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Abstract. A classical theorem of G. Köthe states that the Banach spaces
X with the property that all bounded linear maps X → Y into an arbitrary
Banach space Y can be lifted with respect to bounded linear surjections onto Y
are up to topological linear isomorphism precisely the spaces `1(A). We extend
this result to the category of normed linear spaces and bounded linear maps.
This answers a question raised by A. Ya. Helemskĭı.

1. Introduction

Extension and lifting problems are at the core of the theory of topological vector
spaces and continuous linear maps. We start by considering these problems in the
setting of Banach spaces and bounded linear maps. Let F be a Banach space with
a closed subspace E. An extension problem is a diagram

E
ι //

ψ
��

F

X

(1.1)

and a solution is a bounded linear map ψ̃ : F → X such that ψ = ιψ̃. A rather
straightforward application of Hahn–Banach’s theorem yields the result that if
X = `∞(A), then all extension problems can be solved. In fact, we have solutions
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ψ̃ : F → `∞(A) which additionally satisfy ‖ψ̃‖ = ‖ψ‖. The natural question—
Which are the Banach spaces, X, such that all extension problems (1.1) can be

solved with ‖ψ̃‖ = ‖ψ‖?—was addressed early in the history of Banach spaces by
R. S. Phillips in [9] and answered in full by L. Nachbin in [7].

We consider the dual problem: For a Banach space Y with a closed subspace H,
a diagram

X

φ
��

Y
q // Y/H

is a lifting problem and a solution is a bounded linear map φ̃ : X → Y such that
qφ̃ = φ. Following Köthe [6], for λ > 1 we call a Banach space X an Hλ-space if

all lifting problems can be solved with ‖φ̃‖ < λ‖φ‖. Although it was not explicitly
stated, A. Grothedieck showed in [2] that if X is an Hλ-space for all λ > 1, then
X is isometrically isomorphic to `1(A) for a set A of the appropriate cardinality.
In the article [6], Köthe extended Grothendieck’s result to include the following:
If X is a Hλ-space for some λ > 1, then X is topologically isomorphic to `1(A).
(However, Grothendieck’s result does not follow directly from Köthe’s.)

Extension and lifting problems have equal importance in the category of oper-
ator spaces and completely bounded maps, but are of considerable higher com-
plexity as is witnessed by the fundamental Arveson–Wittstock theorem [10, Sec-
tion 2.3], a Hahn–Banach-type theorem in which C is replaced by the operator
space of all bounded operators on a separable Hilbert space. In a number of pa-
pers (see [3], [4], [5]) Helemskĭı developed a category framework for discussing
extension and lifting problems in the classical setting of normed spaces as well as
in the setting of operator spaces, in particular the Arveson–Wittstock theorem.
Helemskĭı points out that in this framework certain lifting results hold only if non-
complete normed spaces are taken into account. (For a detailed discussion, see
[4].) In the present article we will solve the noncomplete equivalent of the problem
that Köthe solved for Banach spaces. (This problem was posited by Helemskĭı in
a private communication, and our sketch of a solution has been cited as “preprint
(unpublished)” in [3].)

1.1. Definitions and preliminary results. We will work in the category of
normed spaces and continuous linear maps.

Definition 1.1. The category with objects normed spaces and morphisms contin-
uous linear maps is Norm. Equivalence is denoted by ∼= and direct sum by ⊕
(i.e., for objects E,F , their direct sum E ⊕ F as a vector space is the Cartesian
product E × F , and the norm is given as∥∥(e, f)

∥∥ = ‖e‖ + ‖f‖, e ∈ E, f ∈ F.

We phrase our main problem in category terms.
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Definition 1.2. A lifting problem for an object E ∈ Norm is a diagram

E

φ
��

Y
ψ // Z

with the map ψ : Y → Z open. A solution is a morphism φ̃ : E → Y so that
ψφ̃ = φ.

The object E ∈ Norm is topologically projective if all lifting problems for E
can be solved (see [3]).

Remark 1.3. One may consider lifting problems without the requirement that
the map ψ : Y → Z is open. However, simple examples show that then the only
projective objects would be the finite-dimensional spaces.

For a set A, we denote its cardinality by #A. The cardinality of the set of
natural numbers is ℵ0.

We need the following concepts from the theory of normed spaces (over C).

Definition 1.4. Let E be a normed space. For a family of vectors (xi)i∈I in E,
we set ]xi[i∈I = lin{xi | i ∈ I}. The dimension of E, dimE, is the minimal
cardinality #I such that ]xi[i∈I is dense in E.

Remark 1.5. This is a generalization of the finite-dimensional concept. For
dimE ≥ ℵ0, the dimension is the minimal cardinality of a dense subset.

A crucial part of our argument hinges on the following concept from [1].

Definition 1.6. Let 0 < σ < 1. A σ-net in E is a family (xi)i∈I such that

‖xi‖ = 1, i ∈ I,

‖xi − xj‖ ≥ σ, i 6= j.

Zorn’s lemma provides the existence of maximal σ-nets for each σ. The follow-
ing is stated in Lemma 6.1 of [1] without proof.

Lemma 1.7. Suppose that dimE ≥ ℵ0. If (xi)i∈I is a maximal σ-net for some
0 < σ < 1, then #I = dimE.

Proof. Since a dense subset of E must intersect each of the disjoint balls {y |
‖y − xi‖ < σ

2
}, i ∈ I, we have dimE ≥ #I by Remark 1.5. For the reverse

inequality, let H be the closure of ]xi[i∈I and suppose that H 6= E. Choose ε > 0
so that 1

1+ε
≥ σ and choose y ∈ E so that ‖y + H‖ = 1 in the quotient E/H.

Further, choose h ∈ H so that ‖y + h‖ ≤ 1 + ε in E, and set x = 1
‖y+h‖(y + h).

Then ‖x‖ = 1, and for all i ∈ I, we have

‖x− xi‖ =
1

‖y + h‖
∥∥y + h− ‖y + h‖xi

∥∥ ≥ 1

‖y + h‖
‖y +H‖ ≥ 1

1 + ε
≥ σ,

contradicting that (xi)i∈I is maximal. It follows that ]xi[i∈I is dense in E, so that
dimE ≤ #I. �
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We now define the objects in Norm, which are absolutely central to our result.

Definition 1.8. Let A be a set, and let C(A) denote the vector space of finitely
supported functions A → C. The functions ea, a ∈ A are the indicator functions
of singletons {a}. We equip C(A) with the classical norms to obtain `p0(A) =
(C(A), ‖ · ‖p), 1 ≤ p ≤ ∞. The canonical dualities are

〈x, x∗〉 =
∑
a∈A

x(a)x∗(a), x ∈ `p0(A), x∗ ∈ `q0(A),
1

p
+

1

q
= 1.

As these spaces up to isometry depend only on #A, we will also use the notation
`p0(d) for a cardinal d.

For f ∈ C(A) we set supp f = {a ∈ A | f(a) 6= 0}, and for a subset M ⊆ C(A)

we set suppM =
⋃
f∈M supp f .

We need the following observation.

Lemma 1.9. Let Y be a subspace of `10(d) with dimY ≥ ℵ0. Then # suppY =
dimY .

Proof. This is straightforward if Y = `10(d). Since, in general, Y is isometric to
a subspace of `10(suppY ), we have dimY ≤ # suppY . For the reverse, if E ⊆ Y
spans a dense subspace of Y , then suppE = suppY . Since each x ∈ E is finitely
supported # suppE ≤ #E, so # suppY ≤ dimY . �

We note the universal property of `10(A)-spaces.

Proposition 1.10. Let ι : A → `10(A) be the canonical mapping a 7→ ea. If
φ : A → X is a bounded mapping into a normed space, then there is a unique
bounded linear map φ̃ : `10(A) → X of the same bound such that φ = φ̃ι.

For this reason, we will call the spaces `10(A) the free objects of Norm. We now
have the well-known and easy, though important, corollary that free objects are
projective and generate the category Norm, and that projective objects precisely
are retracts of free objects.

Corollary 1.11. The category Norm has enough projectives.

(1) The spaces `10(A) are topologically projective.
(2) For each object Y ∈ Norm there is a cardinal d and an open map

`10(d) → Y .

Furthermore

(3) An object E ∈ Norm is topologically projective if and only if there is a
cardinal d and an object X ∈ Norm so that

`10(d) ∼= E ⊕X.

Proof. To prove the first statement, consider a lifting problem

`10(A)

φ
��

Y
ψ // Z
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Since ψ : Y → Z is open, there is a bounded set {ya | a ∈ A} ⊆ Y such that

ψ(ya) = φ(ea) for each a ∈ A. The linear map φ̃ : `10(A) → Y given by φ̃(ea) = ya
is bounded and solves the lifting problem.

To prove (2), let S(Y ) be the unit sphere of Y . By Proposition 1.10 there is a
bounded linear map κY : `10(S(Y )) → Y such that κY (ey) = y for each y ∈ S(Y ).
This map is clearly open; in fact, it takes the unit ball of `10(S(Y )) to the unit
ball of Y .

It is obvious that a retract of a topologically projective object is itself topo-
logically projective. Hence to conclude (3), let p : E → `10(S(E)) be a solution to
the lifting problem

E

id
��

`10
(
S(E)

) κE // E

Then pκE is a bounded projection of `10(S(E)) onto a subspace isomorphic
to E. �

2. Main result

We are now ready to prove our main result.

Theorem 2.1. A normed space E is topologically projective if and only if it is
isomorphic to `10(dim(E)).

Clearly, if a normed space E is isomorphic to `10(d) for a cardinal d, then
d = dimE, and we have already noted in Corollary 1.11 that the spaces `10(d) are
topologically projective for all cardinals d. We will prove the converse implication
by adapting Köthe’s proof of the corresponding Banach version. The first step
is the proposition below proved by transfinite induction. As we are dealing with
`10-spaces rather than `1-spaces, the induction step is more involved to compensate
for the fact that we are restricted to elements with finite support. Likewise as in
Köthe’s work, the second step is through Pe lczyński’s decomposition method [8],
which applies equally well in the noncomplete setting.

Proposition 2.2. Let Y be a subspace of `10(d) for some cardinal d. There is then
a subspace of Y , which is complemented in `10(d) and isomorphic to `10(dimY ).

Proof. This is trivial if dimY < ℵ0, so we assume that dimY ≥ ℵ0. Let #A = d,
and consider Y ⊆ `10(A). Without loss of generality we may assume that
A = suppY .

Let ξ be the smallest ordinal with #ξ = dimY , and let ε > 0. We will use
transfinite induction to define yα ∈ Y, zα ∈ `10(A), z∗α ∈ `∞0 (A) for all α < ξ such
that with the notation

Bα = supp]yβ[β≤α, B′
α = supp]yβ[β<α,

Fα = {x ∈ `10(A) | suppx ⊆ Bα}, F ′
α = {x ∈ `10(A) | suppx ⊆ B′

α},
Gα =

⋂
β≤α

ker z∗β ∩ Fα, G′
α =

⋂
β<α

ker z∗β ∩ F ′
α,
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the statements below, (i)–(vii) are true:

(i) ‖yα‖ = 1,
(ii) supp zα ⊆ supp yα and zα(b) = yα(b) for b ∈ supp zα,
(iii) supp]zβ[β≤α = Bα,

(iv) supp zα ∩ B′
α = ∅,

(v) ‖yα − zα‖ < ε,
(vi) supp z∗α = supp zα, ‖z∗α‖ = 1

‖zα‖ , 〈zα, z
∗
α〉 = 1,

(vii) ]yβ[β≤α +Gα = Fα.

For ease of reference, we denote the conjunction of the seven statements (i)–(vii)
by S(α).

Suppose this can be accomplished (i.e., we have found elements yα, zα, z
∗
α so

that S(α) is true for all α < ξ). By (iii) above, zα ∈ F ′
ξ for all α < ξ. We note

that for β < α,

Fβ ⊆ Fα,

since Bβ ⊆ Bα, and that

Gβ ⊆ Gα, (2.1)

since by (iii), (iv), and (vi) supp z∗γ ∩ Bβ = ∅ for all β < γ ≤ α, from which we
get

Gβ ⊆
⋂
γ≤α

ker z∗γ ∩ Fβ ⊆
⋂
γ≤α

ker z∗γ ∩ Fα = Gα.

It then follows that

G′
ξ =

⋃
α<ξ

Gα. (2.2)

Since #B′
ξ = dimY , we have F ′

ξ
∼= `10(d) isometrically. On F ′

ξ we define a linear
map by

P : x 7→
∑
α<ξ

〈x, z∗α〉zα.

Note that the series has at most finitely many nonzero terms. By (iv) and (vi),
we have 〈zβ, z∗α〉 = δαβ (Kronecker’s delta symbol). By (v) and (i), (iv), and (ii),
we have

(1 − ε)
∑
α<ξ

|λα| ≤
∑
α<ξ

|λα|‖zα‖ =
∥∥∥∑
α<ξ

λαzα

∥∥∥ ≤
∑
α<ξ

|λα|. (2.3)

Here and throughout, we adopt the convention that
∑

j∈J · · · denote sums with

at most finitely many nonzero terms even though #J ≥ ℵ0. Hence ]zα[α<ξ is

isomorphic to `10(d) and P is a projection of ‖P‖ = 1 onto ]zα[α<ξ. We get

F ′
ξ =]zα[α<ξ ⊕G′

ξ.

By (vii) and (2.2), we have

F ′
ξ =

⋃
α<ξ

Fα =
⋃
α<ξ

(
]yβ[β≤α +Gα

)
= ]yβ[β<ξ +G′

ξ. (2.4)
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Consider the continuous linear map T : F ′
ξ → F ′

ξ given by

zα + g 7→ yα + g, g ∈ G′
ξ.

By (2.4), T is surjective. Furthermore by (v) and (2.3), we have∥∥∥(1− T )
(∑
α<ξ

λαzα + g
)∥∥∥ =

∥∥∥∑
α<ξ

λα(zα − yα)
∥∥∥

≤
∑
α<ξ

|λα|ε ≤
ε

1 − ε

∥∥∥∑
α<ξ

λαzα

∥∥∥
≤ ε

1 − ε

∥∥∥∑
α<ξ

λαzα + g
∥∥∥.

If ε < 1
2
, then T is bounded below. Altogether T is an isomorphism, ]yα[α<ξ

∼=
]zα[α<ξ

∼= `10(d) and F ′
ξ
∼= ]yα[α<ξ ⊕ G′

ξ. Since F ′
ξ is complemented in `10(d) so is

]yα[α<ξ.
So to finish the proof we must show that the transfinite induction indeed can

be accomplished. Suppose that for some α < ξ we have found yβ, zβ, z
∗
β so that

S(β) is true for all β < α. First, we consider the case #α < ℵ0. Let Pα : `10(A) →
F ′
α be the projection x 7→ χB′

α
x, where χB′

α
is an indicator function. Since F ′

α

is finite-dimensional and dimY ≥ ℵ0, we may choose yα ∈ Y ∩ kerPα with
‖yα‖ = 1. Put zα = yα and choose z∗α in accordance with (vi). Then clearly
(i)–(vii) are satisfied. If dimY = ℵ0, we are done by ordinary induction.

Otherwise consider the case #α ≥ ℵ0. We decompose each x ∈ `10(A) as x =
x′+x′′ with supp x′ ⊆ B′

α, suppx′′ ⊆ A\B′
α, that is, with Pα as above x′ = Pα(x).

Let 0 < σ < 1 and let (xi)i∈I be a maximal σ-net for Y . Further, let δ > 0. Since
dimF ′

α < dimY , there are i1, i2 so that ‖x′i1 − x′i2‖ < δ. (Otherwise there would
be #I = dimY disjoint balls of radii < δ/2.) Put yα = ‖xi1 − xi2‖−1(xi1 − xi2)
and zα = ‖xi1 − xi2‖−1(x′′i1 − x′′i2). Then clearly (i)–(iv) are satisfied. Since

‖yα − zα‖ = ‖xi1 − xi2‖−1‖x′i1 − x′i2‖ <
δ

σ
,

we can also satisfy (v) by choosing σ, δ appropriately, and clearly we may choose
z∗α to satisfy (vi). To show that (vii) is satisfied, let b ∈ Bα. If b ∈ Bβ for some
β < α, then the corresponding canonical `10-basis vector eb ∈ ]yγ[γ≤β + Gβ ⊆
]yγ[γ≤α + Gα. If b ∈ supp zα, write eb = z∗α(b)zα + (eb − z∗α(b)zα). Since supp z∗β ∩
supp zα = ∅ for β < α we have eb − z∗α(b)zα ∈ Gα. Since supp(zα − yα) ⊆ B′

α

there is by the induction hypothesis (vii) some β < α so that zα− yα ∈ ]yγ[γ≤β +

Gβ. Hence zα ∈ ]yβ[β≤α + Gα. Since Bα = B′
α ∪ supp zα, we have shown that

Fα(= ]eb[b∈Bα
) = ]yβ[β≤α +Gα, and thereby completed the induction. �

Theorem 2.1 is now proved using the Pe lczyński decomposition method [8] as
in [6].

Proposition 2.3. Let Y be a complemented subspace of `10(d) for some cardinal d.
Then Y ∼= `10(dimY ).
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Proof. If dimY < ℵ0, this is elementary. By Proposition 1.9, we may assume
that d = dimY . By Proposition 2.2, we may write Y ∼= `10(d) ⊕X1 for a suitable
closed subspace X1 ⊆ Y . From this we get `10(d) ⊕ Y ∼= `10(d) ⊕ `10(d) ⊕ X1

∼=
`10(d) ⊕X1

∼= Y . By assumption, there is a subspace X of `10(d) so that `10(d) ∼=
Y ⊕X.

We now use the fact that `10(d) ∼= (`10(d)⊕· · ·⊕ `10(d)⊕· · · )10, where (· · ·⊕Xn⊕
· · · )10 denotes the algebraic direct sum of Xn, n ∈ N with norm ‖

∑
n∈N xn‖ =∑

n∈N ‖xn‖. From this we get the following:

`10(d) ∼= `10(d) ⊕
(
`10(d) ⊕ · · · ⊕ `10(d) ⊕ · · ·

)1
0

∼= `10(d) ⊕
(
(Y ⊕X) ⊕ · · · ⊕ (Y ⊕X) ⊕ · · ·

)1
0

∼=
(
`10(d) ⊕ Y

)
⊕
(
(X ⊕ Y ) ⊕ · · · ⊕ (X ⊕ Y ) ⊕ · · ·

)1
0

∼= Y ⊕
(
(X ⊕ Y ) ⊕ · · · ⊕ (X ⊕ Y ) ⊕ · · ·

)1
0

∼= Y ⊕
(
(Y ⊕X) ⊕ · · · ⊕ (Y ⊕X) ⊕ · · ·

)1
0

∼= Y ⊕ `10(d) ∼= Y. �

3. Concluding discussion

The definition of Hλ-spaces obviously extends to Norm. It is straightforward,
using Proposition 1.10, that the spaces `10(d) are Hλ-spaces for every λ > 1.
It follows that if E is topologically projective then E is a Hλ-space for all λ >
dist(E, `10(d)), the Banach–Mazur distance between E and `10. The aforementioned
result by A. Grothendieck raises the following.

Conjecture 3.1. If a normed space E is a Hλ-space in Norm for all λ > 1,
then E is isometrically isomorphic to `10(dimE).

This conjecture is also raised in [4], where spaces which are Hλ-spaces for each
λ > 1 are called extremely projective normed spaces.

Grothendieck’s approach uses completeness of the involved spaces fundamen-
tally by proving that E is 1-complemented in (`1)∗∗, and then showing that E is
discretely supported in an appropriate sense. Of course if a (noncomplete) normed
space is a Hλ-space for all λ > 1, then the same is true for its completion, so E
is norm dense in `1(dimE) and isomorphic to `10(dimE). To prove that E is iso-
metric to `10(d) it seems that one would need to control the support of functions
in E in its embedding in `1(d)∗∗, that is, in M(βd), the Radon measures on the
Stone–Čeck compactification. At the moment this seems intractable.

As pointed out in Remark 1.3 the unrestricted lifting problem is of minor in-
terest. A standard approach to get a fruitful notion of projectivitity is to consider
only lifting problems which are retractions in some functorial picture, typically
by applying some forgetful functor. In [4] the author discusses this in terms of
so-called rigged categories and projectivity with regard to a rig. As a partial con-
verse to Conjecture 3.1, one may ask the following: Which rigs of Norm ensure
that projectives with respect to the rig are isometric to `10(d)-spaces? One answer
is given in Theorem 3.5 of [4], which states that metrically projective normed
spaces are isometric to `10(d)-spaces.
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