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Abstract. In this exposition-type note we present detailed proofs of certain
assertions concerning several algebraic properties of the cone and cylinder al-
gebras. These include a determination of the maximal ideals, the solution of
the Bézout equation, and a computation of the stable ranks by elementary
methods.

0. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C, and
let D be its closure. As usual, C(D,C) denotes the space of continuous, complex-
valued functions on D and A(D) denotes the disk algebra, that is, the algebra of
all functions in C(D,C) which are holomorphic in D. By the Stone–Weierstrass
theorem, we have C(D,C) = [z, z]alg and A(D) = [z]alg, the uniformly closed
subalgebras generated by z, z (resp., z) on D. In this expositional note, we study
the uniformly closed subalgebra

Aco =
[
z, |z|

]
alg

⊆ C(D,C)

of C(D,C), which is generated by z and |z|, as well as by the algebra

Cyl(D) =
{
f ∈ C

(
D× [0, 1],C

)
: f(·, t) ∈ A(D) for all t ∈ [0, 1]

}
.

We will call the algebra Aco the cone algebra and the algebra Cyl(D) the cylinder
algebra.
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The reason for choosing these names will become clear later in Theorem 1.3 and
Proposition 3.1. The cone algebra appeared first in [15]; the cylinder algebra was
around already at the beginning of the development of Gelfand’s theory. Their
role was mostly reduced to a category of “examples” to illustrate the general
Gelfand theory, and no detailed proofs appeared. We think that these algebras
deserve a thorough analysis of their interesting algebraic properties and that is
the aim of this note. The new main results will be the determination of the stable
ranks for the cone algebra, the absence of the corona property (Cn) when (and
only when) n ≥ 2, explicit examples of peak functions, and a simple approach to
the calculation of the Bass stable rank for the cylinder algebra.

This paper forms part of an ongoing textbook project of the authors on stable
ranks of function algebras. We make this chapter available to the mathemati-
cal community, mainly for readers of this special issue of Annals of Functional
Analysis dedicated to Professor Anthony To-Ming Lau and for master students
interested in function theory and function algebras.

1. The cone algebra

We begin with some examples of nontrivial elements in Aco. The general situ-
ation will be dealt with in Theorem 1.4.

Example 1.1.

(1) For every δ > 0, q > 0, and p ∈ R, (|z|q + δ)p ∈ (Aco)
−1.

(2)

f(z) :=

{
z√
|z| if 0 < |z| ≤ 1

0 if z = 0
belongs to Aco.

Proof. (1) Since, by the Weierstrass theorem, (xq + δ)±p is a uniform limit of
polynomials in x = |z| ∈ [0, 1], we have that (|z|q + δ)p ∈ (Aco)

−1.
(2) First we note that f is continuous on D. For δ > 0, let

fδ(z) :=
z√

|z|+ δ
.

Then, by (1), fδ ∈ Aco. Since ‖f − fδ‖∞ ≤ δ/(1 + δ) (see below), we conclude
that f is a uniform limit of functions in Aco; hence f itself belongs to Aco. Now
we prove our estimate:∣∣∣ z√

|z|
− z√

|z|+ δ

∣∣∣ = |z| δ√
|z|(

√
|z|+ δ)

=

√
|z|√

|z|+ δ
δ =: h

(√
|z|

)
.

Since the derivative of h(x) = δx
x+δ

, namely, h′(x) = δ2

(x+δ)2
, is strictly positive on

[0, 1], we have h(x) ≤ h(1) = δ/(δ + 1). �

Next, we derive several Banach algebraic properties for Aco.

Definition 1.2. Let X be a topological space, and let A be a subalgebra of
C(X,C).
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(1) The set of invertible n-tuples in A is denoted by Un(A); that is,

Un(A) =
{
(f1, . . . , fn) ∈ An : ∃(r1, . . . , rn) ∈ An :

n∑
j=1

rjfj = 1
}
.

(2) A is said to be inverse-closed (on X) if f ∈ A and |f | ≥ δ > 0 on X imply
that f is invertible in A.

(3) A satisfies condition (Cn)3 if

Un(A) =
{
(f1, . . . , fn) ∈ An :

n⋂
j=1

ZX(fj) = ∅
}
,

where ZX(f) = {x ∈ X : f(x) = 0} denotes the zero set of f .
(4) If A is a commutative unital Banach algebra over C, then its spectrum

(or set of multiplicative linear functionals on A endowed with the weak-∗-
topology) is denoted by M(A). Moreover, Â is the set of Gelfand trans-

forms f̂ of elements in A.

As usual, for a compact set X in C, P (X) is the uniform closure in C(X,C) of
the set C[z] of polynomials.

Theorem 1.3. Let Aco = [z, |z|]alg ⊆ C(D,C) be the cone algebra. Then we have
the following:

(1) A(D) ⊆ Aco ⊆ C(D,C).
(2) Aco|T = A(D)|T = P (T).
(3) For every 0 < r < 1, Aco|rT = P (rT).
(4) M(Aco) is homeomorphic to the cone

K :=
{
(x, y, t) ∈ R3 :

√
x2 + y2 ≤ t, 0 ≤ t ≤ 1

}
,

a 3-dimensional set (Figure 1).

Figure 1. The cone as spectrum.

3Here (Cn) stands for “Corona condition for n-tuples.”
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(5) For f ∈ C(D,C) and 0 < r < 1, let fr be the dilation of f given by
fr(z) = f(rz). Moreover, let

PR[f ](z) :=
1

2π

∫ 2π

0

R2 − |z|2

|Reit − z|2
f(Reit) dt (1.1)

be the Poisson integral and P [f ] := P1[f ]. Then

M(Aco) = δ0 ∪
{
ψr,a : 0 < r ≤ 1, a ∈ D with |a| ≤ r

}
,

where δ0 is point evaluation at 0, ψr,a = δa if |a| = r and

ψr,a :

{
Aco → C,
f 7→ P [(fr)|T](a/r) = Pr[f |rT](a),

if |a| < r.

(6) Âco is the uniform closure of the polynomials p(z, r) on the cone

K =
{
(z, t) ∈ D× [0, 1] : |z| ≤ t

}
and coincides with

A :=
{
f ∈ C(K,C) : f(·, r) ∈ A(rD) ∀r ∈ ]0, 1]

}
.

(7) Aco is inverse-closed; that is, it has property (C1), but Aco does not have
property (Cn) for any n ≥ 2.

(8) The Shilov boundary of Aco coincides with the outer surface

S :=
{
(z, r) ∈ C× R : 0 ≤ r ≤ 1, |z| = r

}
of the cone K (this is the boundary of K without the upper disk {(z, 1) ∈
C× R : |z| < 1}). The Bear–Shilov boundary is the closed unit disk.4

Proof. (1) This is clear since the polynomials in z are dense in A(D).
(2) Let f ∈ Aco. If we choose a sequence of polynomials pn ∈ C[z, w] such

that pn(z, |z|) converges uniformly to f on D, then pn(z, 1) converges uniformly
on T to f |T. Hence, f |T ∈ P (T) = A(D)|T. Together with (1), we conclude that
A(D)|T = Aco|T.

(3) Fix 0 < r < 1, and let f ∈ Aco. Then, for |z| = r, f(z) = lim pn(z, r) ∈
P (rT). Hence Aco|rT ⊆ P (rT). Conversely, given h ∈ P (rT), we let H := Pr[h] be
the Poisson extension of h to rD. Then H ∈ A(rD). Now we define the function
f by

f(z) =

{
H(z) if |z| ≤ r,

H(r z
|z|) if r ≤ |z| ≤ 1.

Note that f is an extension of H to the unit disk that stays constant on every
ray seiθ beginning at the radius r. Then f is continuous on D. Now f(z) can be

4Recall that if X is a compact Hausdorff space and L is a point-separating K-linear subspace
of C(X,K) with K ⊆ L, then L admits a smallest closed boundary, which we will call the
Bear–Shilov boundary (see [2]). The Shilov boundary of a uniform algebra A is the smallest
closed boundary of A on its spectrum M(A).
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written as f(z) = H(zg(|z|)), where g is defined by

g(s) =

{
1 if 0 ≤ s ≤ r,
r
s

if r ≤ s ≤ 1.

Then g is continuous on [0, 1]. Next, we uniformly approximate on [0, 1] the
function g by a sequence (qn) of polynomials in C[s] and H on {|z| ≤ r} by a
sequence of polynomials (pn) ∈ C[z]. Let

Qn(s) :=
rqn(s)

max0≤s≤1 |sqn(s)|
.

Then also (Qn) converges uniformly to g on [0, 1] because max0≤s≤1 |sg(s)| = r.
What we have gained is that |zQn(|z|)| ≤ r for every z ∈ D. Hence H(zQn(|z|))
is well defined on D and H(zQn(|z|)) converges uniformly on D to f(z). We claim
that pn(zQn(|z|)) converges uniformly on D to f(z), too. In fact,∣∣pn(zQn

(
|z|

))
− f(z)

∣∣ ≤ ∣∣pn(zQn

(
|z|

))
−H

(
zQn

(
|z|

))∣∣+ ∣∣H(
zQn

(
|z|

))
− f(z)

∣∣
≤ max

|w|≤r

∣∣pn(w)−H(w)
∣∣+max

|ξ|≤1

∣∣H(
ξQn

(
|ξ|

))
− f(ξ)

∣∣.
Now Qn(|z|) ∈ Aco implies zQn(|z|) ∈ Aco and so pn(zQn(|z|) ∈ Aco. We conclude
that f ∈ Aco. Since f |rT = H|rT = h, we are done: P (rT) ⊆ Aco|rT.

(4) Here we show that the spectrum of M(Aco) is homeomorphic to the cone
(see Figure 1)

K :=
{
(x, y, t) ∈ R3 :

√
x2 + y2 ≤ t, 0 ≤ t ≤ 1

}
.

To this end, we first note that, with B := C(D,C),

σB
(
z, |z|

)
=

{
(a1, a2) ∈ C2 : |a1| ≤ 1, a2 = |a1|

}
because (

z − a, |z| − b
)
∈ U2

(
C(D,C)

)
if and only if the functions z−a and |z|− b have no common zeros in D. Geomet-
rically speaking, S := σB(z, |z|) is the surface of the cone in Figure 1, without the
upper basis {(w, 1) ∈ C× R : |w| < 1}; we call this the outer surface of K. By a
general theorem in Banach algebras (see [16]), σAco(z, |z|) is now the polynomial

convex hull Ŝ of S = σB(z, |z|), which we are going to determine below. Observe
that K can be identified with the following compact subset of C2,

C̃ :=
{
(z1, z2) ∈ C2 : |z1| ≤ Re z2, 0 ≤ Re z2 ≤ 1, Im z2 = 0

}
,

and that S ⊆ C̃ ⊆ R3 × {0}, because

S =
{
(z1, z2) ∈ C2 : |z1| = z2 = Re z2, 0 ≤ Re z2 ≤ 1, Im z2 = 0

}
.

Fix 0 < t ≤ 1. We first show that every disk Dt := {(w, t) ∈ C2 : |w| ≤ t}
is contained in Ŝ. To this end, fix (w, t) ∈ Dt and consider any polynomial
p ∈ C[z1, z2]. Then
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{∣∣p(z1, t)∣∣ : |z1| ≤ t

}
= max

{∣∣p(z1, t)∣∣ : |z1| = t
}

≤ max
{∣∣p(z1, z2)∣∣ : (z1, z2) ∈ S

}
.

Hence (w, t) ∈ Ŝ and so Dt ⊆ Ŝ. Consequently,

S ⊆ C̃ =
⋃
|t|≤1

Dt ⊆ Ŝ.

Since K is a convex set in R3, C̃ is a convex compact set in C2, and so C̃ is

polynomially convex. Thus Ŝ = C̃. We conclude that (z − a, |z| − b) does not
belong to U2(Aco) if and only if b ∈ [0, 1] and |a| ≤ b.

(5) Let m ∈ M(Aco), and put a := m(z) and r := m(|z|). Then (a, r) ∈
σAco(z, |z|). Hence, by (4), r ∈ [0, 1], a ∈ D, and |a| ≤ r. That is, |m(z)| ≤ m(|z|).
Let f ∈ Aco and pn ∈ C[z, w] be a sequence of polynomials such that pn(z, |z|)
converges uniformly on D to f(z). By (3), f |rT ∈ P (rT). Now

lim pn(z, r) = f(z) (uniformly on |z| = r). (1.2)

By the maximum principle, pn(ξ, r) converges uniformly on rD = {|ξ| ≤ r} to a
function f̌ with f̌ = f |rT. Moreover,

f̌(w) = P
[
(fr)|T

]
(w/r) = Pr[f |rT](w) for |w| < r.

On the other hand, because m(z) = a and m(|z|) = r,

m(f) = limm(pn) = lim pn(a, r).

Hence, if |a| < r, we conclude that m(f) = f̌(a). In other words, m = ψr,a. If
|a| = r, then this limit m(f) coincides with f(a) by (1.2); that is, m = δa.

It remains to show the converse; that is, ψr,a = δa ∈ M(Aco) when |a| =
r (which is clear) and ψr,a ∈ M(Aco) for every (a, r) ∈ K with |a| < r and
0 < r ≤ 1 (see Figure 2). To this end, let Tr : Aco → A(D) be the map given
by Tr(f) = P [(fr)|T]. Since (fr)|T ∈ P (T) and since the Poisson operator is
multiplicative on P (T), we deduce that Tr is an algebra homomorphism. Hence,
for every ξ ∈ D, the map m given by m := δξ ◦ Tr is a homomorphism of Aco into

Figure 2. Functionals on the disk correspond to functionals on
the surface of the cone.
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C. Since m(1) = 1, we conclude that m ∈ M(Aco). If ξ ∈ D is chosen so that
a = rξ, then m = ψr,a.

(6) From (5) we conclude that the Gelfand transform f̂ of f has the following

properties: f̂(0 + i0, 0) = f(0) and, if 0 < r ≤ 1, then f̂(w, r) = f(w) whenever

|w| = r, w ∈ C, and f̂(w, r) = Pr[f |rT](w) whenever |w| < r. Since f |rT ∈ P (rT)
is the boundary function of a holomorphic function on |w| < r, we conclude from

(3) that f̂(·, r) ∈ A(rD). Hence

Âco ⊆ A =
{
f ∈ C(K,C) : f(·, r) ∈ A(rD) ∀r ∈ ]0, 1]

}
.

Next we observe that ẑ = z and |̂z| = t on K = {(z, t) ∈ D × [0, 1], |z| ≤ t}.
Hence, if p ∈ C[z, w], then with P (z) := p(z, |z|), z ∈ D, we see that

P̂ (z, r) = p(z, r).

Since Aco is a uniform algebra, (Âco, ‖·‖M(A)) is isomorphic isometric to Aco. Thus

Âco is the closure P(K) of the polynomials of the form p(z, r) within C(K,C).
That P(K) = A follows immediately from Bishop’s antisymmetric decomposition
theorem [10, p. 60] and the fact that the maximal antisymmetric sets for P(K)
as well as A5 are the disks

Dt =
{
(w, t) ∈ D : |w| ≤ t

}
,

with 0 < t ≤ 1 and the singleton {(0 + i0, 0)}. An elementary proof can be given
along the same lines as in Theorem 1.4.

(7) Suppose that f ∈ Aco has no zeros on D. By a theorem of Borsuk (see [3,
p. 99]) f has a continuous logarithm on D, say, f = eg for some g ∈ C(D,C). Let

N := ind(fr)|T = n
(
f̂(·, r), 0

)
be the index (or winding number) of h := (fr)|T (see [3, p. 84]). Note that h has
no zeros on T. Hence, N is well defined. This number, though, coincides with the

number of zeros of the holomorphic function f̂(·, r) in rD. But
ind(f |rT) = ind(eg|rT) = ind(egr |T) = 0.

Thus the Gelfand transform f̂ of f does not vanish onM(A). Hence f is invertible
in Aco. In other words, property (C1) is satisfied.

Next we show that (C2) is not satisfied. In fact, consider the pair (z, 1− |z|2).
Although this pair is invertible in C(D,C), it is not invertible in Aco. To see this,
we assume the contrary. Thus, there exist a, b ∈ Aco such that

a(z)z + b(z)
(
1− |z|2

)
= 1.

In particular, a(z)z = 1 for |z| = 1. In other words, a(z) = z. But by (2),
Aco|T = P (T). Since z /∈ P (T) (otherwise P (T) would coincide with C(T,C)),
we have obtained a contradiction. Thus we have found a pair (f, g) of functions
in Aco without common zeros on D but for which (f, g) /∈ U2(Aco). This implies
that Aco does not have property (Cn) for any n ≥ 2.

5Recall that a closed subset E of K is said to be a set of antisymmetry for a function algebra
A ⊆ C(K,C) if every function in A which is real valued on E is already constant on E.
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Here is another way to see that (z, 1− |z|2) is not in U2(Aco). Let ψ1,0 ∈M(A)
be the functional in (5), where r = 1 and a = 0. Then ψ1,0(f) = P [f |T](0). But
if f(z) = 1 − |z|2, then f ≡ 0 on T and so ψ1,0(1 − |z|2) = 0. But ψ1,0(z) = 0,
too, since P [eit](w) = w for every w ∈ D. Thus z and 1− |z|2 both belong to the
kernel of a multiplicative linear functional on Aco.

(8) We first determine the Bear–Shilov boundary of Aco. To this end, it is
sufficient to show that every a ∈ D is a peak point for Aco. So let a ∈ D. If a = 0,
then we take the peak functions f(z) = 1

1+|z| or f(z) = 1− |z|. If a 6= 0, then we

first choose a peak function p(x) ∈ C([0, 1],R+) with p(x) ≤ Cx, p(|a|) = 1 and
0 ≤ p(x) < 1 for x ∈ [0, 1] \ {|a|}. Now let

f(z) :=

{
(1 + z

|z|e
−i arg a)p(|z|)

2
if z 6= 0,

0 if z = 0.

Then f ∈ C(D,C), |f | ≤ 1, and if |z| 6= |a|, then |f(z)| ≤ p(|z|) < 1. If |z| = |a|,
then, with z = |a|eit,∣∣∣1 + z

|z|
e−i arg a

∣∣∣ = |1 + ei(t−arg a)| < 2 if t 6= arg a mod 2π.

Hence |f(z)| < 1 for all z ∈ D \ {a}.
It remains to show that f ∈ Aco. To this end, it suffices to prove that zp(|z|)/|z| ∈

Aco. According to the Weierstrass theorem, let Pn ∈ C[x] be a sequence of poly-
nomials uniformly converging on [0, 1] to p(x). Then Pn(|z|) converges uniformly
to p(|z|) on D; since Pn(|z|) ∈ Aco, its limit p(|z|) ∈ Aco does too. Now δ + |z| ∈
(Aco)

−1 for every δ > 0 by Example 1.1. Hence qδ(z) := zp(|z|)/(δ + |z|) ∈ Aco.
But limδ→0 qδ(z) = zp(|z|)/|z| uniformly on D because∣∣∣zp(|z|)

δ + |z|
− zp(|z|)

|z|

∣∣∣ = p
(
|z|

) δ

δ + |z|
≤ C|z|
δ + |z|

δ ≤ Cδ → 0.

Thus we have shown that f is a peak function at a in Aco. Here is a different
example. For 0 < |a| ≤ 1, let

f(z) = a+ ze−
|z|
|a| .

Then f ∈ Aco, and f takes its maximum modulus in D only at z = a. In fact,
since the function xe−x takes its maximum on [0,∞[ at x = e−1,∣∣f(z)∣∣ ≤ |a|+ |z|e−

|z|
|a| = |a|

(
1 +

|z|
|a|
e−

|z|
|a|

)
≤ |a|(1 + e−1),

with equality at z = a. Now the last inequality is strict for |z| 6= |a|. If z = |a|eit
and a = |a|ei arg a, then∣∣f(z)∣∣ = |a||ei arg a + eite−1| < |a|(1 + e−1) ⇐⇒ arg a 6= t mod 2π.

Hence f takes its maximum modulus only at a and so a is a peak point for Aco.

We conclude that the Bear–Shilov boundary is D. Moving to Âco, we get that

f̂(w, r) =

{
(1 + w

r
e−i arg a)p(r)

2
if (w, r) ∈ K, r 6= 0,

0 if w = r = 0
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is a peak function at (a, |a|) ∈ S ⊆ ∂K. Since ĝ(·, r) ∈ A(rD) for every g ∈ Aco, we
just need to apply the maximum principle for holomorphic functions to conclude
that no point in the interior of the cone and on its upper surface {(w, 1) : |w| < 1}
is a peak point for Âco. Hence the Shilov boundary coincides with the outer surface
of the cone. �

Results on the peak sets for Aco can be found in [11].

Theorem 1.4. We have the following identity:[
z, |z|

]
alg

=
{
f ∈ C(D,C) : f |rT ∈ P (rT) ∀r ∈ ]0, 1]

}
.

Proof. (i) This follows from Bishop’s antisymmetric decomposition theorem [10,
p. 60] and the fact that the maximal antisymmetric sets for Aco are the circles
{|z| = r}, 0 ≤ r ≤ 1. We would like to present the following elementary proof,
too.

(ii) Let A∗ = {f ∈ C(D,C) : f |rT ∈ P (rT)}. We already know that [z, |z|]alg ⊆
A∗. Observe that every h ∈ P (rT) is the trace of a function H that is continuous
on {|z| ≤ r} and holomorphic in {|z| < r}. Hence H writes as H(z) =

∑∞
n=0 hnz

n,
where hn are the Taylor coefficients of H. They are given by the formula

hn =
1

n!
H(n)(0) =

1

2πi

∫
|ζ|=r

H(ζ)

ζn+1
dζ

=
1

2π

∫ 2π

0

h(reit)

rn
e−int dt.

The Fourier series associated with h then has the form

h(reit) ∼
∞∑
n=0

hnr
neint.

Now fix f ∈ A∗. Since f |rT ∈ P (rT), the preceding lines imply that, for every
0 < r ≤ 1, the Fourier series of the family of functions fr are

6 given by

fr(e
it) = f(reit) ∼

∞∑
n=0

an(r)r
neint.

Here

rn
∣∣an(r)∣∣ ≤ ∥∥(fr)|T∥∥1

≤ ‖f‖∞, (1.3)

where ‖ · ‖1 is the L1-norm on T and ‖ · ‖∞ is the supremum norm on D, and

lim
r→0

rnan(r) = 0 for every n = 1, 2, . . . (1.4)

because

2πrnan(r) =

∫ 2π

0

f(reit)e−int dt →
r→0

f(0)

∫ 2π

0

e−int dt = 0.

6Note that the Fourier series
∑∞

n=0 bn(r)e
int for (fr)|T would not be useful to our problem

here, since at a later stage of the proof we really need the factor rn.
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Note also that the map r 7→ rnan(r), n ∈ N, is a continuous function on [0, 1]; in
fact, since f is uniformly continuous on D,

2π
∣∣rnan(r)− r′nan(r

′)
∣∣ = ∣∣∣∫ 2π

0

e−int
(
f(reit)− f(r′eit)

)
dt
∣∣∣

≤
∫ 2π

0

∣∣f(reit)− f(r′eit)
∣∣ dt ≤ 2πε (1.5)

if |r − r′| < δ. Consider now, for the parameter r ∈ ]0, 1] and 0 < ρ ≤ 1, the
polynomial (in z ∈ C)

pN(z, r) =
N∑

n=0

an(r)ρ
nzn.

We show that

max
|z|=r

∣∣f(z)− pN(z, r)
∣∣ < ε (1.6)

for suitably chosen ρ, ρ close to 1, and some N ∈ N, with N and ρ independent
of r.

Let us start the proof of (1.6). Since f is uniformly continuous on D, we may
choose η ∈ ]0, 1], independent of r, so that |f(reit) − f(reiθ)| < ε for |t − θ| < η
and every r ∈ [0, 1]. Fix t ∈ [0, 2π[. Let I = I(t) ⊆ T be the arc centered at t and
with arc length 2η. Then∣∣fr(eit)− P

[
(fr)|T

]
(ρeit)

∣∣
=

1

2π

∣∣∣∫ 2π

0

1− |ρ|2

|eiθ − ρeit|2
(
fr(e

it)− fr(e
iθ)

)
dθ
∣∣∣

≤ 2‖f‖∞
2π

∫
{θ:eiθ∈T\I}

1− |ρ|2

|eiθ − ρeit|2
dθ +

ε

2π

∫
{θ:eiθ∈I}

1− |ρ|2

|eiθ − ρeit|2
dθ.

Note that the second integral is less than ε, because the integral
∫ 2π

0
P dθ of the

Poisson kernel is 1.
Since, for η ≤ |θ − t| ≤ π and ρ close to 1,

|eiθ − ρeit| = |ei(θ−t) − ρ| ≥ |ei(θ−t) − 1| − (1− ρ)

= 2
∣∣∣sin(θ − t

2

)∣∣∣− (1− ρ)

≥ 2η

π
− (1− ρ) ≥ η

π
,

we see that the first integral tends to 0 as ρ→ 1. Hence, for all t,

sup
0<r≤1

∣∣fr(eit)− P
[
(fr)|T

]
(ρeit)

∣∣ < cε (1.7)

for some ρ sufficiently close to 1 and independent of r. Now

f̌(t) := P
[
(fr)|T

]
(ρeit) =

∞∑
n=0

an(r)r
nρneint.
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Because by (1.3)

L :=
∣∣∣ ∞∑
n=N+1

an(r)r
nρneint

∣∣∣ ≤ ‖f‖∞
∞∑

n=N+1

ρn,

we see that L < ε whenever N is sufficiently large. Note that N is independent
of r. Hence ∣∣∣f̌(t)− N∑

n=0

an(r)r
nρneint

∣∣∣ < ε.

We conclude from (1.7) that∣∣∣fr(eit)− N∑
n=0

an(r)ρ
nrneint

∣∣∣ < cε+ ε = c̃ε (1.8)

for every r ∈ ]0, 1]. This proves our claim (1.6).

Now the coefficients an(r) of the polynomial pN(z) :=
∑N

n=0 an(r)ρ
nzn are

continuous functions for r ∈ ]0, 1]7 and a0(r) is continuous on [0, 1]. In order to be
able to use the Weierstrass approximation theorem, we need to modify the an(r)
a little bit near the origin for n 6= 0 by multiplying them with rN , r close to 0.
According to (1.4), for ε > 0, there exists δ > 0 such that, for 0 ≤ r ≤ δ,

N∑
n=1

∣∣an(r)rn∣∣ < ε/2.

Let κ ∈ C([0, 1], [0, 1]) be defined as κ(r) = rN whenever 0 ≤ r ≤ δ/2 and
κ(r) = 1 for δ ≤ r ≤ 1. Consider the functions

p∗N(z) := a0(r) +
N∑

n=1

κ(r)an(r)ρ
nzn.

Note that the new coefficients, κ(r)an(r), are continuous on [0, 1] due to (1.4) and
(1.5). Now, for δ ≤ r ≤ 1 and |z| = r,

∣∣pN(z)− p∗N(z)
∣∣ ≤ ∣∣1− κ(r)

∣∣∣∣∣ N∑
n=1

an(r)ρ
nzn

∣∣∣ = 0.

If 0 ≤ r ≤ δ and |z| = r, then

∣∣pN(z)− p∗N(z)
∣∣ = ∣∣1− κ(r)

∣∣∣∣∣ N∑
n=1

(
an(r)r

n
)
ρneint

∣∣∣
≤ 2

N∑
n=1

∣∣an(r)∣∣rn ≤ ε.

7Note that, in general, an(r) is not continuous at r = 0 for n ≥ 0, as the function f(z) =

z/|
√

|z| = z/
√
r ∈ Aco shows.
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Hence p∗N is uniformly close to pN . Now, for every n ≥ 1, there is a polynomial

qn(r) :=
∑M(n)

j=0 bj(n)r
j such that

max
0≤r≤1

∣∣qn(r)− κ(r)an(r)
∣∣ < ε/(N + 1).

For n = 0 we choose q0 ∈ C[x] such that |a0(r) − q0(r)| < ε/(N + 1) on [0, 1].
Consequently, with z = reit,∣∣∣f(reit)− N∑

n=0

qn(r)ρ
nrneint

∣∣∣
≤

∣∣∣f(reit)− N∑
n=0

an(r)ρ
nrneint

∣∣∣+ ∣∣pN(z)− p∗N(z)
∣∣+ N∑

n=0

ε/(N + 1)

(1.8)
≤ c̃ε+ ε+

N∑
n=0

ε/(N + 1) = c∗ε.

In other words, for any z ∈ D,∣∣∣f(z)− N∑
n=0

qn
(
|z|

)
ρnzn

∣∣∣ < c∗ε.

Thus A∗ = Aco. We also deduce that

Âco =
{
f ∈ C(K,C) : f(·, r) ∈ A(rD) ∀r ∈ ]0, 1]

}
. �

2. The stable ranks of the cone algebra

The following concepts were originally introduced by H. Bass [1] and M. Rieffel
[14].

Definition 2.1. Let A be a commutative unital Banach algebra over R or C.
(1) An (n+1)-tuple (f1, . . . , fn, g) ∈ Un+1(A) is called reducible (in A) if there

exists (a1, . . . , an) ∈ An such that (f1 + a1g, . . . , fn + ang) ∈ Un(A).
(2) The Bass stable rank of A, denoted by bsrA, is the smallest integer n

such that every element in Un+1(A) is reducible. If no such n exists, then
bsrA = ∞.

(3) The topological stable rank of A, tsrA, is the least integer n for which
Un(A) is dense in An, or infinite if no such n exists.

We refer the reader to the work of L. Vasershtein [17]; G. Corach and A. Laro-
tonda [4], [5]; G. Corach and D. Suárez [6], [7], [8], [9]; and the authors dealing
with numerous aspects of these notions in the realm of function algebras. The
computation of the stable rank of our algebras above will be based on the follow-
ing three results from a higher analysis course.

Theorem (A). Let U ⊆ Rn be open, and let f : U → Rn be a map. Suppose that
E ⊆ U has n-dimensional Lebesgue measure zero. Let 0 < α ≤ 1. Then, under
each of the following conditions, f(E) has n-dimensional Lebesgue measure zero,
too:
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(1) f satisfies a Hölder–Lipschitz condition (of order α) on U ; that is, there
is M > 0 such that∥∥f(x)− f(y)

∥∥ ≤M‖x− y‖α for every x, y ∈ U.

(2) f ∈ C1(U,Rn).

A proof of the following version of Rouché’s theorem (continuous-holomorphic
pairs) is in [13, Theorem 20].

Theorem (B). Let K ⊆ C be compact, and let f ∈ C(K,C) and g ∈ A(K),
where A(K) is the set of all functions continuous on K and holomorphic in the
interior K◦ of K. Suppose that, on ∂K,

|f + g| < |f |+ |g|.
Then f has a zero on K◦ whenever g has a zero on K◦. The converse does not
hold, in general.

Theorem (C) ([3, p. 97]). Let K ⊆ C be compact, and let C be a bounded
component of C \K and β ∈ C. Then the function f(z) = z − β defined on K is
zero-free on K but does not admit a zero-free extension to K ∪ C.
Theorem 2.2. We have bsrAco = 2 and tsrAco = 2.

Proof. We first show that tsrAco ≤ 2. Let (f, g) ∈ (Aco)
2. Choose polynomials

p(z, w) and q(z, w) in C[z, w] such that∣∣f(z)− p
(
z, |z|

)∣∣+ ∣∣g(z)− q
(
z, |z|

)∣∣ < ε for every z ∈ D.

Let P (z) = p(z, |z|) and Q(z) = q(z, |z|). By the proof of assertion (6) of Theo-
rem 1.3, the Gelfand transforms of P and Q are polynomials, too, such that

P̂ (z, r) = p(z, r) and Q̂(z, r) = q(z, r).

We shall now use Theorem (A). To this end, we observe that the functions P̂ and

Q̂ satisfy a Lipschitz condition on K. Let

K̃ =
{
(x, y, t, v) ∈ R4 : v = 0, 0 ≤ t ≤ 1,

√
x2 + y2 ≤ t

}
,

which is of course nothing else than our cone K, respectively, C̃ (but viewed as
a set in R4). Then K̃ has 4-dimensional Lebesgue measure zero. Now we look at
the map

µ :

{
K̃ ⊆ R4 → R4,

(x, y, t, v) 7→ (Re p(x+ iy, t), Im p(x+ iy, t),Re q(x+ iy, t), Im q(x+ iy, t)).

Then µ satisfies a Lipschitz condition on K̃, too. Hence, by Theorem (A), µ(K̃)
has measure zero in R4. Thus there exists a null sequence (εn, ε

′
n) in C2 such that

p(z, t)− εn and q(z, t)− ε′n have no common zero on

K =
{
(z, t) ∈ D× [0, 1] : |z| ≤ t

}
.

Since K =M(Âco) ∼M(Aco), these pairs are invertible in Âco and so(
p
(
z, |z|

)
− εn, q

(
z, |z|

)
− ε′n

)
∈ U2(Aco).

Hence tsrAco ≤ 2.
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Figure 3. The spectrum of the cone algebra and Z(ĝ) = J .

Next we prove that tsrAco ≥ 2. Let f(z) = z. If we suppose that there exists
u ∈ (Aco)

−1 such that ‖u− z‖∞ < 1/2, then, on T,∣∣u(z)− z
∣∣ < 1

2
< 1 ≤ |z|+

∣∣u(z)∣∣.
Hence, by Rouché’s Theorem (B), u has a zero in D. Thus, u is not invertible in
Aco. In sum, we showed that tsrAco = 2.

Since Aco is a Banach algebra, we have 1 ≤ bsrAco ≤ tsrAco ≤ 2. It remains
to prove that bsrAco ≥ 2. The idea is to unveil a function g ∈ Aco such that the
zero set of ĝ on

K =
{
(z, t) ∈ C× [0, 1] : |z| ≤ t, 0 ≤ t ≤ 1

}
=

{
(x, y, t) ∈ R3 :

√
x2 + y2 ≤ t, 0 ≤ t ≤ 1

}
is a Jordan curve J contained in the plane y = 0 (see Figure 3) and a function

f ∈ Aco satisfying Z(f̂) ∩ Z(ĝ) = ∅ such that f̂ is a translation of the identity
map on J .

So let

f(z) = z + i
(
|z| − 1

2

)
and g(z) = z2 − |z|2

(
1− |z|

)2
.

Then f and g belong to Aco. Their Gelfand transforms are given by

f̂(z, t) = z + i
(
t− 1

2

)
and ĝ(z, t) = z2 − t2(1− t)2.

Since it is more convenient to work with R2-valued functions (instead of C-valued
ones) when they are defined on K (K viewed as a subset of R3 instead of C×R),
we put

F (x, y, t) :=
(
Re f̂(x+ iy, t), Im f̂(x+ iy, t)

)
and deduce the following representation of the zero set of ĝ and the associated

action of f̂ :

Z(ĝ) =
{(

±t(1−t), t
)
∈ C×R : 0 ≤ t ≤ 1

}
=

{(
±t(1−t), 0, t

)
∈ R3 : 0 ≤ t ≤ 1

}
,

and

F
(
±t(1− t), 0, t

)
=

(
Re f̂

(
±t(1− t), t

)
, Im f̂

(
±t(1− t), t

))
=

(
±t(1− t), t− 1

2

)
.
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Then J := Z(ĝ) is a Jordan curve contained in K and J does not meet Z(f̂).
Hence (f, g) ∈ U2(Aco). Moreover, we see that F |J is a translation map; in fact,
using complex coordinates in the plane {(x, y, t) ∈ R3 : y = 0}, and putting
w = x+ it, the action of F on J can be written as F̃ (w) = w− i/2, because with
x = ±t(1− t), F̃ (x+ it) = x+ i(t− 1/2) = w − i/2.

In view of achieving a contradiction, suppose now that (f, g) is reducible in Aco.
Then

û := f̂ + â ĝ

is a zero-free function on K for some a, u ∈ Aco. Restricting f̂ to Z(ĝ), we find
that the translated identity mapping on the Jordan curve Z(ĝ) has a zero-free
extension to the interior of that curve in the plane y = 0. Since (0, 0, 1/2) is
surrounded by that curve, we get a contradiction to Theorem (C). We conclude
that the pair (f, g) is not reducible in Aco and so bsrAco ≥ 2. Putting all together,
bsrAco = 2. �

3. The cylinder algebra

Suppose that {(ft, gt) : t ∈ [0, 1]} is a family of functions in A(D) such that

Z(ft) ∩ Z(gt) = ∅
for every t. By the Nullstellensatz for the disk algebra, for each parameter t,
there is a solution (xt, yt) ∈ A(D)2 to the Bézout equation xtft + ytgt = 1. If the
family {(ft, gt) : t ∈ [0, 1]} depends continuously on t, do there exist solutions to
the Bézout equation that also depend continuously on t? This problem has an
affirmative answer and is best described by introducing the cylinder algebra:

Cyl(D) =
{
f ∈ C

(
D× [0, 1],C

)
: f(·, t) ∈ A(D) for all t ∈ [0, 1]

}
.

Proposition 3.1. Let Cyl(D) be the cylinder algebra. Then

(1) Cyl(D) is a uniformly closed subalgebra of C(D× [0, 1],C).
(2) The set C[z, t] of polynomials of the form

N∑
j,k=0

aj,kz
jtk, aj,k ∈ C, N ∈ N

is dense in Cyl(D).
(3) M(Cyl(D)) = {δ(a,t) : (a, t) ∈ D× [0, 1]}, where

δ(a,t) :

{
Cyl(D) → C,
f 7→ f(a, t).

(4) An ideal M in Cyl(D) is maximal if and only if

M =M(z0, t0) :=
{
f ∈ Cyl(D) : f(z0, t0) = 0

}
for some (z0, t0) ∈ D× [0, 1]. In particular, Cyl(D) is natural on D× [0, 1].

(5) Let fj ∈ Cyl(D), j = 1, . . . , n. Then the Bézout equation
∑n

j=1 xjfj = 1

admits a solution in Cyl(D) if and only if the functions fj do not have a
common zero on the cylinder D× [0, 1].
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Proof. (1) This is clear.
(2) Let f ∈ Cyl(D). Then, for every fixed t ∈ [0, 1], f(·, t) ∈ A(D) and so f(·, t)

admits a Taylor series
∑∞

n=0 an(t)z
n, where the Taylor coefficients are given by

an(t) =
1

n!

∂nf

∂nz
(0, t) =

1

2πi

∫
|ξ|=1

f(ξ, t)

ξn+1
dξ.

The uniform continuity of f on D× [0, 1] now implies that t 7→ an(t) is a contin-
uous function on [0, 1] because∣∣an(t)− an(s)

∣∣ ≤ 1

2π

∫
|ξ|=1

|f(ξ, t)− f(ξ, s)|
|ξ|n+1

|dξ|

≤ ε for |s− t| < δ.

In particular, |an(t)| ≤ ‖f‖∞ for all t ∈ [0, 1] and n ∈ N. The Weierstrass theorem
now yields polynomials pn ∈ C[t] such that∣∣pn(t)− an(t)

∣∣ < ε2−n for every t ∈ [0, 1].

We claim that, for ρ ∈ ]0, 1[ sufficiently close to 1 and N sufficiently large, the
polynomial q given by

q(z, t) =
N∑

n=0

pn(t)ρ
nzn

is uniformly close to f(z, t). In fact, due to uniform continuity again, we may
choose ρ ∈ ]0, 1[ so that |f(z, t) − f(ρz, t)| < ε for every (z, t) ∈ D × [0, 1].
Hence∣∣f(z, t)− q(z, t)

∣∣ ≤ ∣∣f(z, t)− f(ρz, t)
∣∣+ ∣∣f(ρz, t)− q(z, t)

∣∣
≤ ε+

N∑
n=0

∣∣pn(t)− an(t)
∣∣ρn|z|n + ∞∑

n=N+1

∣∣an(t)∣∣ρn|z|n
≤ ε+ ε

N∑
n=0

2−n + ‖f‖∞
∞∑

n=N+1

ρn

≤ 3ε+ ‖f‖∞
ρN+1

1− ρ
≤ 4ε

for N large.
(3) Let m ∈ M(Cyl(D)), and denote by c the coordinate function c(z, t) := z

and by r the coordinate function r(z, t) = t. Note that c, r ∈ Cyl(D). Let
(z0, t0) :=

(
m(c),m(r)

)
.

Then z0 ∈ D because |m(c)| ≤ ‖c‖∞ = 1. Now t0 ∈ σ(r), the spectrum
of r in Cyl(D). Because for λ ∈ C the function r − λ ∈ Cyl(D)−1 if and
only if λ /∈ [0, 1], we see that t0 = m(r) ∈ [0, 1]. Consequently, (z0, t0) ∈
D× [0, 1].

Given f ∈ Cyl(D), let (pn) be a sequence of polynomials in C[z, t] converging
uniformly on D× [0, 1] to f . Then

m(pn) = pn(z0, t0) → f(z0, t0).
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Hence m = δ(z0,t0).
(4) and (5) These assertions follow from Gelfand’s theory. �

Recall that the cylinder algebra was defined as

Cyl(D) =
{
f ∈ C

(
D× [0, 1],C

)
: f(·, t) ∈ A(D)

}
.

For technical reasons, we let t vary now in the interval [−1, 1]. In this subsection
we determine the Bass and topological stable ranks of Cyl(D).8 The original
question that led us to consider this algebra was the following: Let

F :=
{
(ft, gt) : t ∈ [−1, 1]

}
be a family of disk-algebra functions with Z(ft)∩Z(gt) = ∅. Then, by the Jones–
Marshall–Wolff theorem (see [12]), for each parameter t, there is (ut, yt) ∈ A(D)2,
ut invertible, such that utft+ytgt = 1. If the family F depends continuously on t,
do there exist solutions to this type of the Bézout equation that also depend con-
tinuously on t? Quite surprisingly, this is no longer the case. This stays in contrast
to the unrestricted Bézout equation xtft + ytgt = 1 dealt with in Proposition 3.1.
Here is the outcome.

Theorem 3.2. If Cyl(D) is the cylinder algebra, then bsrCyl(D) =
tsrCyl(D) = 2.

Proof. We first show that bsrCyl(D) ≥ 2. Let f(z, t) = z + it and g(z, t) =
z2 − (1− t2). Then (f, g) ∈ U2(Cyl(D)) because

(z + it)(z − it)− g(z, t) = 1.

Suppose that (f, g) is reducible. Then u := f + ag is a zero-free function on
D× [−1, 1] for some a ∈ Cyl(D). Now the zero set

Z(g) =
{
(±

√
1− t2, t) : −1 ≤ t ≤ 1

}
=

{
(x, y, t) ∈ R3 : y = 0, x2 + t2 = 1

}
is a (vertical) circle (Figure 4). Restricting f to Z(g) and using complex coor-
dinates w on the disk D formed by Z(g), we obtain, with w = ±

√
1− t2 + it,

that
F (w) := f(±

√
1− t2, t) = ±

√
1− t2 + it = w.

Thus f is the identity mapping on the circle Z(g) and u|D is a zero-free extension
of f |Z(g). This is a contradiction to Theorem (C).

Next we prove that tsr Cyl(D) ≤ 2. Let (f, g) ∈ Cyl(D)2. According to Propo-
sition 3.1, let F := (p, q) ∈ (C[z, t])2 be chosen so that

‖p− f‖∞ + ‖q − g‖∞ < ε.

By Theorem (A), F (R3) ⊆ C2 has 4-dimensional Lebesgue measure zero. Hence
there is a null sequence (εn, ηn) in C2 such that

(εn, ηn) /∈ F (R3).

Consequently, the pairs
(p− εn, q − ηn)

8Corach and Suárez determined in [6, p. 5] the Bass stable rank of C([0, 1], A(D)), which
coincides with Cyl(D), by using advanced methods from algebraic topology as well as the
Arens–Royden theorem.
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Figure 4. The spectrum of the cylinder algebra.

are invertible in Cyl(D) by Proposition 3.1(5). Thus tsr Cyl(D) ≤ 2.
Combining both facts, we deduce that bsrCyl(D) = tsr Cyl(D) = 2. �
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