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In this paper, we consider the following two-point boundary value problems of fuzzy linear fractional differential equations:
(CDily)(t) ®b(t)® (CDﬁly)(t) ®c(t)® yt) = f(t), t € (0,1), y(0) = y, and y(1) = y,, where b,c € C(I), b(t),c(t) > 0,
vy, f € C(LLRR), I = [0,1], ¥4, »; € Rpand 1 < f < a < 2. Our existence result is based on Banach fixed point theorem and the
approximate solution of our problem is obtained by applying the Haar wavelet operational matrix.

1. Introduction

A lot of researchers have studied fuzzy differential equations
especially fuzzy boundary value problems (FBVPs) because
they are effective tools for modeling processes. FBVPs arise
in many applications such as modeling of fuzzy optimal
control problem [1] and HIV infection [2]. Many theoretical
researches have been carried out on fractional differential
equations over the last years [3-7].

Currently, the approximative methods for solving fuzzy
fractional differential equation include the operational matrix
method based on orthogonal functions [8-10], linearization
formula [11], Homotopy Analysis Method [12-14], and Vari-
ation of constant formula [15].

O’Regan [16] and Lakshmikantham [17] proved that two-
point boundary value problems of fuzzy differential equations
are equivalent to fuzzy integral equations.

Lakshmikantham et al. [18] considered Riemann-Liou-
ville differentiability concept based on the Hukuhara dif-
ferentiability to solve fuzzy fractional differential equations.
Prakash [19] considered initial value problems for differential
equations of fractional order with uncertainty. Mazandarania
[20] investigated the solution to fuzzy fractional initial
value problem (FFIVP) under Caputo-type fuzzy fractional
derivatives by a modified fractional Euler method. As we

can see, fuzzy initial value problems were studied by many
researchers, but few fuzzy boundary value problems were
considered in special cases. Nieto [21] considered second
order fuzzy differential by the sense of (1, 1), (1, 2), (2, 1),
(2, 2)-derivatives. Also Nieto [22] investigated the existence
and uniqueness of solutions for a first-order linear fuzzy dif-
ferential equation with impulsive boundary value condition.
Ngo et al. [23] proved the existence and uniqueness results of
the solution to initial value problem of Caputo-Katugampola
(CK) fractional differential equations in fuzzy setting and
[24] present that a fractional fuzzy differential equation and
a fractional fuzzy integral equation are not equivalent in
general. Wang [25] considered the existence and uniqueness
of solution for a class of FFDEs:

CgHD'u(t) = f (tLu(t)), 0<t<T,
u(0) = Au(T), 6))
u;H (0) =u, € EIC,
where “gH D*q is the fuzzy gH —fractional Caputo derivative,

u’gH is generalized Hukuhara derivative of u, ElC is the space

of fuzzy number, f : [0,T] x Ei — Ei \ R is a continuous


https://orcid.org/0000-0003-0436-180X
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1155/2019/5129013

fuzzy valued function, g € (1,2] is a real number, and A €
(0,1) U (1, +00).

Gasilov [26] presented a new approach to a nonhomoge-
neous fuzzy boundary value problem.

But researchers who studied fuzzy differential equations
by using r-cut did not consider if the solutions of r-cut
equations constitute intervals. So they had to recheck whether
the solutions of r-cut equations constitute intervals or not
after solving a problem. For instance, in [27] they only
consider the existence of solutions of r-cut equation. And
the existence of fuzzy solutions was considered in specific
example. In that specific example, they noted that the fuzzy
solutions do not exist even if the solutions of r-cut equation
exist.

These facts lead to the following: the existence of solutions
of fuzzy problem is not equivalent to the existence of solutions
of corresponding r-cut equation. So, it is necessary to obtain
a new r-cut problem that guarantees the existence of fuzzy
solutions.

Motivated by the results mentioned above, we consider
the following fuzzy boundary value problem:

(Df,y) eb®) (‘DL y) B ect oy ®

=f@), te(01),
y(0) = y,, 3)
y(1) =y,

where b,c € C(I), b(t),c(t) =2 0, y, f € C(I,Rg), I = [0,1],
Yoo y1 € Ry 1 < B < a <2,°Dy, is fuzzy fractional Caputo
derivative, and Ry, is the space of fuzzy number.

We obtain existence result by using Banach fixed point
theorem and obtain its approximate solution by applying
the Haar wavelet operational matrix. Also we present a
new r-cut problem which involves inequalities to obtain the
conditions of existence of fuzzy solutions and prove that these
inequalities guarantee that the solutions of r-cut equations
constitute fuzzy solutions. Our paper is organized as follows:
In Section 2, we recall some definitions and basic results
and prove some lemmas that will be useful to our main
results. Section 3 investigated the constructive existence of
solutions to our problem. In Section 4, a method to find out
the solutions is given. Section 5 presented two examples to
illustrate our results. In Section 6, we summarize our main
results.

2. Preliminaries and Basic Results

Definition I (see [28]). We denote the set of all fuzzy numbers
on RbyRp. A fuzzy number is a mapping y# : R — [0, 1] with
the following properties:

(i) pis normal, ie., Ix, € R; p(x,) = 1
(ii) p is a convex fuzzy subset, i.e.,
u(Ax+(1-2)y) 2 min{u(x),pu ()}, "
Vx,y € R, VA €[0,1]
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(iii) p is upper semicontinuous on R

(iv) The set supp(y) is compact in R (where supp(y) :=
{x € R | u(x) > 0))
Then Ry is called the space of fuzzy numbers.
Definition 2 (see [27]). Let u,v € Ry, [u]” = [u(f),u(f)],
V] = ", VE:)]. The distance structure D : Ry x Rp — R,

is defined as follows:

D (u,v) == sup max {|u(r) -y

rel0,1] -

-

b

Let x, y € Ry. If there exists z € R such that x = y @ z,
then z is called the H-difference (Hukuhara difference) of x, y
and it is denoted as xo y.

Definition 3 (see [29]). Let f: I — Ry and fix x; € (a,b).

(i) We say that f is (1)-differentiable at x,,, if there exists an
element f/(x,) € Ry such that, for all i > 0 sufficiently near
to 0, f(xy + Moy f(xy), f(xy)oy f(x, — h) and the limits

lim f (%o +h) oy f (x)

h—0* h

~ lim f (%) on f (xo —h)
h—0" h

(6)

= fé (%)

exist.

(ii) We say that f is (2)-differentiable at x,y, if there exists
an element f(x,) € Ry such that, for all 1 > 0 sufficiently
near to 0, f(xq)oy f(xy+h), f(x,—h)oy f(x,) and the limits
- f(x0)enf (xo +h)

m

1
hl—>0+ -h

~ lim f (xo = h)eyf (x)
h—0* -h

7)

= f(,; (%)

exist.
If f is (n) —differentiable at x,, we denote its first deriva-

tives by DV f(x) forn = 1,2.

Lemma 4 (see [21]). Let f : (a,b) — Ry be fuzzy valued
function, where [ f(£)]" = [ f,(t, 1), f,(t,7)] foreachr € [0,1].

(i) If f is (1)-differentiable, then f(t,v) and f,(t,r) are
differentiable functions and [Dgl)f(t)]r = [fl'(t, r),
fz'(t, r)].

(ii) If f is (2)-differentiable, then f,(t,r) and f,(t,r) are
differentiable functions and [Dgl)f(t)]r = [fz’(t, r),
f1’ (t,7r)].

Definition 5 (see [21]). Let f: (a,b) — Rpand n,m = 1,2.
We say that f is (n,m) — differentiable at x, € (a,b), if
Dfll) f(x,) exists, and is (m) — differentiable at x,,. The second
derivative of f is denoted by Dilzr)n f(xy) forn,m =1,2.

Lemma 6 (see [30]). Let f : (a,b) — Rg be fuzzy valued
function and denote its r — level sets by [ f(1)]" = [f,(t,7),
fo(t,1)] for each r € [0, 1].
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(i) IfD\V £ () is (1)-differentiable, then f](t,r), f)(t,r) are

differentiable and

[D8ro] = [f e, £ ©n]. ®

(i) If D\V f(t) is (2)-differentiable, then f](t,r), fi(t,r)
are differentiable and

[DOf 0] = &n, £ &n]. )

Definition 7. 'The Riemann-Liouville fractional integral oper-
ator of order & > 0 of a real function ¢ : I — R is defined
as

) = ﬁ j (t - 9% 9 (s)ds, (10)

where I'(-) is the Euler gamma function.

Definition 8. Let¢ : I — R, the Caputo fractional derivative
ofordera > 0,m—-1<a<m,meN=1{1,2,---}, bedefined
as

t (t—s)" o™ (s)ds. (1)

‘o« 1
( Du+¢) (t) - F(m—oc) L

Definition 9. The fuzzy fractional Caputo differentiability of
fuzzy valued function is defined as follows:

(D5, f) () = — J(t—s)l‘“(Df}f)(s)ds, (12)

r2-ow) Ja

wherel < @ < 2,¢t >0, f: I — Rp. Then we say that f is
°[(1,1) — «]-differentiable.

Lemma 10 (see [23, 24, 31]). Let f : I — Ry

a € (L2), [fO = [AEn), L] If f s
‘[(1,1) — ] — differentiable, it holds that

(D5, 1) 0] = [Di f (61), D5, o 6,0)] . (13)

Lemma 11 (see [27]). Let {U, | r € (0,1]} be a family of real
intervals such that the following three conditions are satisfied:

(i) U, is a nonempty compact interval for all r € [0, 1]
(i) if0 <ry <ry < 1thenU, CU,
(iii) given any nondecreasing sequence r, € (0,1] with
lim =ritisU, =2, U,

n—>00rn
Then there exists a unique fuzzy number u € Ry such that
[u]" =U, forallr € I and ]’ = AUy Ur)-
Let us consider the following fractional integral equation:

U@ +bt) MU ) +c () I2U @) =V (1),

+

tel, (14)
where V,b,c € C(I), A, A, > 0.

Lemmal2. There exists a unique solution of (14) in C(I) and a
positive real number k. for the solution to satisfy the following
inequality:

k
ok
Ul < -4 IVilicay » (15)

where k, is any positive number that satisfies q = (||bllc()/
A A
Ko+ lelley/k?) < 1.

Proof. Let F(U)(t) = V(t) - b() I U(¢) — c()[2U ().
Then equation (14) is as follows:

U@ =F@U)®). (16)
Now, we use the following k — norm equivalent to the norm
lxllcqry = max{[x(t)|,t € I}.
That is
Il = max fe™ |x (®)]}, xeCD). (17)
For all X,Y e C(I), we have the following inequalities:

|F (X) () - F(Y) (®)]

A A
< [bllcy |Toi X () = 1Y (1)

18
+lelow 12X 0 - 12y @) (18)
bl  leleay \ e
S(T+ I )e ”X—Y"k
Therefore, we get
e |F(X) (6) = F (V) (0)]
Iblcey  llelo 19)
< < Tt ) I1X = Y1,
Thus, we obtain
IF (X) (#) = F(Y) (O)lk
Bllew | lellew (20)
< < Tt ) I1X = Y1,
Since the number k, satisfies
||b||c(1) ||C||c(1)
= E iR <1, (21)
we obtain the following inequality:
| F(X)=FMl, <qIX =Yl - (22)
Since C(I) is complete, we have
Fecu); Y=F(Y). (23)

That is, (14) has unique solution U(t) € C(I).
Then the following equation holds:

U +bO I UG +cOI2U@N =V (@), tel, (24)



and we obtain the following inequality:

U @1 < 1Bl I 1U @]+ llel 12 [U 0]+ 1V (2)]

ot oK (25)
< bl o Ul + llell o Ul + 1V I,

so we have

—kt 1 1
e U @I =116l 57 10l + llell 77 1V

(26)
+e MV ().
Therefore, we get
U b L U L U \%4
Ul < ol T Uk + liell e Ul + IVl
X | (27)
= (el 25 + Iell o1 ) 1Vl + IV
So if there is a positive number k, satisfying
L] llcll
=y 2D g, (28)
K. k.’
then we get
Ul < —— IV 29)
ke =g W
and so we obtain
e WUl < U, < —— Vi, S —— Ve~ (30
ow = Wik, = 772 Wik, = 777 Wlew - (30)
Thus we have
ek
Ul < -4 Vil - (31)
O

Consider the integral equation

U@ +bISPU @) +cICU@®) =h(t), telo,T], (32)

whereb > 0,c>0,1<f<a<2,0<a—-fB<1.
We define an operator A by AU)(t) = blg;ﬁU(t) +
clg U(t).

+

Lemma13. If (I — A)h(t) > 0, then the integral equation (32)
has one nonnegative solution, where I is the identity operator.

Proof. By Lemma 12, (32) has a unique solution. If there is a
positive number k, satisfying

b c
q: ko‘_ﬁ + k—“ <1, (33)

then A, < L.
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Therefore we can know that
T+A) ' =T-A+A" =+ (-1)"A"+--,  (34)
so we have
Ut)=I+A) " ht). (35)
Since (I — A)h(t) > 0, we obtain
U =I-Ah@t)+ A>T -Ah®)
(36)
+A*I-Ah@)--->0.
O
Lemma 14. (I — A)h(t) < 0, and then the integral equation
U@ +bISPU@) +cIlU @) =h(t), tel — (37)
has one nonpositive solution.
3. Constructive Existence of (1,1)-Solution
of Two-Point Value Problem for the Fuzzy

Linear Multiterm Fractional Differential
Equation

Let us consider the following fuzzy boundary value problem:

(‘DS ) eb® (Dl y)Hec®ey®

=f(), te(0,1),
¥ (0) = o, (39)
y(1) =y,

where b,c € C(I), b(t),c(t) = 0, y, f € CI,Rp), I = [0,1],
Yoo Y1 €Rp 1< B<a<

Definition 15. A fuzzy valued function y(t) is called a (1,1)-
solution of the problem (38), (39) if it satisfies (38), (39) and

‘Di,y € C(I,R).
By using r-cuts, we can obtain

(D} y)eb e (Dly)ecweyn]

=[f®], relol]

and
[(D5,y) 0] +b@ [(Dfy) 0]
re®yo] =@
(‘D31 (1), Dy, s (t:7)] (41)
+b(0) Db,y (67),°Dh,y, (1)]

+e®) [ )y, 0] = [fi6r), fE7)].
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By the operation of intervals, we can have

DY,y (61) +b () Dl y, (t,7) + ey, (1)

= fl (t) 7") >
(42)
DYy, (6,1) + b ()DL y, (8,7) + ¢y, (,7)
= f,(t,1).
In particular, the inequalities
y (1) <y, (tr),
CDg+y1 (t,r) < CD§+y2 (t,r), (43)

CD§+y1 (t,r) < CD§+y2 (1)
imply that y,(¢t,7) and y,(t,r) constitute interval and it
is the same for CD§+y1(t, r),cD§+y2(t, r) and ‘Dy, y,(t,1),

Dy, y5(t,7).
Let us denote the r-cut representation of y,, y; by [y,]" =

(V0.1 Y02 ()], ] = [31.1(7), ¥1,(r)]. Then the cut forms
of boundary conditions (39) are

y1(0,7) =y, (1),
() =y,(r),

(44)
2 (0,7) =y, (1),

Y2 (L) =y, (1)

Now the expression (42)-(44) is called cut problem of
(38)-(39).

Definition 16. (y,(t,r), y,(t, 1)) is called a solution of (42)-
(44) if it satisfies (42)-(44) and Dy, »,(7),“Dy, y,(1) €
c).

Theorem 17. (i) If (y,(t, 1), y,(t,v)) is a solution of the
problem (42)-(44), then (u,(t,r), u,(t, r)) satisfies

uy (67) +b () I P, (t,7)

+c(f) ((1 —t) Yo (1) +ty, (r))
1
—c(t) L G(t,s)uy (s,r)ds = f, (t, 1),

u, (6,7) + b (1) I Puy (2,7)

+c(t) (1 =1) o, (1) + 1y, (1) (45)

0 Ll G(t,9)uy (1) ds = f, (£7),

uy (7)< uy (8,7),

(1=1) (Yoo (1) = Yo (M) + £ (y1, (1) = 1, (1))
+ 1o, (1 (8,7) = uy (£,7))

I (0 (61— (67)] oy 120,

where “Dy, y,(t,1) = uy(t, 1), “Dyy, y,(t, 1) = u,(t, 7).

(ii) If (u, (¢, 1), u,(t, 1)) satisfies (45), then (y,(t, 1), y,(t, 1))
is a solution of the problem (42)-(44), where

i (t,1)
=(1=t) yo, (1) +ty,; (1)

1
- J G(t,s)u, (s,r)ds,
0

(46)
¥, (8, 1)
=(1=1) yo, (r) +ty, (1)
_ Jl G(t,s)u, (s, r)ds,
0
G (t,s)
t
RN e =t @)
= % t 1

I« 1—0¢>’ s<t.
(1-5) (t-s)
Proof. Suppose (y,(t, 1), y,(t, 1)) is a solution of the problem

(42)-(44).
Then, we can get

Ig+cDg+y1 (t,r) = Ig,u, (t,1),
& C (24 {04 (48)
Iy, Dy, y, (1) = Ip,uy (£,7) .
From the boundary condition (44), we have

v (1) =y, (1) + ¢ -t + Igu (1),
Vo (67) = Yo, (1) +dy -t + Ig,uy (t,7),
1 (Lr) =y, (1) + ¢ + Igouy (8,7)],_,
¥, (L) = yo, (1) +d; + I, u, (¢, r)ltzl >
(49)
Y11 (1) = yo, () + ¢ + Ig,uy (&, 1’)|t:1 ,
Y12 (1) = Yo, (1) +dy + Igouy (67)],_, >
Y11 (1) = you (1) = Ig,uy (6.1)],y = €
Y12 (1) = Y02 () = Ig,uy (6,7)] -, = dy.

Thus, we obtain

» (t7) =y, (1)
+ (Y11 (1) = Yo, (r) = Ig,uy (8, ’")|t=1)
t+ Igu (t,1),
(50)
¥, (t,7) = yo, (1)
+ (Y12 (1) = Yo, (r) = I§,u, (8, r)|t:1)

t+ Igu, (t,1),



and so we have

“Dfy () = I uy (t7),
(51)
CD§+y2 (t,7) = Ig;ﬁuz (7).
Using Green’s function, (50) can be expressed as follows:

y(tr) =1 1) yo, (r) +ty; (r)

1
- J G(t,s)u, (s,r)ds,
0

(52)
Yo (1) = (1 =1) Yo, () +ty, (1)

- Jl G(t,s)u, (s, r)ds.
0

From (43), (51), and (52), we can obtain (45).
On the other hand, since °Dy, y,(t,1) < “Dj, y,(t,7), we
have

u, (t,r) <u,(t,r). (53)
Atlast, from the inequality y, (t,7) < y,(t, 1), we can have
(1 =1) (Y02 (1) = y0, (1) + (y15(r) = 31, (1)
+ 15, (uy (£,7) —uy (t,7)) (54)
- Iy, (uy (t,7) —uy (,7))],_, - £ = 0.

Conversely, let us suppose that the pair (u,(t, 1), u;(t, 7))
satisfies (45). From (46), we can get

‘Do, y1 (t7) = uy (t,7),
o (55)
D0+y2 (t’ T) =Uu, (t’ T) .

Therefore, we have CDg+y1 t,r), CDg+y2(t, r) € C(I) and
SO we can get

Dy (61) = I Puy (1),

(56)
Dby, (t,7) = I8 Puy (1,7,
and
Dy, y, (t,1) +b (1) CD§+y1 (t,r)+c )y, (t,7)
= fl (t> r) >
(57)
‘Dy, v, (t,1) + b (1) CD§+)/2 (t,r) +c(t) y, (t,1)
= f2 (t> 7‘) .

We can easily obtain the other inequalities and prove the
boundary condition (44). O

By this theorem, the existence of solutions of (42)-(44) is
equivalent to the existence of solutions of (45).
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Now, let us consider the integral equation

uy (67) +b () I Pu, (t,7)
+c () (1 =1) yo, (1) +tyy, (1) +c () I uy (t,7)
- te(t) Igyuy (67,2, = f1 (67),
(58)
u, (t,7) + b () I Pu,y (8, 7)
+c(t) (1 =1) yop (r) + tyy 5 (1) + ¢ () Ig,uy (2, 7)

= te®) Ipuy (1)|,y = fo(61).

Assumption 1. q = (|bll/T(x — S+ 1) + 2||c[|/T(x + 1)) < 1.
Denote the following:

g tr) = fi(t,r)—c@)((1-1) yo, (r) + 1ty (1)),
gy ()= fr(t 1) —c(t) (1 1) Yo, (r) + 1y, 5 (1)),

(59)
u(l) (t,r) =0,

ug (t,r) =0.

We are going to consider a the scheme of successive
approximation

U () + b () TP () + e (8) IS U™ (8 r)
=g, (t,r) + tc (t) I, u} (¢, r)|t:1 ,
(60)
U () + b () TP () + e (8) ISl (6,7)

= g, (t,7) + tc (t) Ip,u5 (¢, r)|t:1 .

Lemma 18. The sequence (1) (t,r),u,(t,r)) that satisfies (60)
is a Cauchy’s sequence in C(I) x C(I).

Proof. We can have the following equations from ", (n+1)"
terms of the scheme of successive approximation

(u’lwrl (t,r) —uj (8, r))

+o ) I5F (U ()~ (1)

+e® I, (W (tr) -] (1))

= tc(t) I, (uf (br)—ui ' (8, r))|t:1 )

(61)

(u;“rl (t,r) —uj (t, r))

+o ) 15 F (™ (6 —ul (1))

+c®) I, (5™ (t,r) —1i5 (£,7))

=t I, (1 1) -5 6 0)] -



Abstract and Applied Analysis

For the first equation, we can get

n+l

ul " () —ul (¢, r)'

< b 15

1
W™ () - ul (8,7)]

+ llell I,

u?“ (t,r) —ul (t, r)|

+ |ltcl I,

uy (t,r) - uq’_l (t, r)“t:1 )

6]l llcll
S(1"(04—[3+1) +1"(oc+1)>

llell
I'(x+1)

. u7+1 (,r)— “T (,T)" +

et ) =i )|

and so we obtain

w1 " 1] el
|u1 (1) —uy (-,r)“ < (F(tx—ﬁ+ 1) " [(x+ 1))

et n = )

llell
+
I'(x+1)

. "u’l' (1) - ul_l e r)“ .

(63)

If

- 1 llcll
1-g+ el /T(a+1) T (x+1)

y: <1, (64)

we can get
|t o) = uf (7))

1 el
S T-(bl/T(@-p+ 1)+ el /T @+ D) T (@+1)

[ ) =i )

= 1 llcll
1-g+|cll/T(a+1) T (x+1)

it ) = 6

(65)

<yfu - 6n)).
As the same way, we can prove for u,(t, 7). O
Since the space C(I) is complete, we can say that
Ju, (1) € CU);
u(ln) (.’ r) — ﬁl (.’ r) N
(66)
Ju, (1) € CU);

W (1) — Ty (7).

Thus, we have
@ () +b () 10 a, (1) +c(0) IS4, (6,7)
=g, () + te () Ig, 1, (6,7)|,, »
(67)
i, (6r) + b () 15 P, (tr) + ¢ (8) IS4, (¢, 7)
= g, (t,r) + tc () Ig, 1, (t,7)],_, -
Let us denote the following:
len(g) (t,7) = g, (t,7) = g, (t,7)»
len (u") (t,r) = uj (t,r) —uy (t,7),
g1 (1) = fi (1)
—c(®)((L=1) yo, (r) +ty;, (1)),
9, (t,71) = f,(t,1)
—c(®) (1 =1) yop (r) + 13, (1)
len(g) (t,r) = len(f) (t,7)
—c(®) (1 -t)len(yo) + tlen (yy)).

(68)

Assumption 2. (I — A)(len(g)) > 0.

Assumption 3. (I — A)(tc(t)) = 0.

Theorem 19. If u,(t,r), u,(t, r) satisfy (67), then they satisfy
up (t,r) <u,(t,r),

tel (69)

Proof. Let us consider a the scheme of successive approxima-
tion

len (uo) (t,r) =0,

I n+1 (t,r) +b(t) I“;l;l n+1 (t,r)

en(u ) r) + o en(u ) r 0
+c(t) Iy, len (u””) (t,r) =len(g) (t,1)
+ te (t) Ig,len (u”) (t,7)|,, -

When n = 0, we can have the inequality len(u')(t,r) > 0
from len(u®)(t,r) = 0, Assumption 2, and Lemma 13.

For any n > 1, let us suppose that len(u")(¢,7) > 0.

Then, we can obtain

(I-A) (len(g) (t,7) + tc(t) Ig,len (u") (¢, 1)],_,)
=(I-A)(len(g)) (t.7) (71)
+ Ioden (u") (t7)],_, (T = A) (ke (£) 2 0
and so we have
len (u"™') (t,1) 2 0. (72)

By the limit of inequality (72), the proof is completed. [



Let us use the following notations:
len () (t,1) = yo, (r) = yo.1 (1)
len (y,) (t,1) = y1 5 (r) = y1, (1), (73)

len(u) (t,r) =u, (t,r) —u, (t,7).
Assumption 4. len(f)(t,7)—(T(a+2)(b(t)+T(a—B+1))/(T(a+
2)(a— B+ 1) — el — B+ 1) = [bIT(a + 2)))lllen(g)|| = 0.

Theorem 20. (1—t)-len(y,)(t,r)+t-len(y,)(t, r)+Iy,len(n)(t,
r) — Iy len(@)(t, )|,y - t > 0.

Proof. From equations (67), we can get

len (@) + b (1) 1o Plen (@) + ¢ (t) IS len (@)

(74)
=len(g) + tc(t) Ig,len @)|,_, »
len(g) (t,r)
=len(f)(tr) (75)
—c(®) ((1=1)len(y,) +tlen (yy)).
Since len(u) is the solution of the equation
len (i) = len (g) + tc (t) Ig,len (@)|,_,
(76)
—b(t) I Plen (@) — ¢ (£) IS len (@)
and the inequality
s(1—s)*t
G (t, S) < W’ (77)
we have
llen )|l < ||len (g)| + llcl
eI Jen (@)],_, — I5,len @) + [1b]
. ‘ Ig;ﬁlen (E)“
1 1 (78)
1-5)%
< ||len (g)" + cll - L %ds
— ol —
“|llen @) + Ta-pr1) “|llen @] .
We can get
1 . 1
J s(1-9)%"ds= 5 (79)
0 a+ o
and so we obtain
llen @)| < |[len (g)| + % < len (@)|
bl (80)
+ | - |llen (u)] .

F(a—p+1)

Abstract and Applied Analysis

By Assumption 1, we can have the inequalities

el 1Bl cg<]
['(x+2) F(oc—ﬁ+1)_q ’ (@)
llen @) < a —1Q) |len (9)] -
We can get
c(t) Ig,len () — tc (t) I, len (W)],_,
(82)
=len(g) —len(u) —b(t) Ig;ﬁlen (@)
and since c(t) > 0, we have
ct)((1=1t)-len(yy) (t,r) +t-len(y,) (t,7) )
+ Iy len (@) (t,7) — Ig,len (@) (t,1)|,_, - ) 2 0
and
ct)(A=1t)—len(y,) (t,r) +t-len(y,) (t,1))
(84)

+len(g) —len (m) - b (1) Ig;ﬁlen (m) = 0.

Since c¢(t)((1 —t) - len(y,)(t, 1) +t-len(y,)(t, 1)) + len(g) =
len(f), we have

len (f) = len (@) + b (t) IS Flen (7). (85)

By equation (81), we have a condition

len () > "lf”_(f;)“ (1 N F(ocb—(;’)+ 1)>, (56)

that is,

len(f)(t,r)

T(a+2)(b(#)+T(a-p+1))
_l"((x+2)l"(zx—[3+1)—||c||1"(oc—ﬁ+1)—||b||F(tx+2)

lten (9)] (87)
>0.
O

Now let us consider if the solutions of (42)-(44) generate
a fuzzy valued function and if the generated fuzzy valued
function satisfies (38), (39).

From Theorem 17 and equation (43), we can have the
following inequalities:

Do,y (t,7) <Dy, y, (t,7), tel, rel01],
y(tr)<y,(tr), tel rel0,1], (88)
CD§+y1 (t, 1) < CD§+y2 (t,r), tel, rel0,1].
Hence, we can consider the sets of intervals
{Uat,1) = ‘Do (6,7),D, 3, (7)), 7 € (0,11}, (89)
{Uﬁ 1) = [EDngy1 (t, 1) ,‘:Dé:y2 (t, r)] , r €0, 1]} , (90)

{Up (t.7) = [y (1), y, (1)), 7 € [0, 1]}, (91)
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Theorem 21. The sets of intervals (89)-(91) generate continu-
ous fuzzy valued functions.

Proof. Consider again the notion CDg+ (1) = u(tr),
CDg+y2(t, r) = uy(t,r).

Since u,(t,7),u,(t,r) satisfy (45), then we can have
u,(t,r) = uy(t,r).

Let us prove [u,(t, 1)), u,(t, )] D [uy(t,ry), uy(t, 1)1,
where0 <7, <r, <1

The proof is equivalent to

u (t,ry) <uy (67,),

u, (t,1y) <uy (£,17).

(92)

First, let us prove u,(t,r;) < wu,(t,r,). From the first
equation of (45), we can have

uy (67) + b (O T Py (8,7) + ¢ () I, uy (1)

=gy () + te () Ig,uy (67)|,, »

wy (1) + b () I Py (6,7) + ¢ () IS, (£, 7) >
=g, (t,r) + tc(t) Ij,u, (t, r)|t:1 .
We need the following notions:
g1 (1) = fi (61) —c () (1 =1) you () +ty1, (1),
G (1) = fo (61) = c () (1 = 1) yoo (r) + 31, (1),
Auy =uy (t,1,) —uy (1),
(94)
Auy =, (t,1,) —u, (t,17),
Agy =gy (try) = g1 (1),
Agy = g, (t.ry) = g, (t:11).
From (93), we can have
Au, +b(t) Ig;ﬁAul +c(t) I, Au,
(95)

= Ag, + tc () Ig, Auy |, _, .
Assumption 5. (I — A)Ag, = 0,(I — A)Ag, <0).
Let us consider a the scheme of successive approximation
Aulo =0,
A"+ b () ISP A ™ e () TS, Aw ™ (96)
= Ag, + tc () Iy, Au,"|,_, -
If n = 0, then we can have
A + b OIS PAu +c () 10, Au, = Ag,,  (97)
and so from Assumption 5 and Lemma 13, we can obtain

Au,' > 0.
Suppose Au," > 0 for any n > 1.

Let us consider the equation

Auy™ ™ b () TP A ™+ e () IS Auy™
(98)

= Agy + tc () Ig, Auy"|,_, .

By Assumptions 3, 5 and the induction, we can obtain (I —
A)(Ag, + te(®OIE Auy,_) = 0 and so we have Au, ™ > 0
by Lemma 10 .

Finally, we have Au; > 0. We can also prove Au, < 0 as
the same way by Lemma 14.

Then, let us consider u(t,r) = ﬂﬁi’l[ul(t, ), Uy (t, 7))
for any nondecreasing sequence 7, € (0,1] which sat-
isfies limy_, 1, = r, ie, lim, , u(t,r) = u,(t 1),
lim, |, u,(t, 1) = uy(t, 7).

From the first equation of (45), we have

uy (t7) + b () I P, (t,7)

+c () (1 —1) yop (r) + 1y, (1))

+c(t) Iy, u (t,7)

— tc (t) Iy, u (t, r)|t:1 = f1(t 1),

(99)

u, (1) +b(t) Ig;ﬁul (t. 1)

+c () ((1-1) Yo, (re) + tyi1 (r)

+c(t) I uy (1)

— te(t) I, uy (t,1)|,c, = f1 (677) -

and so we can get

u, (t,r) —uy (t,13)
=h(t,r.r) - b(D) Ig;ﬁ (uy (8, 7) =1y (7))
—c(t) Iy, (uy (1) —uy (t,77))

+te () Ig, (uy (67) —uy (8, rk))lt:l .

Let us denote the following:

(100)

Apuy =uy (t,1) —u; (t’ rk) >
h(t,r.r)=f,t.r) - fi(t.r) —c(@®)
(=) (yo1 (1) = yo1 (1))

+ t(yl,l (r) =y, (1))
Using the above notions, the equation can be written as

(101)

Akul + b (t) Ig;ﬁAkul +c (t) Ig+Aku1 (102)
=h(t,rer) + te(O) Ig Ay, -

Now, we use the following scheme of successive approxi-
mation

Akulo = 0,

An™ 4 b () P A ™ + () I8, A ™ (103)

=h(t,ror) + te () I, A", -
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When n = 0, we have

Akull +b(t) Ig;ﬁAkull +c(t) Ig+Ak”11
(104)
=h(t,re.r),

and then from Lemma 12, we can obtain inequality [|A 1, || <

(€% /(1 = @) (., 7).
Since lim,k_”llh(-, 7))l = 0, we can get

. 1
Aim A" = 0. (105)

For any n € N, suppose lim Awu," = 0 and let us
consider when n + 1.
We can have

re—"

A + b (O T A ™ + ¢ () I8 A ™
(106)

=h(t,rer) + te () If, A",y

and so we can obtain

rlil_r)lr (]’l (t, Tie> T) + tc (t) Ig+Akulnlt:1)
= llm h (t, rk, 7") + hm (tC (t) Ig+Akuln|t71)
re—r re—T -
= rliL)nrh (t,1o7)

(107)

J’l A" (s, Tk)d

+tc(t) lim
) 0o (1-9)'™

rn—r[ (“)

= TliLnrh (t,1o7)

+ tc (t) 1

J‘ i 2" (27%)
I'(x)

0 T (1-s)'7"
We can get
4]
ok (108)

1o qurslfas)i | (£ 1 r) + te () I, A, ", |

and so we can have lim, __, Au,"*" = 0.
Hence, we havelim, _, A u; = 0and as the same way, we
obtain lim,, _, Au, = 0, where Agu, = u,(t,7) — uy (£, 7).
Finally, we proved that the set of intervals
{[uy (&, 7), uy(t, )1},¢(0,1) generates a fuzzy valued function.
Denote the fuzzy valued function generated by the set of
intervals {[u; (¢, 7), u,(t, 7)]},¢(0,1) by a fuzzy valued function
7a(0).
For any t, € I, we can get

D (7, (8), 7 (£.))

= sup max {'CDg+y1 (t.r) =Dy, » (t*,r)|,

relo] (109)

CDg+)/2 (t, r) _ CDg+y2 (t*,r)”’ .

Abstract and Applied Analysis

Real-valued functions Dy, y,(t, 1), Dy, y,(t,r) are con-
tinuous since y, (t, 1), y,(t, r) are solutions of (42)-(44). So we
have D(7,(t), 7,(t.)) — 0(t — t,).

Therefore, the fuzzy valued function ¥,(t) is continuous.

As the same way, we can easily prove that the set of
intervals {Up(t, 1)}, generates a fuzzy valued function.

Now let us consider that the set of intervals {U,(t,7)},
generates a fuzzy valued function. The equation (46) can be
expressed as follows:

y (&) =1 —1) yo, (r) +ty; (r)

+ Jl (-G (t,9) uy (s,1)ds,
0
(110)
Vo (t1) = (L—1) yo, (r) + ty15 (1)

1
+j (=G () 4, (5, 7) ds.
0

Because Greens function is continuous and the set
of intervals {[u;(t,7),u,(t,7)]},¢(,1) generates a continuous
fuzzy valued function, the set of intervals that is composed
of right sides of these equations generates a fuzzy valued
function.

Hence, the set of intervals {[y, (t,7), y,(t,7)]}, generates a
fuzzy valued function.

Let us denote the fuzzy valued functions generated by

Then, we can easily prove that fuzzy valued functions
y.(), j/'ﬁ(t) are continuous. O

From equation (50), we can have
Y (67 + Yo (1) - t+ Ig,uy (1, r)|t:1 -t
= Yo, (N + 1, (1) -t + I uy (£,1),
X an)
Yy (1) + Yo, (r) -t + I, u, (t, r)|t:1 -t
= Yo, (1) + y15 (r) -t + g, u,y (t,7),
and we can get
)7*6})570®t&)lg+ ya|t:1®t:y0®yl®t®lg+ya' (112)
Theorem 22. °D{ 7, = 7,,°D} 7, = 7.
Proof. Let us consider again that the set of intervals,

{[CD‘())C+I(?+)’1 (t,7), CDngJz (¢, 1’)] }r

={[y &), 3, 0]}, = {U, &)},

generates a fuzzy valued function and the generated fuzzy
valued function is ,. So Iy, ¥, is °[(1, 1) — «]-differentiable
and “DY | 17, Vo = Va-

This shows that the left side of equation (112) is
[(1,1) — «]-differentiable.

Then, we can have

‘D 7. oD}, (7 ®t) @D, (I, Ful,r ®1)

(113)

C 0~ X Coll o o~ (114)
=D 1)y® Dy, (7 ot)® Dy 1o Ya-
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Furthermore, we can have CD‘il(j/'o ®t) = 0,
Dy (I, Fulizy ® ) = 0, 50 we obtain
DY H o_pY %y
Dl,ly* - Dl,l 0+ Yo = Va- (115)
As the same way, we can prove that ¢ Dﬁl V. = j/’ﬁ. O

Through the above investigations, we can see that 7, is
the solution of (38) and (39) by the sense of Definition 15.
In fact, from equation (112), we can see that

J.=(hey otel,y,)
oy (Fo®t® I, 7y, ®t

and we can see that the boundary condition is concluded for
the fuzzy valued function ¥,.
At last, we have the fuzzy equation

J.t)eb(t)® ypHect)®y, ()= f(). (117)

(116)

Thus, the fuzzy valued function ¥, is a solution of the
problem (38) and (39).

4. The Numerical Solution of the Fuzzy
Fractional Differential Equations by Using
Haar Wavelet Operational Matrix

Definition 23. The orthogonal set of Haar functions are
defined in the interval [0, 1) by

1
hy(t) = —
® = m’
: k-1 k-1/2
/2
1 2712 57 <t< Y (118)
AOTLES S S |
m 1275 57 <t£2j,
0, else,

wherei=0,1,---m—-1,m=2 Misa positive integer, and
j, k represent the integer decomposition of the index i.

We need the following notations:

T
H (1) = (ho (1), by (£) - ey (D)
T

C = (ot 6na1)
(119)

t, = (k—-05)At, k=T,m.

The following matrix is called Haar wavelet matrix on the
set of collocation points {t;}:

ho(t) by (t) ho ()
h(t) b (t) hy (t)

Hmat = . : (120)
hm—l. (tl) hm—l. (tZ) : hm—l (tm)

11

This is an orthogonal matrix; namely, Hm}u =H .
Put (I§, H)(t) = (I§, ho(0), I 1y (8), -+, I By (D)
Definition 24. m x m matrix Ff; determined by (I5, H)(f) =
Fj; - H(t) is called the operational matrix of the fractional
integral of order a.

If we use the matrix F; determined by

1 El Ez fm 1
01 El fm 2
Pt ! 00 1 &8s | (21
m* T (a+2)
00 -0 1

the following equation holds:

FHFH

mat mat’

(122)

where & = (k + 1) — 2k + (k- 1)**'.
To solve the problem (38), (39), first, we need to solve the
fractional integral equation sequence

g1 (1) = fitr) —c®) (1 —1) yo, () + 1ty (1)),
Gy (t,1) = fr (6, 1) —c(t) (1 =1) yo, () + ty,, (1))
(123)
“(1) (t,r) =0,
”(1) (t,r) =0,
W) + b O T PU () + e () IS4 (5 r)
=g, () + te () Ig,uf (8,7)],_, »
(124)

Wl () + b () ISP (6 ) + ¢ (6) ISl (2, 7)
=g, (t,7) + tc(t) Ig, 15 (8, r)|t:1

by using operational matrix and get u, (¢, ), u,(, r) approxi-
mately and then have y, (t,7), y,(t, r) by the equations

» (1) = Yo, (7)
+ (Y11 (1) = Yo () = Ig,uy (8, r)ltzl)
4+ Ig,uy (t,7),
(125)
Y2 (6:1) = Yo, ()
o
+ (V12 (1) = Yoo (1) = Ig,u, (&, T)|t:1)
4 Iy (67).
We first calculate (124)
T T
Cy, = (91 (tir) g0 (tr) o2 9y (G 7)) - Hoprs
(126)

CZZ = (9> (t7), 85 (t2:7) s+ 5 G5 (o)) - Hyp
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to solve (124) by using operational matrix. Using the notion
uy (t,r) = CZIH ),
uh (t,1) 1 = szH ),

(127)

g (tr) :=C, H(t),

g, (t1) = CyH(t),
we have the following repeat equations from (124).
W () + b () 0P (1) + e (8) I8 (8 7)
= g, (1) + te () I, uf (t,1)],_, »
W () + b () I P (6 r) + e (6) ISl (8, 7)
= g, (t,7) + te (t) Ip,uj (¢, r)|t:1 .
CrUH (8) +b (1) I, PCLM H (1) + ¢ (0 I, CLT H (1)

+ U

T
= Cng(t) + tc(t) ]8‘+C21H(f)'t:1 i

CiUH (6) +b (1) I, Pl H (1) + ¢ (0 I, CT H (1)

+ Uy

= Cy H (t) + tc (t) I,C H(t)'

0+~ u

_ (128)
n+1 n+1 7o
Ch'H (5 +b(1) C I,

PH(®) +c()C ' I3 H (1)
= CyH(®) + te(t)Cp I HO)|

CHUH (1) + b () CI I3 PHL (1) + ¢ (1) C IS H (1)
= CTH(t) +tc () C, Iy H(f)'

Cur 'H () + () Ci FyPH (1) +.¢ (4) T FiH (1)
= CoH () + tc(t)C, FH ()] _ 5

Cur H(0) +b()) CT Fy PH (1) +¢ (1) FiH (1)

_ T N oo
= Cy H(t) + tc(t) C,, FH (t)|t:1
This is a point equation.
Cul'H () + b (1) CZTIFIO;BH ()
+c(t) CZTIFI‘;H (te)

(129)
T n o
= Cng (tk) + tkC (tk) CulFHH (tM) >

i
2

On the other hand, we can have

CUUH (1) + b (1) CL iy PH (1)
+c(t) Cy FH (t) (130)

+C(tk)F ) ().

=Cy (I+b(t) Fy

Abstract and Applied Analysis

Denote the following:
A= ((I+b( Oy ﬂ+c(t )FI‘fI)
CH(ty), o (T+b(ty) Fiy P e (ty) Fly) H (ty)
Cy H (1) +t,c(t) Cy, FiiH (ty)
Cy H (1) +t,¢ (1) Cy, FiiH (tyr)

(131)

B:=

Cy H (ta) + tprc (6) Cyy FiyH (£y)

Then, the simultaneous equation to determine CZTI is as
follows:

AC," = B. (132)

Lemma 25. If||bllcp+licloqy < L equation (132) has a unique
solution.

Proof. Prove that the coefficient matrix A is nonnullity. We
can have

A=((T+b(t)EyP +c(t)EY)
(T4 (ty) PP+ c(ty) F) H (1))

=(H(t)+ (o) Fy P +e(t) E)

'H(tl)

CH(ty), - H (ty) + (b (tr) By P + ¢ (tay) Fy)
“H(ty)) = (H(t), H(ty))

+((b(t) F P+ c(ty) FY) (133)
CH (1), (b () Fiy " + e (1) Fi) H ()

_H, + A
A= ((b () Fy P+ c(t) F)
(B (tan) Fiy P+ (tar) Fiy) H (£4))

A=H,y+A=(I+AH,,)H,y

.H(tl)’...

Thus, the nonnullity of the matrix A is equivalent to the
nonnullity of the matrix (I + KHZW). On the other hand,

the inequality ||AVHZ;M|| < 1 guarantees the nonnullity of the
matrix (I + ZHZ;M)-

Since the inequality

|45,

, < 4], |Hoae, = 141, (134)

holds, the inequality ||Av||2 < 1 is a sufficient condition to
IIKHZWII < 1. And by the notion

A= ((b(tl)Fz_ﬁ*'C(tl)PIo;) (135)

(b (tar) Fry . +c(ty) Fry )H(tM))’

mat

'H(tl)
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we can obtain c(ty) H" (t1) (F:I)T
HT (1) (b(1) (7)) (1)) o | cwH®) (F)'
; ) -
o | @) e ) :
- e tae) HT (tar) (P
H (1) (b ) (F) + e (6) (F2)) (137)
(136)
(o) HT (0) (F?) + cle) HT (1) (7)) we have
| (peH @) (R e B ) () A'=D, +D, .
: &), = 1Dy + Dall, < D, + D], -
T a—p T T a\T
(b (t30) H (t20) (FH ) +eltu) B () (Fy) ) Now let us consider that
By using the notion of b(t) HT () (F;_ﬁ)T
b(e) HT (1) (E5) T (O (6) (55 ") )
1 '_ .
| e ey ’ :
.
: b(ta) H (6) (F5 )/
b(ty) H (ty) (P?I_ﬁ)T We already knew that
T
b(t,) H (1) (FF) b(t,) H () (FF)
b(t,) HT (1) (F*)' b(t,) HT (1) (F )
b(ta) H' (6a) (F5P) )\ b (1) H (0a0) (F ) o
b(e,) H (t,) (F )
b(e)HT (5) (FP)
= ( 2) (2)( " ) (b(tl)F:I_ﬁH(tl)’b(tz)P?I_ﬁH(tz)"" ’b(tM)P;_ﬁH(tM))
b (ta) H (t00) (FF)"
and because we obtain
; b(t) HT (1) (FF) b(t) HY (1) () \
(be) H (0) (FP) b () BPH (1) b)) ()| b ) ()
: . (142)
a-p\T o
= (b(t,)) H" (1) (FH /3) FS Prr (t,) b ) H () (B2 b ) H () ()T
= (b(t)*, (141) = diag (b (1)), (b (6))" -+ (b (t1))°)-
<b (t,) HT (t,) (P?I_ﬁ)T ,b(t,) PIO_‘I_I;H (t2)> Thus, we have

= b(t) b () HT (1) (F5F) FPH (1) =0, IDu, < \/m,gx (b(t))" < Wbleqy - (143)
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As the same way, we can obtain

IP., < Jmkax (e (#))” < llelleqn - (144)

Finally, we can see that
I4], = A7, < Wellca + el - (145)
O

We compute the solutions u,(t,7),u,(t,r) of (124) by

using the limit Czl , CZZ in the repeat equation (132).

Now, we consider the algorithm to compute (125) by using
the operational matrix. We can rewrite the equation

n (1) =y, (r)
+ (Y11 (1) = yo,0 () = Tg,uy (8, T)|t=1)

t+ Iy (1)

(146)
)’2 (t’ 7") = yO,Z (7")
+ (Y12 (1) = Yoo (1) = Ig,u, (2, T)|t:1)
t+ I, (1)
by using the notion
hy(t,r) = (1=1) yo1 () + 1ty (r)
(147)
hy (t,r) = (1 =t) yo, (r) +ty;, (r)
as follows:
n (1) =hy (1) - Igu (& r)|t:1 t+ Iy (1)
(148)
¥, (t,7) = hy (t,7) = Iy,u, (£, r)lt:1 b+ Igu, (t,r).
First, we denote the following as
hy (t,r) : = cle @),
(149)
hy (t,7) : = Cy H (1)
and compute
CZI = (hy (tir) by (t2r) sy (7)) - HZW
. , (150)
Chz = (hZ (tl’ T) > h2 (t2’ T) PR} h2 (tm’ T)) ' Hmat‘
Then, y,(t, 1), y,(t,r) are computed by
T T o T o
yi (t,7) = C, H(t) —tC, FiH (ty) + C, FyH (t)
(151)

v, (t,7) = Cy H (t) - tC, FyH () + C,, FiH (1)

from (132).
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5. Numerical Examples

Example 1. Consider a FVBP

DAy ebs(‘D)ly) (M ecey(®)

=(1+1)®(7.9,8,8.1), te(0,1),

(152)
y(0) = (=0.1,0,0.1),

y (1) = (=0.1,0,0.1),

where b,c € R,, y € C([0,1],Rg) and the boundary values
(-0.1,0,0.1), (=0.1,0,0.1), and (7.9,8,8.1) are triangular
fuzzy numbers. Now, let us consider the conditions for
Assumptions 1-5.

A condition for Assumption 1:

2lc]|
T'(x+1)

) =1.12838b + ¢

.
q‘(rm—ﬁ+n

<1l

(153)

A condition for Assumption 2: we can have

len(f)(t,r) = f,(t1r)— f1(t1)
—02(1-r)(1+1),
(154)
len(g) (t,r) =02(1—-r)(1+t)—c02(1—71)

=02(1-r)(1+t-c¢)
and so we can obtain an inequality
(I-A)(1+t-c)=0 (155)

for a condition for Assumption 2.
Consequently, we can have

(I-A)(Q+t—-c)=(1+t-c) bl P(1+t-0)

—cly, l+t—c)=(1+t-c)

b 0s 7
_r(1.5)<(1_c)t +E)

3
—%((I—C)t2+%>2(l—c) (156)
0

1.12838b<(1 —o)+ L) _ % <(1 Lo+ %))

5(—2.54858 + ¢) (=0.78475 + ¢)

1.5

+b(~1.88063 + 1.12838¢)
and so the condition for Assumption 2 is

0.5 (=2.54858 + ¢) (~0.78475 + ¢)
(157)
+b(~1.88063 + 1.12838¢) > 0.
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A condition for Assumption 3: we can easily prove that
the equation

TR e
(a=B)(a-p+1) ala+1)

(I-A)@t)=t-
(158)

is nonnegative.
A condition for Assumption 4: we can have

T(a+2)(b+T(a—B+1))
T@+2)T(a=p+1)— el T(a=B+1)—|bIT (a+2)

~ 6 (b +0.886227)
"~ 5.31736 — 6b — 0.886227¢

02(1-r)(1+1)

6 (b +0.886227) (159)

531736 — 6b — 0.886227¢

6 (b +0.886227) (2 — ¢) )
5.31736 — 6b — 0.886227¢

6(b+0.886227) (2 —¢) )
5.31736 — 6b — 0.886227¢ }

02(1-7r)(2-¢)

:0.2(1—r)<(1+t)—

20.2(1—r)<1—

So, we can see that the inequality

_ 6(b+0.886227) 2 )
5.31736 — 6b — 0.886227c ~

(160)

is a sufficient condition for Assumption 4. Finally, we have

5.31736 + 18b — 4.431135¢ — 6bc < 0. (161)
A condition for Assumption 5: first, we can have
filt,ry) - fi(tr) =1 +1)(7.9+0.1r,)
-(1+1)(7.9+0.1r))
=01(r,—-r)(1+1),
Yo (r2) = yo1 (r;) =0.1r, = 0.1 = (0.1r; —0.1)  (162)

=0.1(r,—1,),

Y11 (Tz) ~ 11 (71) =01 (”2 - 71) >
Ag, =01(r,-r)(1+t)(1-c).

We can easily obtain 1-3b/+/m—1.5¢ > 0 for (I-A)Ag, >
0.

As the same way, we can have the same inequality for (I —
A)Ag, < 0.

The following inequalities are conditions for the FBVP to
have a solution.

®1.12838b +c < 1
®@1-c>0

(® 0.5(-2.54858 + ¢)(-0.78475 + ¢) + b(-1.88063 +
1.12838¢) > 0

15

B 0.2 0.4

02 r

FIGURE L: Area of b and ¢ satisfying ®-® for Example 1.

(® 5.31736 + 18b — 4.431135¢ — 6bc < 0

®1-3b/\aA-15c>0

We show the area of b, ¢ that satisfies the above conditions
on Figure 1.

Example 2. Consider the following fuzzy boundary value
problem:

Dyt ebt)e(‘Dyly)(Hect) ey ()

=(1+1)®(7.9,8,8.1), te(0,1),

(163)
¥ (0) = (<0.1,0,0.1),

y(1) = (=0.1,0,0.1),
where b,c € C(I), y € C([0,1],Rp), b(t),c(t) = 0 and
(=0.1,0,0.1) and (7.9, 8, 8.1) are triangular fuzzy numbers.

Assumption 1. q = (|b|/T(ax = B + 1) + 2|c[l/T(x + 1)) =
1.12838|1b] + Icll < 1.

Assumption 2.

len(f)(t:r) = fo(t1) = fi (t,7)
=02(1-7)(1+1),

ct)((1=t)len(y,) +tlen(y;)) =c(t)02(1-71),

len(g) (t,r) =02(1—r) (1 +1£) —c(£)0.2(1 1)

(164)

=02(1-7r)(1+t-c(t).

We can have (I — A)(1 +t — c(t)) > 0 as a condition for
Assumption 2.

Assumption 3. (I — A)(tc(t)) = 0.
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Assumption 4. Denote ||[c[|| = min,¢ (o 1)lc(f)]; then we get

6 (b (t) + 0.886227)

02(1-7)(1+1) -
(1=n{+1) 5.31736 — 6 ||b]| — 0.886227 |c||

020 -r)2—llcll) =0.2(1 =1)

_((1 i 6(b(t) +0.886227) (2 — |||c|||)> (165)
5.31736 — 6 ||b]| — 0.886227 ||c||
>02(1-7)
' (1 _ 6(b(t) +0.886227) (2 - [llclll) )
5.31736 — 6 ||b|| — 0.886227 |ic|| }
So we obtain
_6 (b(t) +0.886227) (2 - |llcll]) (166)

= 5.31736 — 6 ||b|| — 0.886227 |||’

Assumption 5. We can obtain 1 — [c[| > 0,1 - 3||b|l// -
1.5|[c|| = 0 as Example 1.

Sufficient conditions are given as follows:

® 1.12838|1b|| + |Icll < 1

@UI-A)Q+t—c(t)=0

® (I-A)tc(r) >0

@ 1 > 6(b(t) + 0.886227)(2 - |llclI)/(5.31736 — 6||b]| —
0.886227lcl)

® 1-3|bll/+/m - 1.5]cl > 0

Let us consider especially for c¢(t) = 0.5t/(1 + ), b(t) =
0.2(1 — t). We can obtain that

llcll = 0.25,
6]l = 0.2,
[lc[l| = 0. (167)

1.12838 || + |ic|| = 1.12838 - 0.2 + 0.25 = 0.475676

<1,

That is, condition 1 holds. Using the inequalities 0.75 + t <
c(t) < 1+ 0.75¢, we can have

(I-A)(1+t-c(t)
=(l+t-c@E)-Al+t-c()

. Ot
B (1+1t%)
} 0.5¢
—02(0 -1 P14 - =22
40k ( ' <1+t2>>

0.5t 0.5t
L P U
(1+12) °+( (1+t2))
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>t+0.75-02(1—t) 17 (1+0.75¢)

0.5t
- m]§+ (1 + 075t)
0.2(1—1) (26" +£)

T (0.5)

=t+0.75 -

05t 0.5t + 0.125¢>
(1+1¢2) r(2)

>

> t+0.75-0.1(26°° + )
— (1 +0.75t) (0.5¢ +0.125¢°)
>t+0.55-0.1t"

— (1+0.75t) (0.5¢ +0.125t") > 0,
(168)

i.e., condition 3 holds.
We can obtain

(I - A) (te (1)) = te (1) - A(te (1))
0.5¢> 0.5t
“+e) _A((l +t2))

0.5¢> «p #2
= — +0.01¢] o
(1+12) o+ ((1+t2)

a—p tz
0.25¢

(1+2) 15, (2 (1 +12))

. 0.5¢2
T (1+12)

+0.005t1% P

(169)

0.25¢

—0.01I5 PP - —2
o (1+2) 181

0.5¢2
= —— _ +0.005-0.601802t>"

(1+¢2)
0.25¢°

~0.01-0.601802¢>° - ———
12 (1 +12)

= —0.00601802¢>° + 0.00300901£>°

0.5t>  0.0208333f°

1+£2 1+

t €[0,1]

and since 1 — 3||b||/+/m — 1.5|lc|| = 1 — 0.338514 — 0.375 =
0.286486 > 0, condition 5 holds.

Through the investigations, we can see that the problem
of Example 2 has a solution when c(¢) = 0.5t/(1 + £2), b(t) =
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TABLE 1: In case of r = 1 for Example 2.
t 7 (1) PACSY (6 1) pLACRY
0.015025 -0.104378 -0.104378 8.04222 8.04222
0.140625 -0.867268 -0.867268 9.80614 9.80614
0.265625 -1.47628 -1.47628 12.0982 12.0982
0.390625 -1.89576 -1.89576 14.7463 14.7463
0.515625 -2.08441 -2.08441 177042 177042
0.640625 -1.99603 -1.99603 20.9508 20.9508
0.765625 -1.5799 -1.5799 24.4836 24.4836
0.890625 -0.780805 -0.780805 28.3149 28.3149
0.984375 0.105687 0.105687 31.3979 31.3979
TABLE 2: In case of r = 0.5 for Example 2.

t yi(t: 1) yy(t, 1) y (t,1) ¥y (t,1)
0.015625 -0.153774 -0.054983 7.99234 8.0921
0.140625 -0.912267 -0.822269 9.74817 9.86412
0.265625 -1.51779 -1.43476 12.0285 12.1679
0.390625 -1.93488 -1.85664 14.6623 14.8303
0.515625 -2.12245 -2.04637 17.6034 17.805
0.640625 -2.03457 -1.95749 20.8309 21.0706
0.765625 -1.62082 -1.53898 24.3424 24.6248
0.890625 -0.826309 -0.7353 28.1502 28.4796
0.984375 0.0550747 0.1563 31.2141 31.5816

0.2(1 — t) and we can find out the solution approximately by
using scheme of successive approximation.

We have presented the numerical result of Example 2
by using proposed method in Tables 1 and 2. Table 1 is the
numerical results for Example 2 when the level value is equal
to 1 and Table 2 is the numerical results when the level
value is equal to 0.5. The first rows of Tables 1 and 2 are the
numeral values of the dependent variables and the second
rows are the values of the lower functions and the third rows
are the values of upper functions and the fourth and fifth
rows are the values of lower and upper functions for (1, 1)-
derivatives of y(t) for Example 2. For Tables 1 and 2, we
can know that y,(t,r) < y,(t,r) and y{'(t, r) < y;'(t, r)
have been satisfied. Also we can see that y,(t,7) < y,(t,7)
and y{’(t, r) < y;’(t, r) have been satisfied for all r €
(0,1]and y, (t,r), y,(t, r) constitute intervals. We compute by
Mathematica6.0.

6. Conclusion

We have studied one condition for a two-point boundary
value problem to have a solution and investigated one method
to calculate the solution. In conclusion, we have to consider
the cut-equations and problem (43) with the inequality con-
dition to get the fuzzy solution. The conditions were given by
the coefficients, boundary conditions, and nonhomogeneous
terms of fuzzy differential equations. The next step in the
research is to extend the results of this paper to generalized
cases.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Professor Manoj Gauthaman,
Editorial Office, for his consideration about our paper.

References

[1] H. Zarei, A. V. Kamyad, and A. A. Heydari, “Fuzzy modeling
and control of HIV infection,” Computational and Mathematical
Methods in Medicine, vol. 2012, Article ID 893474, 17 pages, 2012.

[2] R. M. Jafelice, L. C. de Barros, R. C. Bassanezi, and F. Gomide,
“Fuzzy modeling in symptomatic HIV virus infected popula-
tion,” Bulletin of Mathematical Biology, vol. 66, no. 6, pp. 1597-
1620, 2004.

[3] S. Salahshour, A. Ahmadian, F. Ismail, and D. Baleanu, “A frac-
tional derivative with non-singular kernel for interval-valued
functions under uncertainty;” Optik - International Journal for
Light and Electron Optics, vol. 130, pp. 273-286, 2017.

[4] V. Lupulescu, “Fractional calculus for interval-valued func-
tions,” Fuzzy Sets and Systems, vol. 265, pp. 63-85, 2014.



18

(5]

(10]

(13]

(14]

(15]

(16]

(17]

(18]

[19

[20]

S. Salahshour, T. Allahviranloo, and S. Abbasbandy, “Existence
and uniqueness results for fractional differential equations with
uncertainty;, Advances in Difference Equations, vol. 2012, article
112, 2012.

M. T. Malinowski, “Random fuzzy fractional integral equa-
tions—theoretical foundations,” Fuzzy Sets and Systems, vol.
265, pp. 39-62, 2015.

R. M. Jena and S. Chakraverty, “A new iterative method based
solution for fractional Black-Scholes option pricing equations
(BSOPE),” SN Applied Sciences, vol. 1, no. 1, p. 95, 2019.

K. Sin, M. Chen, H. Choi, and K. Ri, “Fractional Jacobi
operational matrix for solving fuzzy fractional differential
equation 1,” Journal of Intelligent & Fuzzy Systems: Applications
in Engineering and Technology, vol. 33, no. 2, pp. 1041-1052, 2017.
K. Sin, M. Chen, C. Wu, K. R, and H. Choi, “Application of
a spectral method to fractional differential equations under
uncertainty; Journal of Intelligent & Fuzzy Systems: Applications
in Engineering and Technology, vol. 35, pp. 4821-4835, 2018.

A. Ahmadian, F. Ismail, S. Salahshour, D. Baleanu, and E
Ghaemi, “Uncertain viscoelastic models with fractional order:
a new spectral tau method to study the numerical simulations
of the solution,” Communications in Nonlinear Science and
Numerical Simulation, vol. 53, pp. 44-64, 2017.

A. Ahmadian, S. Salahshour, M. Ali-Akbari, E. Ismail, and D.
Baleanu, “A novel approach to approximate fractional derivative
with uncertain conditions,” Chaos, Solitons & Fractals, vol. 104,
pp. 68-76, 2017.

R. M. Jena, S. Chakraverty, and S. K. Jena, “Dynamic response
analysis of fractionally damped beams subjected to external
loads using homotopy analysis method,” Journal of Applied and
Computational Mechanics, vol. 5, no. 2, pp. 355-366, 2019.

R. M. Jena and S. Chakraverty, “Solving time-fractional
Navier-Stokes equations using homotopy perturbation Elzaki
transform,” SN Applied Sciences, vol. 1, no. 1, p. 16, 2019.

S. Chakraverty, S. Tapaswini, and D. Behera, Fuzzy Arbitrary
Order System:Fuzzy Fractional Differential Equations and Appli-
cations, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016.

S. Salahshour, A. Ahmadian, and D. Baleanu, “Variation of con-
stant formula for the solution of interval differential equations
of non-integer order,” The European Physical Journal Special
Topics, vol. 226, no. 16-18, pp. 3501-3512, 2017.

D. O’Regan, V. Lakshmikantham, and J. J. Nieto, “Initial and
boundary value problems for fuzzy differential equations,”
Nonlinear Analysis. Theory, Methods & Applications, vol. 54, no.
3, pp. 405-415, 2003.

V. Lakshmikantham, K. N. Murty, and J. Turner, “Two-point
boundary value problems associated with non-linear fuzzy dif-
ferential equations,” Mathematical Inequalities & Applications,
vol. 4, no. 4, pp. 527-533, 2001.

R. P. Agarwal, V. Lakshmikantham, and J. J. Nieto, “On the
concept of solution for fractional differential equations with
uncertainty,’ Nonlinear Analysis: Theory, Methods ¢ Applica-
tions, vol. 72, no. 6, pp- 2859-2862, 2010.

P. Prakash, J. J. Nieto, S. Senthilvelavan, and G. Sudha Priya,
“Fuzzy fractional initial value problem,” Journal of Intelligent &
Fuzzy Systems: Applications in Engineering and Technology, vol.
28, no. 6, pp. 2691-2704, 2015.

M. Mazandarani and A. V. Kamyad, “Modified fractional Euler
method for solving fuzzy fractional initial value problem,” Com-

munications in Nonlinear Science and Numerical Simulation, vol.
18, no. 1, pp. 12-21, 2013.

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(30]

(31]

Abstract and Applied Analysis

A. Khastan and J. J. Nieto, “A boundary value problem for
second order fuzzy differential equations,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 72, no. 9-10, pp. 3583-3593,
2010.

J. J. Nieto, R. Rodriguez-Lopez, and M. Villanueva-Pesqueira,
“Exact solution to the periodic boundary value problem for
a first-order linear fuzzy differential equation with impulses;”
Fuzzy Optimization and Decision Making, vol. 10, no. 4, pp. 323-
339, 2011.

H. V. Ngo, V. Ho, and M. D. Tran, “Fuzzy fractional differen-
tial equations under Caputo-Katugampola fractional derivative
approach,” Fuzzy Sets and Systems, 2018.

H. V.Ngo, V. Lupulescu, and D. O’Regan, “A note on initial value
problems for fractional fuzzy differential equations,” Fuzzy Sets
and Systems, vol. 347, pp. 54-69, 2018.

Y. Wang, S. Sun, and Z. Han, “Existence of solutions to bound-
ary value problems for a class of nonlinear fuzzy fractional
differential equations,” Advances in Analysis, vol. 2, no. 4, 2017.

N. A. Gasilov, §. E. Amrahov, A. G. Fatullayev, and I. F.
Hashimoglu, “Solution method for a boundary value problem
with fuzzy forcing function,” Information Sciences, vol. 317, pp.
349-368, 2015.

B. Bede and L. Stefanini, “Generalized differentiability of fuzzy-
valued functions,” Fuzzy Sets and Systems, vol. 230, pp. 119-141,
2013.

B. Bede and S. G. Gal, “Generalizations of the differentiability
of fuzzy-number-valued functions with applications to fuzzy
differential equations,” Fuzzy Sets and Systems, vol. 151, no. 3,
pp. 581-599, 2005.

A. Khastan, E. Bahrami, and K. Ivaz, “New results on multiple
solutions for Nth-order fuzzy differential equations under
generalized differentiability,” Boundary Value Problems, vol.
2009, Article ID 395714, 20009.

S. Tapaswini, S. Chakraverty, and T. Allahviranloo, “A new
approach to nth order fuzzy differential equations,” Computa-
tional Mathematics and Modeling, vol. 28, no. 2, pp. 278-300,

2017.

V. Lupulescu, L. S. Dong, and N. Van Hoa, “Existence and
uniqueness of solutions for random fuzzy fractional integral
and differential equations;” Journal of Intelligent & Fuzzy Sys-
tems: Applications in Engineering and Technology, vol. 29, no. 1,
pp. 27-42, 2015.



