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In this work, we define a new class of functions of the Bernoulli type using the Riemann-Liouville fractional integral operator and
derive a generating function for these class generalized functions.Then, these functions are employed to derive formulas for certain
Dirichlet series.

1. Introduction

The Bernoulli polynomials are defined by the generating
function [1]

∞∑
𝑛=0

𝐵𝑛 (𝑥) 𝑡𝑛𝑛! = 𝑡𝑒𝑥𝑡𝑒𝑡 − 1 (|𝑡| < 2𝜋) . (1)

When 𝑥 = 0, 𝐵𝑛 = 𝐵𝑛(0) are called Bernoulli numbers. The
following property is well known:

𝐵𝑛 (𝑥) = 𝑛∑
𝑗=0

(𝑛
𝑗)𝐵𝑛−𝑗𝑥𝑗. (2)

Also, the Bernoulli polynomials are defined by the following
Fourier series [2]:

𝐵𝑛 (𝑥) = − 𝑛!(2𝜋𝑖)𝑛
∞∑
𝑘=−∞

𝑘−𝑛𝑒2𝜋𝑖𝑘𝑥 (0 ≤ 𝑥 < 1) . (3)

Various generalizations of the Bernoulli polynomials have
been proposed. For example, Natalini [3] gave the following
generalization:

𝐸1,𝑚+1 (𝑡) 𝑒𝑥𝑡 = ∞∑
𝑛=0

𝐵[𝑚−1]𝑛 (𝑥) 𝑡𝑛𝑛! , (4)

where 𝐸𝛼,𝛽(𝑡) is the two-parametric Mittag-Leffler function,
so that, obviously, 𝐵𝑛(𝑥) := 𝐵[0]𝑛 (𝑥). Another generalization is
given by Balanzario [4]:

B𝑛 (𝑥) = ∫𝑥
0
B𝑛−1 (𝑦) 𝑑𝑦 + ∫1

0
(𝑦 − 1)B𝑛−1 (𝑦) 𝑑𝑦, (5)

where B0(𝑥) is given and 𝑛 ≥ 1. In case B0(𝑥) = 1 for 𝑥 ∈[0, 1), thenB𝑛(𝑥) ⋅ 𝑛! is the usual 𝑛-th Bernoulli polynomial.
Balanzario and Sanchez [5] derive the following generating
function forB𝑛(𝑥) defined in (5):

∞∑
𝑘=0

B𝑘 (𝑥) 𝑡𝑘 = 𝑡𝑒𝑥𝑡𝑒𝑡 − 1 [𝑎0 − ∫1
0
B

0 (1 − 𝑦) 𝑒𝑡𝑦 − 1𝑡 𝑑𝑦]

+ ∫𝑥
0
𝑒𝑡(𝑥−𝑦)B0 (𝑦) 𝑑𝑦,

(6)

where B0(𝑥) is given and 𝑎0 = ∫1
0
B0(𝑥)𝑑𝑥; they used

these generalized Bernoulli polynomials to derive formulas
of certain Dirichlet series.

Rahimkhani et al. [6] define the fractional-order
Bernoulli functions, such as the functions obtained by
changing the variable 𝑡 to 𝑥𝛼 in (3), and applied these
functions for solving the fractional Fredholem-Volterra
integrodifferential equations.
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In the present paper, new functions called generalized
fractional-order Bernoulli functions are defined by a gener-
alization of (5) and obtain a generalization of the generating
function (6). Also, given a generalization of the Fourier series
(3), we use these functions to derive formulas for certain
Dirichlet series and finally, some examples are shown.

2. Preliminaries

In this section, we give some basic definitions and properties
of fractional calculus theory which are used in this work.

Definition 1. The Riemann-Liouville fractional integral of
order 𝛼 ∈ R+ is defined by

(𝐼𝛼𝑓) (𝑥) = 1Γ (𝛼) ∫
𝑥

0

𝑓 (𝑡)
(𝑥 − 𝑡)1−𝛼𝑑𝑡, (7)

where 𝑥 > 0 and Γ is the Gamma function.

It can be directly verified that

(𝐼𝛼𝑡𝛽) (𝑥) = Γ (𝛽)
Γ (𝛽 + 𝛼)𝑥𝛽+𝛼−1, (8)

where 𝛼 > 0 and 𝛽 > 0.
Definition 2. The Caputo fractional derivative of order 𝛼 ∈
R+ is defined by

(𝐷𝛼𝑓) (𝑥) = (𝐼𝑟−𝛼𝐷𝑟𝑓) (𝑥) , (9)

where𝐷 = 𝑑/𝑑𝑥, 𝑟 = [𝛼]+ 1 for 𝛼 ∉ N0 and 𝑟 = 𝛼 for 𝛼 ∈ N0.

Now, when 𝛼 ∈ R+, the Caputo fractional differential
operator 𝐷𝛼 provides operation inverse to the Riemann-
Liouville fractional integration operator 𝐼𝛼; the proof can be
seen in [7].

Lemma 3. Let 𝛼 ∈ R+ and 𝑓(𝑥) a continuous function in the
interval [0, 1]. Then, (𝐷𝛼𝐼𝛼𝑓)(𝑥) = 𝑓(𝑥).

Now, we define the Laplace transform of a function 𝑓(𝑥)
of a variable 𝑥 ∈ R+ by

L [𝑓 (𝑥)] (𝑘) = ∫∞
0

𝑒−𝑘𝑥𝑓 (𝑥) 𝑑𝑥 (𝑘 ∈ C) , (10)

if the integral converges and its inverse by

L
−1 [𝑓 (𝑘)] (𝑥) = 12𝜋𝑖 ∫

𝛾+𝑖∞

𝛾−𝑖∞
𝑒𝑘𝑥𝑓 (𝑘) 𝑑𝑘, (11)

with 𝛾 > 𝜎, where 𝜎 is the abscissa of convergence.
Under suitable conditions, the Laplace transform of the

Caputo fractional derivative 𝐷𝛼𝑓 is given by [7]

L [𝐷𝛼𝑓 (𝑥)] (𝑘) = 𝑘𝛼L [𝑓 (𝑥)] (𝑘)
− 𝑟−1∑
𝑗=0

𝑘𝛼−𝑗−1 (𝐷𝑗𝑓) (0) . (12)

Definition 4. The two-parametric Mittag-Leffler function

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝛼𝑘 + 𝛽) (𝛼 > 0, 𝛽 ∈ C) , (13)

generalizes the classical Mittag-Leffler function

𝐸𝛼 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝛼𝑘 + 1) (𝛼 > 0) . (14)

Using Definition 4, we obtain the formulas

𝐸1,𝑚 (𝑧) = 1𝑧𝑚−1 (𝑒𝑧 − 𝑚−2∑
𝑘=0

𝑧𝑘𝑘! ) ,
R𝑒 [𝑥𝛽−1𝐸1,𝛽 (𝑖𝜆𝑥)] = 𝑥𝛽−1𝐸2,𝛽 (− (𝜆𝑥)2) ,
I𝑚[𝑥𝛽−1𝐸1,𝛽 (𝑖𝜆𝑥)] = 𝜆𝑥𝛽𝐸2,1+𝛽 (− (𝜆𝑥)2) ,

(15)

where 𝑚 ∈ N, 𝛽 > 0, and 𝜆 ∈ R. From above equations, we
have

𝑥𝑚𝐸2,1+𝑚 (−𝜆2𝑥2) = 1𝜆𝑚 (cos (𝑚𝜋2 − 𝜆𝑥)

− 𝑚−1∑
𝑘=0

(𝜆𝑥)𝑘𝑘! cos(𝑚𝜋2 − 𝑘𝜋2 )) .
(16)

The following differentiation formula is an immediate conse-
quence of Definition 4

( 𝑑𝑑𝑧)
𝑚 [𝑧𝛽−1𝐸𝛼,𝛽 (𝑧𝛼)] = 𝑧𝛽−𝑚−1𝐸𝛼,𝛽−𝑚 (𝑧𝛼)

(𝑚 ∈ N) .
(17)

Using Definition 4 and term-by-term integration, we arrive
at

1Γ (𝛼) ∫
𝑧

0
(𝑧 − 𝑡)𝜇−1 𝐸𝛼,𝛽 (𝜆𝑡𝛼) 𝑡𝛽−1𝑑𝑡

= 𝑧𝜇+𝛽−1𝐸𝛼,𝛽+𝜇 (𝜆𝑧𝛼) ,
(18)

where 𝜇 > 0 and 𝛽 > 0. From (18) we obtain

(𝐼𝛼𝑡𝑛𝛼𝐸2,1+𝑛𝛼 (𝜆𝑡2)) (𝑥) = 𝑥(𝑛+1)𝛼𝐸2,1+(𝑛+1)𝛼 (𝜆𝑥2) , (19)

(𝐼𝛼𝑡1+𝑛𝛼𝐸2,2+𝑛𝛼 (𝜆𝑡2)) (𝑥)
= 𝑥1+(𝑛+1)𝛼𝐸2,2+(𝑛+1)𝛼 (𝜆𝑥2) . (20)

It follow from the well-known discrete orthogonality
relation

𝑚−1∑
ℎ=0

𝑒2𝜋𝑖ℎ𝑘/𝑚 = {{{
𝑚, if 𝑘 ≡ 0 (mod𝑚) ,
0, if 𝑘 ̸≡ 0 (mod𝑚) (21)
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and formula (18) that

(𝐼𝛼 cosh [√𝜆𝑡]) (𝑥) = 𝑥𝛼𝐸2,𝛼+1 (𝜆𝑥2) , (22)

(𝐼𝛼 senh [√𝜆𝑡]
√𝜆 ) (𝑥) = 𝑥𝛼+1𝐸2,𝛼+2 (𝜆𝑥2) (𝛼 > 0) . (23)

Now, we state an important relation between the Laplace
transform and Mittag-Leffler function; the proof can be seen
in [8].

Lemma 5. The following formula is true:

∫∞
0

𝑒−𝑘𝑥𝑥𝛽−1𝐸𝛼,𝛽 (𝑎𝑥𝛼) 𝑑𝑥 = 𝑘𝛼−𝛽𝑘𝛼 − 𝑎 , (24)

where 𝛼 > 0, 𝛽 > 0, and 𝑘 > |𝑎|1/𝛼.
3. Generalized Fractional-Order
Bernoulli Functions

In this section, first we define a new set of fractional-
order Bernoulli functions bymeans of the Riemann-Liouville
fractional integration operator.

Definition 6. Let B𝛼0 (𝑥) be a periodic function of period 1.
We define the fractional-order Bernoulli functions by

B
𝛼
𝑛 (𝑥) = (𝐼𝛼B𝛼𝑛−1) (𝑥) − 1𝛼Γ (𝛼) ∫

1

0

B𝛼𝑛−1 (𝑡)(1 − 𝑡)−𝛼 𝑑𝑡, (25)

where 𝛼 > 0 and 𝑛 ∈ N.

In the case, 𝛼 = 1, then B1𝑛(𝑥) are the generalization of
the Bernoulli polynomials defined in (5). For example, when
B𝛼0 (𝑥) = 1 for 0 ≤ 𝑥 < 1, the first two fractional-order
Bernoulli functions are

B
𝛼
1 (𝑥) = 𝑥𝛼Γ (1 + 𝛼) − 1Γ (2 + 𝛼) ,

B
𝛼
2 (𝑥) = 𝑥2𝛼Γ (1 + 2𝛼) − 𝑥𝛼Γ (1 + 𝛼) Γ (2 + 𝛼)

+ 1
(Γ (2 + 𝛼))2 −

1Γ (2 + 2𝛼) .
(26)

The functions defined (25) satisfy the following proper-
ties:

∫1
0
B
𝛼
𝑛 (𝑥) 𝑑𝑥 = 0

and (𝐷𝛼B𝛼𝑛) (𝑥) = B
𝛼
𝑛−1 (𝑥) .

(27)

These assertions are followed by integrating (25) and
Lemma 3, given that (𝐷𝛼𝑐)(𝑥) = 0, for 𝑐 ∈ R.

In the following theorem, we obtain a generating function
for the fractional-order Bernoulli functions defined in (25).

Theorem 7. Let B𝛼0 (𝑥) be a periodic function of period 1.
Suppose that B𝛼0 (𝑥) has a continuous derivative in the open
interval (0, 1). Let 𝐴0 = ∫1

0
B𝛼0 (𝑥)𝑑𝑥 and {B𝛼𝑛} be the

sequence defined by (25). Then for 𝛼 > 0,
∞∑
𝑛=0

B
𝛼
𝑛 (𝑥) 𝑡𝑛

= 𝐸𝛼 (𝑡𝑥𝛼)𝐸𝛼,2 (𝑡) [𝐴0 − ∫1
0
𝑦𝐷B

𝛼
0 (1 − 𝑦) 𝐸𝛼,2 (𝑡𝑦𝛼) 𝑑𝑦]

+ ∫𝑥
0
𝐷B0 (𝑦) 𝐸𝛼 (𝑡 (𝑥 − 𝑦)𝛼) 𝑑𝑦.

(28)

Proof. We proceed formally as in [9, Problem 9.785]. Con-
sider the following fractional differential equation:

𝐷𝛼𝐺 (𝑥, 𝑡) − 𝑡𝐺 (𝑥, 𝑡) = 𝐷𝛼B𝛼0 (𝑥) , (29)

for aB𝛼0 (𝑥) given function and

𝐺 (𝑥, 𝑡) = ∞∑
𝑛=0

B
𝛼
𝑛 (𝑥) 𝑡𝑛. (30)

Applying the Laplace transform to (29) and using (12), we
obtain

L [𝐺 (𝑥, 𝑡)] (𝑘)
= 𝑘𝛼𝑘𝛼 − 𝑡L [B𝛼0 (𝑥)] (𝑘)

+ 1𝑘𝛼 − 𝑡
𝑚−1∑
𝑗=0

𝑘𝛼−𝑗−1 [(𝐷𝑗𝐺) (0, 𝑡) − (𝐷𝑗B𝛼0) (0)] ,
(31)

where𝑚 = [𝛼]+1.Then, using the inverse Laplace transform
in above equation, we arrive to the equation

𝐺 (𝑥, 𝑡) = L
−1 [ 𝑘𝛼𝑘𝛼 − 𝑡L [B𝛼0 (𝑥)] (𝑘)] (𝑥)

+ (𝐺 (0, 𝑡) −B
𝛼
0 (0))L−1 [ 𝑘𝛼−1𝑘𝛼 − 𝑡] (𝑥) .

(32)

Therefore, by Lemma (25) and given thatL[𝛿(𝑥)](𝑘) = 1, we
get

𝐺 (𝑥, 𝑡) = (𝐺 (0, 𝑡) −B
𝛼
0 (0)) 𝐸𝛼 (𝑡𝑥𝛼) + 𝐸𝛼 (𝑡𝑥𝛼)

∗ (𝐷𝛿 (𝑥) ∗B
𝛼
0 (𝑥))

= 𝐺 (0, 𝑡) 𝐸𝛼 (𝑡𝑥𝛼)
+ ∫𝑥
0
𝐸𝛼 (𝑡 (𝑥 − 𝑦)𝛼)𝐷B

𝛼
0 (𝑦) 𝑑𝑦,

(33)

where 𝛿(𝑥) is the Dirac delta function, and
(𝑓 ∗ 𝑔) (𝑥) = ∫𝑥

0
𝑓 (𝑦) 𝑔 (𝑥 − 𝑦) 𝑑𝑦 (34)
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is the convolution of the functions 𝑓 and 𝑔. Now, we integrate
(33) from 0 to 1 with respect to 𝑥 and by (27) and (18) we
obtain

𝐴0 = 𝐺 (0, 𝑡) 𝐸𝛼,2 (𝑡)
+ ∫1
0
∫𝑥
0
𝐸𝛼 (𝑡 (𝑥 − 𝑦)𝛼)𝐷B

𝛼
0 (𝑦) 𝑑𝑦𝑑𝑥. (35)

Solving for 𝐺(0, 𝑡) and substituting in (33) we obtain our
result.

Observe that if we set 𝛼 = 1 andB𝛼0 (𝑥) = 1 for 𝑥 ∈ [0, 1)
in Theorem 7, then we obtain the corresponding unification
and generalization of the generating function (1) of the usual
Bernoulli polynomials. In case 𝛼 = 1 inTheorem 7, we obtain
the generating function (6).

In the next theorem, we compute the fractional-order
Bernoulli functions defined in (25) through the two-
parametric Mittag-Leffler function.

Theorem 8. Let B𝛼0 (𝑥) be a periodic function of period one
and piecewise continuous in the open interval (0, 1). Let 𝐴0
and {B𝛼𝑛} be as in Theorem 7. Then for 𝑛 ≥ 1,
B
𝛼
𝑛 (𝑥) = 𝐴0 ( 𝑥𝑛𝛼Γ (1 + 𝑛𝛼) − 1Γ (2 + 𝑛𝛼)) + 𝑛−1∑

𝑘=1

B
𝛼
𝑘 (0)

⋅ ( 𝑥(𝑛−𝑘)𝛼Γ (1 + (𝑛 − 𝑘) 𝛼) − 1Γ (2 + (𝑛 − 𝑘) 𝛼))
+ 2∞∑
𝑗=1

𝐴𝑗 (𝑥𝑛𝛼𝐸2,1+𝑛𝛼 (−𝜆2𝑗𝑥2) − 𝐸2,2+𝑛𝛼 (−𝜆2𝑗))

+ 4𝜋∞∑
𝑗=1

𝑗𝐵𝑗 (𝑥1+𝑛𝛼𝐸2,2+𝑛𝛼 (−𝜆2𝑗𝑥2)
− 𝐸2,3+𝑛𝛼 (−𝜆2𝑗)) ,

(36)

where 𝜆𝑗 = 2𝜋𝑗 and 𝐴𝑗 and 𝐵𝑗 are the Fourier coefficients of
B𝛼0 (𝑥).
Proof. The proof is by mathematical induction on 𝑛. Since𝐵𝛼0 (𝑥) is piecewise continuous, then we can consider its
Fourier series

𝐵𝛼0 (𝑥) = 𝐴0 + 2∞∑
𝑗=1

(𝐴𝑗 cos (𝜆𝑗𝑥) + 𝐵𝑗 sin (𝜆𝑗𝑥)) . (37)

Let 𝑛 = 1. Then by (22), (23), and (25) we obtain

B
𝛼
1 (𝑥) = (𝐼𝛼𝐴0) (𝑥) + 2∞∑

𝑗=1

(𝐴𝑗 (𝐼𝛼 cos (𝜆𝑗𝑡)) (𝑥)

+ 𝐵𝑗 (𝐼𝛼 sin (𝜆𝑗𝑡)) (𝑥)) − 𝐴0𝛼Γ (𝛼) ∫
1

0

1
(1 − 𝑡)−𝛼 𝑑𝑡

+ 2𝛼Γ (𝛼)
∞∑
𝑗=1

∫1
0

𝐴𝑗 cos (𝜆𝑗𝑡) + 𝐵𝑗 sin (𝜆𝑗𝑡)(1 − 𝑡)−𝛼 𝑑𝑡

= 𝐴0 ( 𝑥𝛼Γ (1 + 𝛼) − 1Γ (2 + 𝛼))
+ 2∞∑
𝑗=1

𝐴𝑗 (𝑥𝛼𝐸2,1+𝛼 (−𝜆2𝑗𝑥2) − 𝐸2,2+𝛼 (−𝜆2𝑗))

+ 2∞∑
𝑗=1

𝜆𝑗𝐵𝑗 (𝑥1+𝛼𝐸2,2+𝛼 (−𝜆2𝑗𝑥2) − 𝐸2,3+𝛼 (−𝜆2𝑗)) .
(38)

Now, we assume the theorem true for a given 𝑛 and we will
prove that it is valid for 𝑛 + 1. From (25)

B
𝛼
𝑛+1 (𝑥) = (𝐼𝛼B𝛼𝑛) (𝑥) − 1𝛼Γ (𝛼) ∫

1

0

B𝛼𝑛 (𝑡)(1 − 𝑡)−𝛼 𝑑𝑡, (39)

applying (8), (19), and (20) and the above equation we get the
result.

4. Evaluation by Certain Dirichlet Series

For the proof of the following theorems one proceeds as in
Balanzario [10], using Theorem 8 and (16).

Theorem 9. Let {𝑓𝑗} be a sequence of complex numbers of
period T, so that 𝑓𝑗+𝑇 = 𝑓𝑗 for all 𝑗 ∈ N. Let B𝛼0 (𝑥), {B𝛼𝑛},
and 𝐴𝑗 be as in Theorem 8. Suppose 𝑛𝛼 is par and 𝑓𝑇−𝑗 = 𝑓𝑗
for each 𝑗 ∈ {1, 2, . . . , 𝑇 − 1} and suppose 𝑛𝛼 is impar and𝑓𝑇−𝑗 = −𝑓𝑗 for each 𝑗 ∈ {1, 2, . . . , 𝑇 − 1} and 𝑓𝑇 = 0. Then

∞∑
𝑗=1

𝐴𝑗𝑗𝑛𝛼 (𝑓𝑗 − 𝑛𝛼−1∑
𝑘=0

𝛾𝑛𝛼𝑘 (2𝜋𝑗)𝑘
𝑘! cos (𝜋2 (𝑛𝛼 − 𝑘)))

= (2𝜋)𝑛𝛼2 ( 𝑇∑
𝑚=1

𝛽𝑛𝛼𝑚B𝛼𝑛 (𝑚𝑇 )

− 𝐴0𝑇𝑛𝛼
𝑇∑
𝑚=1

𝛽𝑛𝛼𝑚 𝑚𝑛𝛼Γ (1 + 𝑛𝛼)
− 𝑛−1∑
𝑘=1

𝛾𝑛𝛼(𝑛−𝑘)𝛼Γ (1 + (𝑛 − 𝑘) 𝛼)B𝛼𝑘 (0)) ,

(40)

where

𝛽𝑛𝛼𝑚 = 1𝑇
𝑇∑
𝑘=1

𝑓𝑘 cos(𝑛𝛼𝜋2 − 2𝜋𝑚 𝑘𝑇) ,

𝛾𝑛𝛼𝑘 = 1𝑇𝑘
𝑇∑
𝑚=1

𝑚𝑘𝛽𝑛𝛼𝑚 .
(41)

Theorem 10. Assume the notation of Theorem 10. If 𝑛𝛼 is
impar and 𝑓𝑇−𝑗 = 𝑓𝑗 for each 𝑗 ∈ {1, 2, . . . , 𝑇 − 1} and if 𝑛𝛼 is
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par and 𝑓𝑇−𝑗 = −𝑓𝑗 for each 𝑗 ∈ {1, 2, . . . , 𝑇 − 1} and 𝑓𝑇 = 0,
then

∞∑
𝑗=1

𝐵𝑗𝑗𝛼𝑛 (−𝑓𝑗 + 𝑛𝛼∑
𝑘=0

𝜑𝑛𝛼𝑘 (2𝜋𝑗)𝑘
𝑘! sin (𝜋2 (𝑛𝛼 − 𝑘)))

= (2𝜋)𝑛𝛼2 ( 𝑇∑
𝑚=1

𝜇𝑛𝛼𝑚B𝛼𝑛 (𝑚𝑇 )

− 𝐴0𝑇𝑛𝛼
𝑇∑
𝑚=1

𝜇𝑛𝛼𝑚 𝑚𝑛𝛼Γ (1 + 𝑛𝛼)
− 𝑛−1∑
𝑘=1

𝜑𝑛𝛼(𝑛−𝑘)𝛼Γ (1 + (𝑛 − 𝑘) 𝛼)B𝛼𝑘 (0)) ,

(42)

where

𝜇𝑛𝛼𝑚 = 1𝑇
𝑇∑
𝑘=1

𝑓𝑘 sin(𝑛𝛼𝜋2 − 2𝜋𝑚𝑘𝑇) ,

𝜑𝑛𝛼𝑘 = 1𝑇𝑘
𝑇∑
𝑚=1

𝑚𝑘𝜇𝑛𝛼𝑚 .
(43)

Finally, some examples are given.

Example 1. As the first example, we consider B𝛼0 (𝑥) be of
period one such that B𝛼0 (𝑥) = 𝑥1/2 for 0 ≤ 𝑥 < 1. Let𝛼 = 1/2, 𝑛 = 2, 𝑇 = 8, 𝜆1 = 𝜆5 = −1, 𝜆3 = 𝜆7 = 1, and𝜆2 = 𝜆4 = 𝜆6 = 𝜆8 = 0. Applying Theorem 9, we get

∞∑
𝑗=1

𝐹𝑠 (2√𝑗)
𝑗5/2 = 𝜋26 (5 − 3√3) , (44)

where 𝐹𝑠(𝑧) is the Fresnel sine integral given by∫𝑧
0
sin(𝜋𝑡2/2)𝑑𝑡.

Example 2. Here is another example ofTheorem 9. LetB𝛼0 (𝑥)
be of period one such thatB𝛼0 (𝑥) = 𝑥 cos(𝜋𝑥) for 0 ≤ 𝑥 < 1.
Let 𝛼 = 2, 𝑛 = 1, 𝑇 = 10, 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆6 = 𝜆7 =𝜆8 = 𝜆9 = 1, and 𝜆5 = 𝜆10 = 0. Then

∞∑
𝑗=1

(1 + 4𝑗2)
𝑗2 (1 − 4𝑗2)2𝜆𝑗
= −𝜋5 (√2 (5 − √5) + √2 (5 + √5))

+ 𝜋250 (27 − 2√5) .

(45)

Example 3. Let B𝛼0 (𝑥) be of period one such that B𝛼0 (𝑥) =𝑥1/2 sin(𝜋𝑥) for 0 ≤ 𝑥 < 1. Let 𝛼 = 1/2, 𝑛 = 2, 𝑇 = 8,

𝜆1 = 𝜆3 = 𝜆5 = 𝜆7 = 1, and 𝜆2 = 𝜆4 = 𝜆8 = 0. By applying
Theorem 10, we obtain

∞∑
𝑗=1

(𝐹𝑠 (√4𝑗 + 2)
(2𝑗 + 1)3/2 − 𝐹𝑠 (√4𝑗 − 2)

(2𝑗 − 1)3/2 )𝜆𝑗 = 𝜋2 (√2

+ 𝐹𝑐 (√2)) + 𝜋310 (−4√2 1𝐹2 (54 ; 32 , 94 ; −𝜋24 )
+ 1𝐹2 (54 ; 32 , 94 ; −𝜋216)) ,

(46)

where 𝐹𝑐(𝑧) is the Fresnel cosine integral and 1𝐹2 is the
hypergeometric function defined by

1𝐹2 (𝑎; 𝑏, 𝑐; 𝑧) = ∞∑
𝑘=0

(𝑎)𝑘(𝑏)𝑘 (𝑐)𝑘
𝑧𝑘𝑘! , (𝑎)𝑘 = Γ (𝑎 + 𝑘)Γ (𝑎) . (47)
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