=1,i 6=k

r0 +
1
n2

n

=
‖xn − yk‖

n
+
(n− 1

n

)(
r0 +

1

n2

)
.

From this we obtain that r0
n
− 2

n2 +
1
n3 ≤ ‖xn−yk‖

n
, and it follows that

r0 −
2

n
+

1

n2
≤ ‖xn − yk‖ ≤ rsn(yk) ≤ r0 +

1

n2
.

Thus, for a fixed k, it easily follows that limn→∞ ‖xn − yk‖ = r0. Since {yn} is
dense in C, we deduce limn→∞ ‖xn − x‖ = r0 for all x ∈ C. �

On the other hand, it is clear that

AC
(
{Bs}s∈A, C

)
=

⋂
n∈N

{
x ∈ C : r(x) ≤ r0 +

1

n

}
.

Therefore, if the set C is τ -sequentially compact and the function r(·) is
τ -sequentially lower semicontinuous (τ -slsc), then the asymptotic center
AC({Bs}s∈A, C) is a nonempty, τ -sequentially compact set. If C is convex, then
so is AC({Bs}s∈A, C). Recall that r(·) is said to be τ -slsc if r(x) ≤ limn r(xn)
whenever τ − limn xn = x.

Let {xn} be a bounded sequence. We define the type function associated to the
sequence {xn}n by

Γ(x) = lim sup
n

‖x− xn‖, x ∈ X.

In the case where τ − limn xn = 0, we say that Γ is a τ -null-type function.
In [2, Lemma 3.4] it is proved that the function r(·) is always τ -slsc if and only

if the type functions Γ(·) are τ -slsc. If we assume that the topology τ is translation
invariant and that the set C is τ -sequentially compact, then we can assure that
the setAC({Bs}s∈A, C) is nonempty whenever the τ -null type functions are τ -slsc.

Every left reversible semitopological semigroup S becomes a directed set when
the following partial order is defined:

a, b ∈ S, a ≥ b ⇐⇒ aS ⊂ bS.

Let C be subset of X, let S be a left reversible semitopological semigroup, and
consider a nonexpansive action of S acting on C.

For a fixed element u ∈ C, define Ws := sS(u), where the closure is taken for
the norm topology. The sets {Ws : s ∈ S} form a nondecreasing family of subsets
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of C. In this case we define r(x) = lims r(x,Ws). It is not difficult to check that

rts(tx) ≤ rs(x)

for all t, s ∈ S and x ∈ C; therefore, r(tx) = infs rs(tx) ≤ infs rs(x) = r(x)
for every t ∈ S, and this implies that the set AC({Ws}s∈A, C) is S-invariant,
whenever it is nonempty.

We now prove the following.

Theorem 2.2. Let τ be a convex topology in the real Banach space `1 that is
coarser than the weak topology on the unit ball. Assume that the sequence (en)
converges to some e ∈ `1 with respect to τ . Then `1 has the τ -FPP for left
reversible semigroups if and only if one of the following conditions holds:

(i) ‖e‖1 < 1,
(ii) ‖e‖1 = 1 and the set N+ = {n ∈ N : e(n) ≥ 0} is finite.

Proof. Let us prove that either condition (i) or (ii) implies the τ -FPP for left
reversible semigroups.

Let S be a left reversible semigroup generating a nonexpansive action over a
closed convex bounded subset C ⊂ `1, which is τ -compact.

Let F be the family of nonempty, convex, τ -closed, and S-invariant subsets
of C. Ordering this family by inclusion and using Zorn’s lemma, we obtain a
set which is minimal with respect to being nonempty, convex, τ -closed, and
S-invariant. We can then assume that C is the minimal set.

Fix some u ∈ C, and define the subsets {Ws}s∈S as before. Consider the as-
ymptotic center AC({Ws}s∈S, C). As long as it is nonempty, this set is a convex
τ -compact, τ -sequentially compact, and S-invariant subset of C. In order to prove
that it is nonempty, we will check that the function r(·) is τ -slsc. According to the
above observations, it suffices to check that the τ -null type functions are τ -slsc.
We will prove this in two steps.

Step 1. The norm is τ -slsc
We argue in the same way as in the proof of [4, Theorem 8]:
For z = (z(k))k ∈ `1 define γ(z) :=

∑∞
k=1 z(k).

Consider a bounded sequence (xn) ⊂ `1 which converges to some x ∈ `1 with
respect to τ . Without loss of generality we can assume that (xn) converges to
some y for the weak∗ topology σ(`1, c0). In the remainder of this proof we will
consider the w∗-topology σ(`1, c0) and we say that a sequence is w∗-convergent
if it is convergent for the σ(`1, c0)-topology. Notice that, for w∗-null sequences
(zn) ⊂ `1, it holds that

lim sup
n

‖zn + z‖1 = lim sup
n

‖zn‖1 + ‖z‖1

for all z ∈ `1. We will use this property several times in the proof.
Consider the sequence ŷn = xn − y, which is w∗-null convergent and converges

to ŷ = x − y with respect to τ . Up to a subsequence, we can assume that γ =
limn s(ŷn) exists. From [4], we deduce that ŷ = γe. In this case,

‖ŷ‖1 = ‖γe‖1 = |γ|‖e‖1 ≤ |γ| = lim
n

∣∣γ(ŷn)∣∣ ≤ lim inf
n

‖ŷn‖1.
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Therefore,

‖x‖1 ≤ ‖x− y‖1 + ‖y‖ ≤ lim inf
n

‖xn − y‖1 + ‖y‖1
= lim inf

n
‖xn − y + y‖1 = lim inf

n
‖xn‖1.

Step 2. The τ -null functions are τ -slsc
Let (xn) be a τ -null bounded sequence in `1. Let (ym) be a sequence in `1 such

that τ − limm ym = y. Taking a subsequence, if necessary, we can assume that
(xn) converges weak

∗ to some x ∈ `1. Then

Γ(y) = lim sup
n

‖xn − y‖1 = lim sup
n

‖xn − x+ x− y‖1

= lim sup
n

‖xn − x‖1 + ‖x− y‖1

≤ lim sup
n

‖xn − x‖1 + lim inf
m

‖x− ym‖

= lim inf
m

lim sup
n

‖xn − ym‖1 = lim inf
m

Γ(ym).

Therefore, since C is a minimal set and AC({Ws}s∈S, C) is nonempty, it turns
out that C = AC({Ws}s∈S, C). Let r be the asymptotic radius of C with re-
spect to {Ws}s∈S. If r = 0, then the action has a fixed point, since in this
case AC({Ws}s∈S, C) is a singleton. Indeed, using the triangular inequality, if
x, y ∈ AC({Ws}s∈S, C), ‖x− y‖1 ≤ r(x) + r(y) = 0, and x = y.

Assume otherwise that r > 0. Applying Lemma 2.1, there exists a sequence
(xn) ⊂ C such that

lim
n

‖xn − x‖1 = r

for all x ∈ C. Since C is τ -sequentially compact, we can assume that (xn) tends
to some x ∈ C with respect to τ , it is weak∗-convergent to some y ∈ `1, and there
exists γ = limn γ(xn − y). In this case, x− y = γe. On the one hand,

r = lim
n

‖xn − x‖1 = lim
n

∥∥xn − y + (y − x)
∥∥
1

= lim sup
n

‖xn − y‖1 + ‖y − x‖1

≤ lim sup
n

‖xn − y‖1 + lim sup
m

‖y − xm‖1

= lim sup
m

lim sup
n

‖xn − xm‖1 = r.

From the above we deduce that lim supn ‖xn − y‖1 = r/2 and that
‖x− y‖1 = r/2. On the other hand,

r

2
= ‖x− y‖1 = ‖γe‖1 = |γ|‖e‖1

=
∣∣∣ lim

n
γ(xn − y)

∣∣∣‖e‖1 ≤ lim sup
n

‖xn − y‖1‖e‖1

≤ r

2
‖e‖1.

The above implies that ‖e‖1 ≥ 1, and then (i) does not hold. According to the
hypotheses ‖e‖1 = 1, |γ| = r/2 and the set N+ is finite.
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Consider the case γ = r/2. Let m = maxN+. We define yn := xn − y and
consider the sequence (yn), which is weak∗ null, and lim γ(yn) = r/2. We can
choose n0 ∈ N such that γ(yn0) > r/4 and ‖Pm(yn0)‖1 < r/8. For such n0,

∞∑
k=m+1

yn0(k) =
∞∑
k=1

yn0(k)−
m∑
k=1

yn0(k) ≥
r

4
− r

8
=

r

8
> 0,

which implies that {k > m : yn0(k) > 0} is nonempty, and therefore the set
B = {k ∈ N : e(k)yn0(k) < 0} is nonempty. Since for every a, b ∈ R with ab < 0
we have the equality |a+ b| = |a|+ |b| − 2min{|a|, |b|}, we obtain

‖γe+ yn‖1 = ‖γe‖1 + ‖yn‖1 − 2c,

where c =
∑

k∈B min{|γe(k)|, |yn0(k)|} > 0. Then we have

r

2
= lim

n

∥∥∥x+ xn0

2
− xn

∥∥∥
1
= lim

n

∥∥∥x− y + xn0 − y

2
− (xn − y)

∥∥∥
1

=
∥∥∥x− y + xn0 − y

2

∥∥∥
1
+ lim

n
‖xn − y‖1

=
1

2
‖γe+ yn0‖1 + lim

n
‖yn‖1

=
1

2

(
‖γe‖1 + ‖yn0‖1 − 2c

)
+ lim

n
‖yn‖1

=
1

2

(
‖γe‖1 + ‖yn0‖1 + 2 lim

n
‖yn‖1

)
− c

=
1

2

(
lim
n

∥∥yn − (x− y)
∥∥
1
+ lim

n
‖yn − yn0‖1

)
− c

=
1

2

(
lim
n

‖xn − x‖1 + lim
n

‖xn − xn0‖1
)
− c

=
r

2
− c <

r

2
,

which is a contradiction, and then the action has a fixed point as we wanted to
prove. If γ = −r/2 the proof is similar.

On the other hand, according to [4, Theorem 7], if ‖e‖1 > 1, then `1 fails the
τ -FPP for nonexpansive mappings and therefore for left reversible semigroups as
well. Hence the proof is finished. �

In particular, if we consider the σ(`1, c0) topology, the sequence (en) converges
to the zero vector, condition (i) is satisfied and `1 verifies the σ(`1, c0)-FPP for
left reversible semigroups (this was first proved by T.-C. Lim [7]). In the case of
the σ(`1, c)-topology, the sequence (en) converges to the vector e = (1, 0, 0, . . .),
and neither (i) nor (ii) are satisfied.

Let f = (fn) ∈ `1 with ‖f‖1 = 1. We denote by

Wf = Ker(f) =
{
x = (xn) ∈ c : 〈f, x〉 = 0

}
,
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where the duality is given by

〈f, x〉 = f1 lim
n

xn +
∞∑
n=1

fi+1xi.

Notice that, if f = e1, then Wf = c0. In fact, from [1, Corollary 4.4], we have a
complete isometric description of the preduals of `1 under the additional assump-
tion that the standard basis is σ(`1, X)-convergent. In fact, the following can be
proved.

Lemma 2.3 ([1, Corollary 4.4]). Let X be a Banach space such that X∗ = `1. If
the standard basis (en) of `1 is a σ(`1, X)-convergent sequence, then there exists
some f ∈ `1 with ‖f‖1 = 1 such that X is isometric to Wf .

Moreover, according to the results in [1], the hyperplanes Wf for which W ∗
f is

isometric to `1, can be classified into three different classes:

(1) Wf is isometric to c0 and then `1 has the σ(`1,Wf )-FPP for left reversible
semigroups.

(2) Wf is isometric to c and then `1 fails to have the σ(`1,Wf )-FPP for left
reversible semigroups.

(3) Wf is isometric neither to c nor c0. This is equivalent to the fact that
1
2
≤ |f(1)| < 1 and |f(n)| < 1

2
for every n ≥ 2. In this case, the sequence

(en) converges to the vector

e =
(
−f(2)

f(1)
,−f(3)

f(1)
,−f(4)

f(1)
, . . .

)
with respect to the σ(`1,Wf )-topology. Finally, using Theorem 2.2 we can
deduce the following.

Corollary 2.4. Let Wf be an hyperplane contained in c for which W ∗
f is isometric

to `1, where f = (f(n))n with ‖f‖1 = 1. The space `1 has the σ(`1,Wf )-FPP for
left reversible semigroups if and only if one of the following conditions holds:

(i) |f(1)| > 1
2
,

(ii) |f(1)| = 1
2
and the set {n ∈ N : sign(f(n)) 6= sign(f(1))} is finite.
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