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Abstract

In this paper, we develop one of the questions raised by the author in the mini-
course he gave at the conference Geometry and Physics V held at the University
Cheikh Anta Diop, Dakar in May 2007). Let Π be a Poisson tensor on a manifold
M. We suppose that it is decomposable in a neighborhood U of a point m, i.e. we have
Π = X ∧Y on U where X and Y are two vector fields. We will exhibit examples where
every Poisson tensor near enough Π seems to be also decomposable in a neighbor-
hood of a point which can be chosen arbitrarily near m; and this works even if M has a
big dimension. This idea is a consequence of a cohomology calculation which can be
interesting by itself.
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1 Introduction

Let Π be an homogeneous Poisson tensor of degree k on Rn. We attach to it the homo-
geneous Lichnerowicz-Poisson cohomology complexes: by definition, they are given, for
every s,

V (s−k+1)
1

∂
s−k+1
1 (Π)
−→ V (s)

2
∂

s
2(Π)
−→ V (s+k−1)

3 · · ·

where V (s)
r is the space of s-homogeneous r-vector fields on Rn (chosen to be {0} for s < 0),

and the operators ∂`
r(Π) are defined by

∂
`
r(Π)(A) = [Π,A],

for all homogeneous multi-vector field A. The associated second cohomology space is

H2,s(Π) =
Ker

(
∂

s

2(Π)
)

Im
(

∂
s−k+1

1 (Π)
) .
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For any r-vector A on Rn we denote by DA its “curl” relatively to the volume Ω =
dx1∧·· ·∧dxn : we recall that D : V (s)

r −→V (s−1)
r−1 is the operator (Ω[)−1 ◦d ◦Ω[, where Ω[

is the contraction with Ω. We will use notations and sign conventions of [DZ05].
Our principal result is the following.

Theorem 1.1. Let Π a k-homogeneous Poisson tensor on Rn with k > 2. We suppose that
its maximal rank is 2 and that its curl DΠ has an isolated zero at the origin. Then we have

H2,s(Π) = 0

for any s different from 2, k and 2k− 2. For s = k the cocycles which are not cobound-
ary have the form I ∧V, where V is a vector field. For s = 2k− 2 cocycle which are not
coboundary are multiples of Π.

The next section is dedicated to the proof of this theorem. It will use the following
lemma.

Lemma 1.2. Under the hypothesis of Theorem 1.1 we have

Π =
1

2−n− k
I∧X

with X = DΠ.

In the last section we will try to show that a consequence of Theorem 1.1 should be the
following conjecture.

Conjecture 1.3. Let Π a Poisson structure satisfying Theorem 1.1 hypothesis. Every Pois-
son structure Π′, near enough Π in the C2k compact open topology, is decomposable (i.e.
Π′ = U ∧V ) on a neighborhood of a point m which can be chosen as near as we want from
the origin.

If true, this result is a little surprising because, when dimension of the ambient space is
big, it is very easy to perturb a decomposable bi-vector in a non decomposable one.

2 Proof of Theorem 1.1

Definition 2.1. We say that an analytic vector field V on Rn has the analytic division prop-
erty if for any analytic p-vector A on Rn, with p < n, the relation

V ∧A = 0

implies
A = B∧V

for some analytic (p−1)-vector B.

Lemma 2.2. Any polynomial vector field Z which have an isolated zero at the origin has
the analytic division property.
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See section 2 of [M76] for a proof of this last lemma. We will use also the following
evident lemma.

Lemma 2.3. For any s-homogeneous r-vector A on Rn we have

[I,A] = (s− r)A.

Lemma 2.4. Koszul formula. We have the formula

[A,B] = (−1)bD(A∧B)−DA∧B− (−1)bA∧DB , (2.1)

for any r-vector (r arbitrary) A and any b-vector B.

See [DZ05], Formula (2.91).

Lemma 2.5. Camacho Lins Neto Lemma. Let Z be an homogeneous vector field of degree
greater or equal than 2 on Rn which has an isolated zero at the origin. If L is a linear vector
field on Rn such that

[Z,L] = 0 , (2.2)

then L vanishes identically.

See [CN82], Lemma 1.
Proof of Lemma 1.2. Koszul formula gives

0 = [Π,Π] = D(Π∧Π)−2DΠ∧Π.

The rank condition gives Π∧Π = 0 and so we have

X ∧Π = 0

(X = DΠ). By the division property we get

Π = U ∧X ,

for a linear vector field U. But Koszul formula gives

X = D(U ∧X) =−[U,X ]−D(U)X

so
(1+D(U))X = [X ,U ].

But, by Lemma 2.3, we have
(2− k)X = [X , I]

so we get

[X ,U ] =
1+D(U)

2− k
[X , I]

which can be rewritten
[X ,L] = 0
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with the linear vector field

L = U − 1+D(U)
2− k

I.

Now Camacho Lins Neto Lemma implies

L = 0,

so

U =
1+D(U)

2− k
I.

Now we apply the operator D to the members of the last equation to get

D(U) =
n

2− k−n
.

Putting this in the last expression of U we fall on

U =
1

2− k−n
I

which proves Lemma 1.2
Proof of Theorem 1.1.

To simplify notations we will write Π = I∧Z with

Z =
1

2−n− k
X .

A- We suppose that s is different from 2, k and 2k−2.
Let A a s-homogeneous 2-vector; it is a cocycle if we have relation

0 = [A,Π] = [A, I∧Z] = [A, I]∧Z− I∧ [A,Z] . (2.3)

So, using Lemma 2.3, this is equivalent to

(2− s)A∧Z = I∧ [A,Z] . (2.4)

We apply the curl operator D to the two members of cocycle Equation (2.4) to get

(2− s)D(A∧Z) = D(I∧ [A,Z]) . (2.5)

Using Koszul formula two times this becomes

(2− s){−[A,Z]−DA∧Z}= [I, [A,Z]]+DI∧ [A,Z]+ I∧D[A,Z] , (2.6)

which leads to
[A,Z] =

2− s
2− k−n

DA∧Z +
1

2− k−n
I∧D[A,Z] . (2.7)

When we replace [A,Z] in (2.4) according to the above formula we get

A∧Z =
1

2− k−n
I∧DA∧Z ; (2.8)
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which can be written in the form

{A+
1

k +n−2
I∧DA}∧Z = 0 . (2.9)

Using division property of Z and checking homogeneity degrees this gives

A+
1

k +n−2
I∧DA = U ∧Z. (2.10)

where U ≡ 0 if s < k−1 and is a (s− k +1)-homogeneous vector field for s ≥ k−1.
We apply the operator D to the two members of (2.10) to get

DA+
1

k +n−2
D(I∧DA) = D(U ∧Z) . (2.11)

But we have the Koszul formula

[I,DA] =−D(I∧DA)−DI∧DA , (2.12)

which leads to
DA+

1
k +n−2

(−[I,DA]−nDA) = D(U ∧Z) , (2.13)

so to
DA(1− 1

k +n−2
(s−2+n)) = D(U ∧Z) , (2.14)

and finally to
k− s

k +n−2
DA = D(U ∧Z) . (2.15)

When we put Result (2.15) in Equation (2.10) we get

A = U ∧Z +
1

s− k
I∧D(U ∧Z) . (2.16)

When it doesn’t vanish, U can be put on the form

U = λI +U0 , (2.17)

where λ is a (s−k)-homogeneous function and U0 is a (s−k+1)-homogeneous vector field
such that DU0 = 0. So the cocycle A decomposes in

A = A1 +A0 (2.18)

where
A1 = λI∧Z +

1
s− k

I∧D(λI∧Z) (2.19)

and
A0 = U0∧Z +

1
s− k

I∧D(U0∧Z) . (2.20)

But Koszul formula gives

[I,λI∧Z] =−DI∧λI∧Z− I∧D(λI∧Z) (2.21)
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and this leads to
I∧D(λI∧Z) = (−s−n+2)λΠ . (2.22)

This gives

A1 =
−k−n+2

s− k
λΠ . (2.23)

Now, for any (s− k)-homogeneous function µ, we have

[µI,Π] = [µI, I]∧Z + I∧ [µI,Z] =−I(µ)I∧Z + I∧µ[I,Z]

= (2k− s−2)µΠ. (2.24)

and this shows that (for s different from 2k−2) A1 is a coboundary.
Now A0 can be rewritten as

A0 =
1

k− s
{(k− s)U0∧Z− I∧D(U0∧Z)}=

1
k− s

{[U0, I]∧Z + I∧ [U0,Z]} , (2.25)

so we have
A0 =

1
k− s

[U0, I∧Z] = [
1

k− s
U0,Π] (2.26)

which shows that A0 is also a coboundary.
B- We suppose s = k.

In that case we can perform the same calculations as in the case A until Formula (2.15):
we get that U is a linear vector field and this last formula gives that D(U ∧Z) vanishes. So
Koszul formula gives

[U,Z]+D(U)Z = 0 , (2.27)

where D(U) is a constant. But we have also

D(U)Z = [
D(U)
k−2

I,Z] ; (2.28)

So we get

[U − D(U)
k−2

I,Z] = 0 , (2.29)

which, by Camacho Lins Neto Lemma, gives

U =
D(U)
k−2

I . (2.30)

When we put this in Formula (2.10) we get

A = I∧V , (2.31)

proving the theorem in that case.
C- We suppose s = 2k−2.

In that case all the calculations of A- go through. The only difference is that the cocycles
A1 (= −k−n+2

s−k λΠ) are not always coboundaries. But all other cocycles are coboundaries.
So we have proved the Theorem 1.1
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3 Decomposability of certain Poisson tensors

Theorem 1.1 says nothing concerning H2,2(Π), the case where s = 2. But we conjecture that
it vanishes. At least we know that it vanishes in all precise examples we have computed. For
example we prove this result in [D07] for the particular case Π = I∧X (k−1) with X (k−1) =
∑

n
i=1 xk−1

i ∂/∂xi (k > 3, n > 2).
Also it is proven in [DW06] and [D07] that, when H2,s(Π) vanishes for s = 0, . . . ,k−1

then the origin is a stable singular point. More precisely this means that: for any neighbor-
hood U of the origin in Rn, there is a neighborhood W of Π in the C2k-topology such that,
any Poisson vector Π′ in W vanishes at order k−1 at a point m in U.

Now let Π
′(k) the k-order part of Π′ at m. Up to a shrinking of W we can suppose that

the curl X ′ of Π
′(k) is as near as we want from the curl X of Π. A consequence is that we

can suppose that X ′ has, like X , an isolated zero at the origin (which corresponds now to
m). This is an evident exercise based on the fact that any homogeneous vector field which
vanishes at a point different from the origin vanishes also on a line which passes by the
origin.

The most conjectural part of this section is that, shrinking a little more W, Π
′(k) should

have at most rank 2. A first clue for this is the last part of Theorem 1.1 where we find that k-
cocycles which are not coboundary have the form I∧V ; this gives the intuition that Poisson
deformations of Π must have the form I ∧Y. Another clue is based on the following, easy
to prove, lemma.

Lemma 3.1. Any k−homogeneous 2-vector A on Rn has a unique decomposition

A = A0 +
1

2−n− k
I∧A1 , (3.1)

where A0 has a null curl and A1 is the curl of A. Moreover A is a Poisson tensor if and only
if we have the equation

[A0,A0] = A0∧
2k−4

2−n− k
A1 . (3.2)

Now we could probably use this lemma like this: if Π
′(k) is sufficiently near Π then

its “zero curl” part Π
′(k)
0 is near zero (Π0 ≡ 0). But, because Π

′(k) has a curl Π
′(k)
1 which

vanishes only at the origin, Equation (3.2) should give

‖ Π
′(k)
0 ‖2≥ a ‖ Π

′(k)
0 ‖ , (3.3)

for a good norm ‖ ‖ and some strictly positive constant a. This must implies Π
′(k)
0 = 0 and

so Π
′(k) = I∧V.

Under the above (conjectural) assumption, we can apply Lemma 1.2 and then Theorem
1.1 to Π

′(k). This last theorem for s > k and classical techniques (see for example [DZ05]
Proposition 2.2.1) show that, for any s > 2k−2 there is a local polynomial diffeomorphism
φ which changes Π′ into (1 + f )Π

′(k)+terms of order more than s, near m, f being an
homogeneous (k − 2)-polynomial. This can be used to show step by step that Π′ ∧Π′

vanishes at any order at m. So, at least in the analytic case, it vanishes near m. This should
prove that Π′ has maximal rank 2 near m. Finally it should be easy to improve a little this
to get Π′∧ I = 0 and so Π′ = I∧V near m.



Decomposability of a Poisson Tensor Could Be a Stable Phenomenon 81

References

[CN82] C. Camacho and A. Lins Neto, The topology of integrable differential forms
near a singularity Inst. Hautes Études Sci. Publ. Math. 55(1982), 5-35.

[D07] J.-P. Dufour, Examples of higher order stable singularities of Poisson struc-
tures, Contemp. Math, 450(2008), Amer. Math. Soc. , 103–111.

[DW06] J.-P. Dufour and A. Wade, Stability of higher order singular points of Poisson
manifolds and Lie algebroids, Ann. Inst. Fourier, 56(2006), fasc.3, 545-559.
Arxiv:math.DG/0501168

[DZ05] J.-P. Dufour and T. Zung, Poisson structures and their normal forms.
Progress in Math., Springer Verlag (2005).
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