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The main purpose of this work is to study an inverse source problem for degenerate/singular parabolic equations with degeneracy
and singularity occurring in the interior of the spatial domain. Using Carleman estimates, we prove a Lipschitz stability estimate
for the source term provided that additional measurement data are given on a suitable interior subdomain. For the numerical
solution, the reconstruction is formulated as a minimization problem using the output least squares approach with the Tikhonov
regularization. The Fréchet differentiability of the Tikhonov functional and the Lipschitz continuity of the Fréchet gradient are
proved. These properties allow us to apply gradient methods for numerical solution of the considered inverse source problem.

1. Introduction

Inverse problems appear in a wide range of scientific appli-
cations, such as geophysics, biological and medical imaging,
material and structure characterization, electrical, mechan-
ical and civil engineering, and finances. The resolution of
inverse problems consists of estimating the parameters of the
observed system or structure from available data of solutions.
The unknown quantities are diverse, according to the inverse
problems and phenomena studied, but typical unknowns are
spatially varying coefficients and source terms.

In the present paper, we study the inverse problem of
determining the source term in a degenerate heat equation
perturbed by a singular potential from the theoretical anal-
ysis and numerical computation angles. More precisely, we
consider the following problem:

𝑢𝑡 − (𝑎𝑢𝑥)𝑥 − 𝜆𝑏 (𝑥)𝑢 = ℎ (𝑡, 𝑥) , (𝑡, 𝑥) ∈ 𝑄,
𝑢 (0) = 𝑢 (1) = 0, 𝑡 ∈ (0, 𝑇) ,

𝑢 (0, 𝑥) = 𝑢0 (𝑥) , 𝑥 ∈ (0, 1) ,
(1)

where 𝑢0 ∈ 𝐿2(0, 1), 𝑇 > 0 fixed, and 𝑄 fl (0, 𝑇) × (0, 1).
Moreover, we assume that the constant 𝜆 satisfies suitable

assumptions described below and the functions 𝑎 and 𝑏
degenerate at the same interior point 𝑥0 of the spatial domain(0, 1) (for the precise assumptions we refer to Section 2). Let
us recall that, in inverse source problems, the source term has
to satisfy some condition; otherwise uniqueness may be false;
see [1]. Let 𝐶0 > 0 be given and for 𝑡0 ∈ (0, 𝑇) given, let𝑇 fl (𝑇 + 𝑡0)/2. In [2, 3], the authors make the assumption
that source terms ℎ satisfy the condition

ℎ𝑡 (𝑡, 𝑥) ≤ 𝐶0

ℎ (𝑇, 𝑥) , for almost all (𝑡, 𝑥) ∈ 𝑄. (2)

Therefore they define the set S(𝐶0) of admissible source
terms as

S (𝐶0) fl {ℎ ∈ 𝐻1 (0, 𝑇; 𝐿2 (0, 1)) : ℎ satisfies (2)} . (3)

The Carleman estimate is a class of weighted energy
estimates with a large parameter for a solution to a PDE
and it is one of the major tools used in the study of unique
continuation, observability, and controllability problems for
various kinds of PDEs. The idea of using global Carleman
estimates to solve inverse problems and prove Lipschitz
stability results was first introduced by Puel and Yamamoto
[4] in 1996 in the context of the wave equation, using a
modification of the idea of [5]. Later on, it also has been
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applied to the standard heat equation by Imanuvilov and
Yamamoto [2] in 1998. Their method is based on the use of
global Carleman estimates for parabolic problems that were
developed by Fursikov and Imanuvilov [6] and used to solve
null controllability issues. The novelty of their work is that
they not only solve the uniqueness question but they also
provide unconditional Lipschitz stability result concerning
the reconstruction of the source.

In the last recent years an increasing interest has been
devoted to (1) in the case when 𝜆 = 0 and the degeneracy
can occur at the boundary or in the interior of the space
domain. For example, we recall the works [7–9], where the
authors obtain results concerning Carleman estimates and
null controllability.

These results are complemented in [3, 10–12], where the
authors obtain results concerning inverse problems for purely
degenerate (i.e., 𝜆 = 0) parabolic equations and parabolic
coupled systems, addressing, in particular, issues such as
uniqueness and stability. If 𝜆 ̸= 0, the first results in this
direction are obtained in [1] for the nondegenerate heat
operator (i.e., 𝑎 > 0) with a singular potential. But, the study
of numerical reconstruction questions are rarely taken into
account; see [13, 14].

Furthermore, in both theoretical and numerical aspects,
very few results are known regarding the identification of
coefficients in degenerate/singular parabolic equations, even
though this class of operators occurs in interesting theoretical
and applied problems. As far as we know, [15] is the unique
published work on this subject; it concerns the reconstruc-
tion of the initial heat distribution in a degenerate/singular
parabolic equation with degeneracy and singularity at the
boundary of the domain.

From the mathematical point of view and in connection
with the work of Fragnelli and Mugnai (see [16]), we focus
on identifying, on the basis of some observations, the source
term, in a parabolic equation presenting both a degenerate
diffusion coefficient and a singular potential with degeneracy
and singularity inside the spatial domain.

In particular, our results complement the ones of [1, 3]
in the purely degenerate case and in the purely singular
one, respectively. More precisely, we will follow the approach
introduced in [2] for the treatment of uniformly parabolic
problems which is based on the use of global Carleman esti-
mates. For this purpose, we use and extend some recent Car-
leman estimates for degenerate/singular equations obtained
by Fragnelli and Mugnai [16]. As a consequence, we prove a
stability estimate of Lipschitz type in determining the term
source using the following observations data:

((𝑎𝑢𝑥)𝑥 + 𝜆𝑏 𝑢) (𝑇, ⋅) ,
and 𝑢𝑡(𝑡0 ,𝑇)×𝜔 ,

(4)

where the subregion of measurements 𝜔 is a nonempty
subinterval of (0, 1) that is assumed to satisfy the following.

Hypothesis 1. The set of observation 𝜔 ⊂⊂ (0, 1) is such that

𝜔 = 𝜔1 ∪ 𝜔2, (5)

where 𝜔𝑖 ⊂ (0, 1), 𝑖 = 1, 2 are intervals with 𝜔1 ⊂⊂ (0, 𝑥0),𝜔2 ⊂⊂ (𝑥0, 1), and 𝑥0 ∉ 𝜔.
For fixed 𝑇 > 𝑇 > 0, the main result of this paper can be

stated as follows.

Theorem 2. Let 𝐶0 > 0 and suppose that Hypotheses 1 and 14
are satisfied. Then, there exists 𝐶 = 𝐶(𝑇, 𝑡0, 𝑥0, 𝐶0) > 0 such
that, for all ℎ ∈ 𝑆(𝐶0) and 𝑢0 ∈ 𝐿2(0, 1),

‖ℎ‖2𝐿2(𝑄) ≤ 𝐶[(𝑎𝑢𝑥)𝑥 (𝑇, ⋅) + 𝜆𝑏 (⋅)𝑢 (𝑇, ⋅)
2

𝐿2(0,1)

+ 𝑢𝑡2𝐿2((𝑡0,𝑇)×𝜔)] .
(6)

Remark 3.

(i) It is worth noting that the result announced in
Theorem 2 is still valid also in the case in which
the observation set 𝜔 is an interval containing the
degeneracy point. Indeed, if 𝑥0 ∈ 𝜔 one can always
find two subintervals 𝜔1 ⊂ (0, 𝑥0), 𝜔2 =⊂ (𝑥0, 1) such
that (𝜔1 ∪ 𝜔2) ⊂⊂ 𝜔 \ {𝑥0}.

(ii) If we restrict ourselves to the particular case ℎ ∈{𝑟𝑔, 𝑔 ∈ 𝐿2(0, 1)} for some given function 𝑟 ∈𝐶1([0, 𝑇] × [0, 1]), positive at some time 𝑡 = 𝑇 and𝑔 is the unknown function that we want to recover,
then uniqueness result can be shown as an immediate
consequence of the Lipschitz stability result; see [17,
Theorem 2.11].

In fact, we will not only investigate the theoretical
aspect of the inverse source problem due to our interest in
mathematics, but also consider the numerical reconstruc-
tion of the source term ℎ(𝑡, 𝑥). To this end, we adopt the
classical Tikhonov regularization to reformulate the inverse
problem into a related optimization problem, for which we
develop an iterative thresholding algorithm by using the
corresponding adjoint system. In particular, we will focus
on the determination of the unknown source term from
the measured data at the final time. The resolution of this
problem is standard and it is based on the gradient of the
cost functional. More precisely, the most important issue in
numerical solutions of inverse problems is the Lipschitz con-
tinuity of the Fréchet gradient. Indeed, in order to construct
an effective minimization algorithm for an inverse problem,
one needs to analyze the gradient of the considered cost
functional. There is a vast literature on inverse problems for
linear parabolic equations with final overdetermination. For
example, we mention the pioneering work [18]. Compared to
a standard parabolic equation, the main challenge here is the
nonstandard degeneracy of the diffusion coefficient as well
as the singularity of the potential of the partial differential
equation (1).

The rest of this article is organized as follows. In
Section 2, we recall the well-posedness of the problem (1).
Then Section 3 is devoted to the proof of the main stability
result of Lipschitz type. In Section 4, we reformulate our
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inverse source problem as a minimization problem with the
Tikhonov regularization and provide a monotone iteration
scheme based on a gradient method.

Throughout the paper, 𝐶 denotes a generic positive
constant, which may vary from line to line.

2. Well-Posedness

The ways in which 𝑎 and 𝑏 degenerate at 𝑥0 can be quite
different, and for this reason, following [16], to establish our
results, we give the following definitions and assumptions.

Hypothesis 4 (double weakly degenerate case (WWD)).
There exists𝑥0 ∈ (0, 1) such that𝑎(𝑥0) = 𝑏(𝑥0) = 0, 𝑎, 𝑏 > 0 in[0, 1]\{𝑥0}, 𝑎, 𝑏 ∈ 𝐶1([0, 1]\{𝑥0}) and there exists𝐾, 𝐿 ∈ (0, 1)
such that (𝑥 − 𝑥0)𝑎 ≤ 𝐾𝑎 and (𝑥 − 𝑥0)𝑏 ≤ 𝐿𝑏 a.e. in [0, 1].
Hypothesis 5 (weakly strongly degenerate case (WSD)). There
exists 𝑥0 ∈ (0, 1) such that 𝑎(𝑥0) = 𝑏(𝑥0) = 0, 𝑎, 𝑏 > 0 in[0, 1] \ {𝑥0}, 𝑎 ∈ 𝐶1([0, 1] \ {𝑥0}), 𝑏 ∈ 𝐶1([0, 1] \ {𝑥0}) ∩𝑊1,∞(0, 1), ∃𝐾 ∈ (0, 1), 𝐿 ∈ [1, 2) such that (𝑥 − 𝑥0)𝑎 ≤ 𝐾𝑎
and (𝑥 − 𝑥0)𝑏 ≤ 𝐿𝑏 a.e. in [0, 1].
Hypothesis 6 (strongly weakly degenerate case (SWD)).
There exists 𝑥0 ∈ (0, 1) such that 𝑎(𝑥0) = 𝑏(𝑥0) = 0,𝑎, 𝑏 > 0 in [0, 1] \ {𝑥0}, 𝑎 ∈ 𝐶1([0, 1] \ {𝑥0}) ∩ 𝑊1,∞(0, 1),𝑏 ∈ 𝐶1([0, 1] \ {𝑥0}), ∃𝐾 ∈ [1, 2), 𝐿 ∈ (0, 1) such that(𝑥 − 𝑥0)𝑎 ≤ 𝐾𝑎 and (𝑥 − 𝑥0)𝑏 ≤ 𝐿𝑏 a.e. in [0, 1].
Hypothesis 7 (double strongly degenerate case (SSD)). There
exists 𝑥0 ∈ (0, 1) such that 𝑎(𝑥0) = 𝑏(𝑥0) = 0, 𝑎, 𝑏 > 0 in[0, 1] \ {𝑥0}, 𝑎, 𝑏 ∈ 𝐶1([0, 1] \ {𝑥0}) ∩ 𝑊1,∞(0, 1), there exists𝐾, 𝐿 ∈ [1, 2) such that (𝑥 − 𝑥0)𝑎 ≤ 𝐾𝑎 and (𝑥 − 𝑥0)𝑏 ≤ 𝐿𝑏
a.e. in [0, 1].

For the well-posedness of the problem (1), as in [16], we
consider different classes of weighted Hilbert spaces, which
are suitable to study the four different situations given above,
namely, the (WWD), (WSD), (SWD), and (SSD) cases. Thus,
we consider the Hilbert spaces

𝐻1
𝑎 (0, 1) fl {𝑢 ∈ 𝑊1,1

0 (0, 1) : √𝑎𝑢𝑥 ∈ 𝐿2 (0, 1)} (7)

and

𝐻1
𝑎,𝑏 (0, 1) fl {𝑢 ∈ 𝐻1

𝑎 (0, 1) : 𝑢√𝑏 ∈ 𝐿2 (0, 1)} (8)

endowed with the inner products

⟨𝑢, V⟩𝐻1𝑎 fl ∫1

0
𝑎𝑢V𝑑𝑥 + ∫1

0
𝑢V 𝑑𝑥, (9)

and

⟨𝑢, V⟩𝐻1
𝑎,𝑏

fl ∫1

0
𝑎𝑢V𝑑𝑥 + ∫1

0
𝑢V 𝑑𝑥 + ∫1

0

𝑢V𝑏 𝑑𝑥, (10)

respectively.
In order to deal with the singularity of 𝑏 we need the

following inequality proved in [16, Proposition 2.14].

Lemma 8. If one among Hypotheses 4–6 holds with𝐾+𝐿 ≤ 2,
then there exists a constant 𝐶 > 0 such that for all 𝑢 ∈𝐻1
𝑎,𝑏(0, 1) we have

∫1

0

𝑢2𝑏 (𝑥) 𝑑𝑥 ≤ 𝐶∫1

0
𝑎 (𝑥) 𝑢2 𝑑𝑥. (11)

In order to study well-posedness of problem (1) and in
view of Lemma 8, we consider the space

H fl 𝐻1
𝑎,𝑏 (0, 1) , (12)

where the Hardy-Poincaré inequality (11) holds.
We underline that, from Lemma 8, the standard norm ‖ ⋅‖2H is equivalent to

‖⋅‖2∼ fl ∫1

0
𝑎 (𝑢)2 𝑑𝑥. (13)

From now on, we make the following assumptions on 𝑎,𝑏, and 𝜆.
Hypothesis 9. (1)One among the Hypotheses 4, 5, or 6 holds
true with 𝐾 + 𝐿 ≤ 2 and we assume that

𝜆 ∈ (0, 1𝐶⋆
) . (14)

(2)Hypotheses 4, 5, 6, or 7 hold with 𝜆 < 0.
Using Lemma 8, the next inequality is proved in [16,

Proposition 2.18], which is crucial not only to obtain the well-
posedness of problem (1), but also to prove that the inverse
problem posed as weak solution minimization problem has a
solution.

Proposition 10. Assume Hypothesis 9. Then there exists a
positive constant Λ ∈ (0, 1] such that, for all 𝑢 ∈ H, there
holds

∫1

0
𝑎 (𝑢)2 𝑑𝑥 − 𝜆∫1

0

𝑢2𝑏 𝑑𝑥 ≥ Λ∫1

0
𝑎 (𝑢)2 𝑑𝑥. (15)

Now, let us go back to problem (1), recalling the following
definition.

Definition 11. Let 𝑢0 ∈ 𝐿2(0, 1) and ℎ ∈ 𝐿2(𝑄). A function 𝑢
is said to be a (weak) solution of (1) if

𝑢 ∈ 𝐶 ([0, 𝑇] ; 𝐿2 (0, 1)) ∩ 𝐿2 (0, 𝑇;H) (16)

and satisfies the following differential equation:

∫1

0
𝑢 (𝑇, 𝑥) 𝜑 (𝑇, 𝑥) 𝑑𝑥 − ∫1

0
𝑢0 (𝑥) 𝜑 (0, 𝑥) 𝑑𝑥

−∬
𝑄
𝑢 (𝑡, 𝑥) 𝜑𝑡 (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

= −∬
𝑄
𝑎 (𝑥) 𝑢𝑥 (𝑡, 𝑥) 𝜑𝑥 (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

+ 𝜆∬
𝑄

𝑢 (𝑡, 𝑥) 𝜑 (𝑡, 𝑥)𝑏 𝑑𝑥 𝑑𝑡
+∬

𝑄
ℎ (𝑡, 𝑥) 𝜑 (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

(17)

for all 𝜑 ∈ 𝐻1(0, 𝑇; 𝐿2(0, 1)) ∩ 𝐿2(0, 𝑇;H).
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Finally, we introduce the Hilbert space

𝐻2
𝑎,𝑏 (0, 1) fl {𝑢 ∈ 𝐻1

𝑎 (0, 1) : 𝑎𝑢 ∈ 𝐻1 (0, 1) and 𝐴𝑢
∈ 𝐿2 (0, 1)} , (18)

where

𝐴𝑢 fl (𝑎𝑢) + 𝜆𝑏 𝑢, (19)

with domain

𝐷 (𝐴) fl 𝐻2
𝑎,𝑏 (0, 1) . (20)

Remark 12. Observe that if 𝑢 ∈ 𝐷(𝐴), then 𝑢/√𝑏 ∈ 𝐿2(0, 1),
so that 𝑢 ∈ H and inequality (11) holds.

Hence, the next result holds thanks to the theory of
semigroups.

Proposition 13. The following assertions hold.
(i) The operator (𝐴,𝐷(𝐴)) is the infinitesimal generator of

a strongly continuous semigroup of contractions on 𝐿2(0, 1).
Moreover, the semigroup is analytic.

(ii) For all 𝑢0 ∈ 𝐷(𝐴) and ℎ ∈ 𝐻1(0, 𝑇; 𝐿2(0, 1)), problem
(1) admits a unique strict solution belonging to the class

𝑢 ∈ 𝐶 ([0, 𝑇] ; 𝐷 (𝐴)) ∩ 𝐶1 ([0, 𝑇] ; 𝐿2 (0, 1)) . (21)

Moreover, if 𝑢0 ∈ 𝐿2(0, 1), then for all 𝜀 ∈ (0, 𝑇) there holds
𝑢 ∈ 𝐶 ([𝜀, 𝑇] ; 𝐷 (𝐴)) ∩ 𝐶1 ([𝜀, 𝑇] ; 𝐿2 (0, 1)) . (22)

(iii) For all 𝑢0 ∈ 𝐿2(0, 1) and for all ℎ ∈ 𝐿2(0, 𝑇; 𝐿2(0, 1)),
problem (1) has a uniqueweak solution𝑢 ∈ 𝐶([0, 𝑇]; 𝐿2(0, 1))∩𝐿2(0, 𝑇;H) such that for all 𝜀 ∈ (0, 𝑇) there holds

𝑢 ∈ 𝐿2 (𝜀, 𝑇; 𝐷 (𝐴)) ∩ 𝐻1 (𝜀, 𝑇; 𝐿2 (0, 1)) . (23)

Moreover, if ℎ ∈ 𝐻1(0, 𝑇; 𝐿2(0, 1)) and 𝜀 ∈ (0, 𝑇), we have
𝑢 ∈ 𝐻1 ([𝜀, 𝑇] ; 𝐷 (𝐴)) ∩ 𝐻2 ([𝜀, 𝑇] ; 𝐿2 (0, 1)) (24)

Proof. Theproof of statement (𝑖) can be found in [16], whereas
statements (𝑖𝑖) and (𝑖𝑖𝑖) are a consequence of (𝑖) and [19,
Proposition 3.3 and Proposition 3.8].

3. Lipschitz Stability Result

In this section, we aim at obtaining a Lipschitz stability result
on determining the source term ℎ(𝑥, 𝑡) in problem (1) in the
spirit of the result by Imanuvilov and Yamamoto [2].The key
ingredient to obtain such a result is Carleman estimates. Here
we use specific Carleman estimates for degenerate/singular
parabolic equations (inspired by [16]). Thus, we first recall
this fundamental tool in the following section before proving
Theorem 2 in Section 3.2.

3.1. Carleman Estimate. Theaim of this subsection is to prove
a Carleman type inequality for solutions of problem (1). First
of all, let us make precise the assumptions under which we
consider problem (1).

Hypothesis 14. (1) Hypothesis 9 holds. Moreover, if 𝐾 > 4/3,
then there exists 𝜗 ∈ (0,𝐾] that the following condition is
satisfied.(C) The function 𝑥 → 𝑎/|𝑥 − 𝑥0|𝜗 is nonincreasing on
the left of 𝑥 = 𝑥0 and nondecreasing on the right of 𝑥 = 𝑥0.(2)Moreover, if 𝜆 < 0, we require that

(𝑥 − 𝑥0) 𝑏 (𝑥) ≥ 0 in [0, 1] . (25)

As usual, the derivation of global Carleman estimates
relies on the introduction of some suitable weight function
of the form

𝜑 (𝑡, 𝑥) fl 𝜃 (𝑡) 𝜓 (𝑥) , ∀ (𝑡, 𝑥) ∈ (𝑡0, 𝑇) × [−1, 1] , (26)

where

𝜃 (𝑡) fl 1
[(𝑡 − 𝑡0) (𝑇 − 𝑡)]4 ,

and 𝜓 (𝑥) fl 𝑐1 [∫𝑥

𝑥0

𝑦 − 𝑥0𝑎 (𝑦) 𝑑𝑦 − 𝑐2] ,
(27)

with 𝑐2 > 𝑐⋆2 fl sup[−1,1] ∫𝑥𝑥0((𝑦 − 𝑥0)/𝑎(𝑦))𝑑𝑦, 𝑐1 > 0, and
where 𝑎 is defined by the following way:

𝑎 (𝑥) fl {{{
𝑎 (𝑥) , 𝑥 ∈ [0, 1] ,
𝑎 (−𝑥) , 𝑥 ∈ [−1, 0] . (28)

Observe that 𝜃(𝑡) → +∞ as 𝑡 → 𝑡+0 , 𝑇−, and clearly

−𝑐1𝑐2 ≤ 𝜓 (𝑥) < 0 for every 𝑥 ∈ [−1, 1] . (29)

Eventually, we define as in [3] the second time weight
function:

𝜂 (𝑡) fl 𝑇 + 𝑡0 − 2𝑡, ∀𝑡 ∈ (𝑡0, 𝑇) . (30)

Let us now turn to the following linear initial-boundary value
problem:

𝜕𝑢𝜕𝑡 − (𝑎𝑢𝑥)𝑥 − 𝜆𝑏 (𝑥)𝑢 = ℎ (𝑡, 𝑥) ,
(𝑡, 𝑥) ∈ (𝑡0, 𝑇) × (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0, 𝑡 ∈ (𝑡0, 𝑇) ,
(31)

where ℎ ∈ 𝐿2(𝑡0, 𝑇, 𝐿2(0, 1)). In the following, we denote

𝑄𝑇
𝑡0
fl (𝑡0, 𝑇) × (0, 1)

and 𝜔𝑇
𝑡0
fl (𝑡0, 𝑇) × 𝜔. (32)

Nowwe are ready to state global Carleman estimates with
boundary observation for system (31).
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Theorem 15. Assume Hypothesis 14. Then, there exist two
positive constants 𝐶 and 𝑠0 such that the solution 𝑢 of (31) in𝐿2(𝜀, 𝑇;𝐻2

𝑎,𝑏) ∩ 𝐻1([𝜀, 𝑇],H) satisfies, for all 𝑠 ≥ 𝑠0,
∬

𝑄𝑇𝑡0

(𝑠𝜃𝑎 (𝑥) 𝑢2𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 (𝑥) 𝑢2 + 𝑠𝜃3/2 𝜂𝜓 𝑢2

+ 1𝑠𝜃𝑢2𝑡)𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 ≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

+ 𝑠𝑐1∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(33)

Some part of estimate (33) is already proved in [16] and,
even if we refer to [20] a few times, our proof is quite self-
contained. In [16], the authors prove a Carleman inequal-
ity that estimates the integrals of 𝑠𝜃𝑎(𝑥)𝑢2𝑥 and 𝑠3𝜃3((𝑥 −𝑥0)2/𝑎(𝑥))𝑢2 (that were sufficient for control purposes). For
inverse problems, these estimates are not sufficient and one
also needs some additional estimate of 𝑢with a special weight
and some estimate of the derivative term 𝑢𝑡 that we added
here in the statement of Theorem 15. The proof is based on
the methods developed in [3].

Proof. The proof of Theorem 15 relies on the change of
variables 𝑤 = 𝑒𝑠𝜑𝑢 with 𝑠 > 0. Then, from (31), we obtain

− (𝑎𝑤𝑥)𝑥 − 𝑠𝜑𝑡𝑤 − 𝑠2𝑎𝜑2𝑥𝑤 − 𝜆𝑏𝑤⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿+𝑠𝑤

+ 𝑤𝑡 + 2𝑠𝑎𝜑𝑥𝑤𝑥 + 𝑠 (𝑎𝜑𝑥)𝑥 𝑤⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿−𝑠𝑤

= ℎ𝑒𝑠𝜑⏟⏟⏟⏟⏟⏟⏟
ℎ𝑠

.
(34)

Moreover, 𝑤(𝑡0, 𝑥) = 𝑤(𝑇, 𝑥) = 0. This property allows us to
apply the Carleman estimates established in [16, Lemma 3.8]
to 𝑤 with 𝑄𝑇

𝑡0
in place of (0, 𝑇) × (0, 1)

𝐿+𝑠𝑤2𝑄𝑇𝑡0 + 𝐿−𝑠𝑤2𝑄𝑇𝑡0 +∬
𝑄𝑇𝑡0

(𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 (𝑥) 𝑤2

+ 𝑠𝜃𝑎 (𝑥) 𝑤2
𝑥)𝑑𝑥𝑑𝑡

≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

+ 𝑠𝑐1 ∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(35)

The operators 𝐿+𝑠 and 𝐿−𝑠 are not exactly the ones of [16].
However, one can prove that the Carleman estimates do
not change. Using the previous estimate, we aim at proving
estimate (33) that concerns the variable 𝑢.

Step 1. Estimate of∬
𝑄𝑇𝑡0

𝑠𝜃𝑎(𝑥)𝑢2𝑥𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 and∬
𝑄𝑇𝑡0

𝑠3𝜃3((𝑥−
𝑥0)2/𝑎(𝑥))𝑢2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡. Replacing 𝑤 by 𝑒𝑠𝜑𝑢, we immediately
get from (35)

∬
𝑄𝑇𝑡0

𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 (𝑥) 𝑢2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

+ 𝑠𝑐1 ∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(36)

Moreover, 𝑤𝑥 = 𝑠𝜑𝑥𝑢𝑒𝑠𝜑 + 𝑢𝑥𝑒𝑠𝜑. Therefore,

∬
𝑄𝑇𝑡0

𝑠𝜃𝑎𝑢2𝑥𝑒2𝑠𝜑𝑑𝑥𝑑𝑡
≤ 2∬

𝑄𝑇𝑡0

𝑠𝜃𝑎𝑤2
𝑥𝑑𝑥𝑑𝑡

+ 2∬
𝑄𝑇𝑡0

𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 (𝑥) 𝑢2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡.
(37)

In conclusion, thanks to (35)-(37), we get

∬
𝑄𝑇𝑡0

(𝑠𝜃𝑎 (𝑥) 𝑢2𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 (𝑥) 𝑢2)𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

+ 𝑠𝑐1 ∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(38)

Step 2. Estimate ∬
𝑄𝑇𝑡0

𝑠𝜃3/2|𝜂𝜓|𝑢2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡. Observe that,
since |𝜂| ≤ 𝑇 − 𝑡0 and |𝜓| ≤ 𝑐1𝑐2, one has

∬
𝑄𝑇𝑡0

𝑠𝜃3/2 𝜂𝜓 𝑤2𝑑𝑥𝑑𝑡 ≤ 𝐶∬
𝑄𝑇𝑡0

𝑠𝜃3/2𝑤2𝑑𝑥𝑑𝑡. (39)

To estimate the integral on the right-hand side of (39), we
follow the technique of [20, Lemma 4.1]. Using the Young
inequality, we find

∬
𝑄𝑇𝑡0

𝑠𝜃3/2𝑤2𝑑𝑥𝑑𝑡 = 𝑠∬
𝑄𝑇𝑡0

(𝜃 𝑎1/3𝑥 − 𝑥02/3𝑤
2)

3/4

⋅ (𝜃3 𝑥 − 𝑥02𝑎 𝑤2)
1/4

𝑑𝑥 𝑑𝑡 ≤ 𝑠34 ∬
𝑄𝑇𝑡0

𝜃

⋅ 𝑎1/3𝑥 − 𝑥02/3𝑤
2𝑑𝑥𝑑𝑡 + 𝑠14 ∬

𝑄𝑇𝑡0

𝜃3

⋅ 𝑥 − 𝑥02𝑎 𝑤2𝑑𝑥 𝑑𝑡.

(40)
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Now, if 𝐾 ≤ 4/3, we consider the function 𝑝(𝑥) = |𝑥 −𝑥0|4/3. Obviously, there exists 𝑞 ∈ (1, 4/3) such that the
function 𝑝(𝑥)/|𝑥 − 𝑥0|𝑞 is nonincreasing on the left of 𝑥0
and nondecreasing on the right of 𝑥0. Then, we can apply
the Hardy-Poincaré inequality given in [20, Proposition 1.1],
obtaining

∫1

0

𝑎1/3𝑥 − 𝑥02/3𝑤
2𝑑𝑥

≤ max
𝑥∈[0,1]

𝑎1/3 (𝑥) ∫1

0

1𝑥 − 𝑥02/3𝑤
2𝑑𝑥

= max
𝑥∈[0,1]

𝑎1/3 (𝑥) ∫1

0

𝑝 (𝑥)𝑥 − 𝑥02𝑤
2𝑑𝑥

≤ max
𝑥∈[0,1]

𝑎1/3 (𝑥) 𝐶𝐻𝑃 ∫1

0
𝑝 (𝑥) 𝑤2

𝑥𝑑𝑥

= max
𝑥∈[0,1]

𝑎1/3 (𝑥) 𝐶𝐻𝑃 ∫1

0
𝑎 𝑥 − 𝑥04/3𝑎 𝑤2

𝑥𝑑𝑥
≤ max

𝑥∈[0,1]
𝑎1/3 (𝑥) 𝐶𝐻𝑃𝐶1 ∫1

0
𝑎𝑤2

𝑥𝑑𝑥,

(41)

where 𝐶𝐻𝑃 is the Hardy-Poincaré constant and 𝐶1 =
max(𝑥4/30 /𝑎(0), (1 − 𝑥0)4/3/𝑎(1)).

In the previous inequality, we have used the property that
the map 𝑥 → |𝑥 − 𝑥0|𝛾/𝑎(𝑥) is nonincreasing on the left of𝑥0 and nondecreasing on the right of 𝑥0 for all 𝛾 ≥ 𝐾; see
[20, Lemma 2.1]. If 𝐾 > 4/3, we can consider the function𝑝(𝑥) = (𝑎(𝑥)|𝑥 − 𝑥0|4)1/3. Then we have

𝑎1/3𝑥 − 𝑥02/3 = 𝑝 (𝑥)
(𝑥 − 𝑥0)2 ,

𝑝 (𝑥) = 𝑎 (𝑥)((𝑥 − 𝑥0)2𝑎 (𝑥) )
2/3

≤ 𝐶2𝑎 (𝑥) ,
(42)

where

𝐶2 fl max
{{{
( 𝑥20𝑎 (0))

2/3 , ((1 − 𝑥0)2𝑎 (1) )
2/3}}}

. (43)

Moreover, using the condition (C) given inHypothesis 14,
one has that the function 𝑝(𝑥)/|𝑥−𝑥0|𝑞, with 𝑞 fl (4+𝜗)/3 ∈(1, 2), is nonincreasing on the left of 𝑥0 and nondecreasing on
the right of 𝑥0. The Hardy-Poincaré inequality given in [20,
Proposition 1.1] implies

∫1

0

𝑎1/3𝑥 − 𝑥02/3𝑤
2𝑑𝑥 = ∫1

0

𝑝
(𝑥 − 𝑥0)2𝑤

2𝑑𝑥

≤ 𝐶𝐻𝑃 ∫1

0
𝑝 (𝑤𝑥)2 𝑑𝑥

≤ 𝐶𝐻𝑃𝐶2 ∫1

0
𝑎 (𝑤𝑥)2 𝑑𝑥.

(44)

Thus, in every case, for 𝑠 large enough there holds

∬
𝑄𝑇𝑡0

𝑠𝜃3/2 𝜂𝜓 𝑤2𝑑𝑥 𝑑𝑡

≤ 𝐶∬
𝑄𝑇𝑡0

(𝑠𝜃𝑎𝑤2
𝑥 + 𝑠3𝜃3 𝑥 − 𝑥02𝑎 𝑤2)𝑑𝑥𝑑𝑡.

(45)

Hence,

∬
𝑄𝑇𝑡0

𝑠𝜃3/2 𝜂𝜓 𝑤2𝑑𝑥𝑑𝑡 ≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

+ 𝑠𝑐1 ∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(46)

Finally, coming back to 𝑢, we get
∬

𝑄𝑇𝑡0

𝑠𝜃3/2 𝜂𝜓 𝑢2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 ≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

+ 𝑠𝑐1 ∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(47)

Step 3. Estimate of∬
𝑄𝑇𝑡0

(1/𝑠𝜃)𝑢2𝑡 𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡. First of all, coming

back to the definition of 𝐿−𝑠𝑤, we have
1√𝑠𝜃𝐿−𝑠𝑤 = 1√𝑠𝜃𝑤𝑡 + 2𝑐1√𝑠𝜃 (𝑥 − 𝑥0) 𝑤𝑥 + 𝑐1√𝑠𝜃𝑤. (48)

Note that 1/√𝜃 is bounded on [𝑡0, 𝑇] and |𝑥 − 𝑥0|2/𝑎(𝑥) ≤
max{𝑥20/𝑎(0), (1−𝑥0)2/𝑎(1)} (see [20, Lemma 2.1]).Therefore,
there exists 𝐶 > 0 such that

∬
𝑄𝑇𝑡0

1𝑠𝜃𝑤2
𝑡 𝑑𝑥𝑑𝑡 ≤ 𝐶(𝐿−𝑠𝑤2𝑄𝑇𝑡0

+∬
𝑄𝑇𝑡0

𝑠𝜃 𝑥 − 𝑥02𝑎 𝑎𝑤2
𝑥𝑑𝑥𝑑𝑡 +∬

𝑄𝑇𝑡0

𝑠𝜃𝑤2𝑑𝑥𝑑𝑡)

≤ 𝐶(𝐿−𝑠𝑤2𝑄𝑇𝑡0 +∬
𝑄𝑇𝑡0

𝑠𝜃𝑎𝑤2
𝑥𝑑𝑥 𝑑𝑡

+∬
𝑄𝑇𝑡0

𝑠𝜃𝑤2𝑑𝑥𝑑𝑡) .

(49)

We then estimate∬
𝑄𝑇𝑡0

𝑠𝜃𝑤2𝑑𝑥𝑑𝑡 thanks to Hardy inequality,
as we have done in the previous step in (45). In this way, we
find

∬
𝑄𝑇𝑡0

𝑠𝜃𝑤2𝑑𝑥𝑑𝑡 = 𝑠∬
𝑄𝑇𝑡0

(𝜃 𝑎1/3𝑥 − 𝑥02/3𝑤
2)

3/4

(𝜃

⋅ 𝑥 − 𝑥02𝑎 𝑤2)
1/4

𝑑𝑥𝑑𝑡 ≤ 𝑠34 ∬
𝑄𝑇𝑡0

𝜃
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⋅ 𝑎1/3𝑥 − 𝑥02/3𝑤
2𝑑𝑥𝑑𝑡 + 𝑠4 ∬

𝑄𝑇𝑡0

𝜃 𝑥 − 𝑥02𝑎 𝑤2𝑑𝑥𝑑𝑡

≤ 𝐶∫∫
𝑄𝑇𝑡0

(𝑠𝜃𝑎𝑤2
𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑤2)𝑑𝑥𝑑𝑡.

(50)

Finally, using (49) and (35), one has

∬
𝑄𝑇𝑡0

1𝑠𝜃𝑤2
𝑡 𝑑𝑥𝑑𝑡 ≤ 𝐶(∬

𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

+ 𝑠𝑐1 ∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(51)

Now, in order to obtain the estimate of 𝑢𝑡 we have to use
the estimate of (47). From the definition of 𝑤, we have 𝑤𝑡 =𝑢𝑡𝑒𝑠𝜑 + 𝑠𝜑𝑡𝑤. Hence

∬
𝑄𝑇𝑡0

1𝑠𝜃𝑢2𝑡 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 2(∬
𝑄𝑇𝑡0

1𝑠𝜃𝑤2
𝑡 𝑑𝑥𝑑𝑡 +∬

𝑄𝑇𝑡0

𝑠2𝜑2𝑡𝑠𝜃 𝑤2𝑑𝑥 𝑑𝑡) .
(52)

The second term in the above right-hand side is estimated as
follows:

∬
𝑄𝑇𝑡0

𝑠2𝜑2𝑡𝑠𝜃 𝑤2𝑑𝑥𝑑𝑡 = 16∬
𝑄𝑇𝑡0

𝑠𝜃3/2𝜂2𝜓2𝑤2𝑑𝑥𝑑𝑡
≤ 16 (𝑇 − 𝑡0)2 𝑐1𝑐2∬

𝑄𝑇𝑡0

𝑠𝜃3/2 𝜂𝜓 𝑤2𝑑𝑥 𝑑𝑡.
(53)

Hence using (47) and (51) we conclude that

∬
𝑄𝑇𝑡0

1𝑠𝜃𝑢2𝑡 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 ≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

+ 𝑠𝑐1 ∫𝑇

𝑡0

[𝜃𝑎 (𝑥 − 𝑥0) 𝑢2𝑥𝑒2𝑠𝜑]𝑥=1𝑥=0
𝑑𝑡) .

(54)

Conclusion. We immediately deduce the expected Carleman
estimate (33) from (38), (47), and (54).

3.2. Proof of Lipschitz Stability. The object of this subsection
is to prove Theorem 2 which recovers a source term ℎ from
the measured final data and the partial knowledge of 𝑢𝑡
over the subdomain 𝜔 ⊂ (0, 1). In proving these kinds of
stability estimates, the global Carleman estimate obtained in
Theorem 15 will play a crucial part along with certain energy
estimates.

In order to obtain our main result, we need to define the
following weights function associated with nondegenerate
Carleman estimates in a general interval (𝐴, 𝐵) which are
suited to our purpose. For 𝑥 ∈ [𝐴, 𝐵],

Φ(𝑡, 𝑥) = 𝜃 (𝑡) Ψ (𝑥) ,
Ψ (𝑥) = 𝑒𝜌𝜎(𝑥) − 𝑒2𝜌‖𝜎‖∞ , (55)

where 𝜌 > 0 and 𝜎 a 𝐶2([𝐴, 𝐵]) function such that 𝜎(𝑥) > 0
in (𝐴, 𝐵), 𝜎(𝐴) = 𝜎(𝐵) = 0 and 𝜎𝑥(𝑥) ̸= 0 in [𝐴, 𝐵] \ �̃�, �̃� is
an open subset of 𝜔.

Now, choose the constant 𝑐1 in (27) so that

𝑐1 ≥ 𝑒2𝜌‖𝜎‖∞ − 1𝑐2 − 𝑐⋆2 . (56)

Thus, one can show thatweight functions satisfy the following
properties which are needed in the sequel.

Lemma 16. For (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1], we have
𝜑 (𝑡, 𝑥) ≤ Φ (𝑡, 𝑥) and

𝜑 (𝑡, −𝑥) ≤ Φ (𝑡, 𝑥) . (57)

Proof. First, let us set 𝑐⋆2 fl sup[0,1] ∫𝑥𝑥0((𝑦 − 𝑥0)/𝑎(𝑦))𝑑𝑦.
(i) 𝜑 ≤ Φ. For all 𝑥 ∈ [0, 1], we have

−𝑐1𝑐2 ≤ 𝜓 (𝑥) ≤ 𝑐1 (𝑐⋆2 − 𝑐2) , and
1 − 𝑒2𝜌‖𝜎‖∞ ≤ Ψ (𝑥) ≤ 𝑒𝜌‖𝜎‖∞ − 𝑒2𝜌‖𝜎‖∞ . (58)

Thus, to show that 𝜓 ≤ Ψ, it suffices to have

𝑐1 (𝑐⋆2 − 𝑐2) ≤ 1 − 𝑒2𝜌‖𝜎‖∞ . (59)

This means 𝑐1 ≥ (𝑒2𝜌‖𝜎‖∞ − 1)/(𝑐2 − 𝑐⋆2 ) and the conclusion
follows immediately.

(ii) 𝜑(𝑡, −𝑥) ≤ Φ(𝑡, 𝑥). In a similar manner, using (56), one
has max{𝜓(−1), 𝜓(0)} ≤ Ψ(𝑥) and the thesis follows.

Proof of Theorem 2. Let 𝑢0 ∈ 𝐿2(0, 1), ℎ ∈ 𝑆(𝐶0), and 𝑡0 ∈(0, 𝑇). Observe that, according to Proposition 13 (𝑖𝑖𝑖), the
solution 𝑢 of the problem (1) belongs to

𝐻1 ([𝑡0, 𝑇] ; 𝐷 (𝐴)) ∩ 𝐻2 ([𝑡0, 𝑇] ; 𝐿2 (0, 1)) . (60)

It follows that the solution 𝑢 of (1) satisfies sufficient regularity
properties to proceed to the following computations. Let𝑧 fl 𝑢𝑡 where 𝑢 satisfies (1). Then 𝑧 ∈ 𝐿2([𝑡0, 𝑇]; 𝐷(𝐴)) ∩𝐻1([𝑡0, 𝑇]; 𝐿2(0, 1)) and satisfies

𝑧𝑡 − (𝑎𝑧𝑥)𝑥 − 𝜆𝑏 (𝑥)𝑧 = ℎ𝑡 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ 𝑄,
𝑧 (0) = 𝑧 (1) = 0, 𝑡 ∈ (0, 𝑇) ,

𝑧 (0, 𝑥) = (𝑎𝑢0𝑥)𝑥 + 𝜆𝑏 (𝑥)𝑢0 + ℎ (0, 𝑥) ,
𝑥 ∈ (0, 1) .

(61)

Let us recall that our goal is to provide an estimate of‖ℎ‖𝐿2(𝑄). For this purpose, we divide the proof into four steps
and we recall that ℎ ∈ 𝐻1(𝑡0, 𝑇, 𝐿2(0, 1)).
Step 1 (Carleman estimates with locally distributed observa-
tion). Such estimates are obtained by studying some auxiliary
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problems, introduced by means of a suitable cut-off argu-
ment. First, by the assumption on the observation set, we
can fix two subintervals 𝜔1 fl (𝛼1, 𝛽1) ⊂⊂ (0, 𝑥0), 𝜔2 fl(𝛼2, 𝛽2) ⊂⊂ (𝑥0, 1) and four points 𝛾𝑖, 𝛾𝑖 ∈ (𝛼𝑖, 𝛽𝑖), 𝑖 = 1, 2,
with 𝛾𝑖 < 𝛾𝑖 . Then, fix 𝛽2 ∈ (𝛼2, 𝛾2) and consider a smooth
function 𝜂 : [0, 1] → [0, 1] such that

𝜂 (𝑥) = {{{
1, 𝑥 ∈ [𝛾2, 1] ,
0, 𝑥 ∈ [0, 𝛽2] . (62)

Let us now introduce 𝑍 = 𝜂𝑧 where 𝑧 is the solution of
(61). Hence, fixed �̃�2 ∈ (𝛼2, 𝛽2); 𝑍 is a solution of the
nondegenerate nonsingular parabolic equation

𝑍𝑡 − (𝑎𝑍𝑥)𝑥 − 𝜆𝑏𝑍 = 𝐻, (𝑡, 𝑥) ∈ (𝑡0, 𝑇) × (�̃�2, 1) ,
𝑍 (𝑡, �̃�2) = 𝑍 (𝑡, 1) = 0, 𝑡 ∈ (𝑡0, 𝑇) ,

(63)

with 𝐻 fl 𝜂ℎ𝑡 − (𝑎𝜂𝑥𝑧)𝑥 − 𝑎𝜂𝑥𝑧𝑥. Observe that, by the
assumption on 𝑎 and the fact that 𝜂𝑥 is supported in �̆� fl(𝛽2, 𝛾2) ⊂⊂ 𝜔2, we have𝐻 ∈ 𝐿2((𝑡0, 𝑇) × (�̃�2, 1)).

Thus, we can apply the analogue of [6, Lemma 1.2] for 𝑍
in (�̃�2, 1), obtaining that there exist two positive constants 𝐶
and 𝑠0 (𝑠0 sufficiently large), such that𝑍 satisfies, for all 𝑠 ≥ 𝑠0,

∫𝑇

𝑡0

∫1

�̃�2

( 1𝑠𝜃𝑍2
𝑡 + 𝑠𝜃𝑍2

𝑥 + 𝑠3𝜃3𝑍2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡
≤ 𝐶(∫𝑇

𝑡0

∫1

�̃�2

𝐻2𝑒2𝑠Φ𝑑𝑥 𝑑𝑡

+∬
𝜔𝑇𝑡0

𝑠3𝜃3𝑍2𝑒2𝑠Φ𝑑𝑥𝑑𝑡) .
(64)

Using again the fact that 𝜂𝑥 is supported in �̆� and the bound-
edness of 𝑎 (far away from x0 in the weakly degenerate case
and since 𝑎 ∈ 𝑊1,∞(0, 1) in the strongly degenerate case),
we have, by the Caccioppoli inequality for the nondegenerate
case,

∫𝑇

𝑡0

∫1

𝛼2

𝐻2𝑒2𝑠Φ𝑑𝑥 𝑑𝑡 ≤ 𝐶∫𝑇

𝑡0

∫1

�̃�2

(𝜂2ℎ2𝑡
+ ((𝑎 (𝑥) 𝜂𝑥𝑧)𝑥 + 𝑎 (𝑥) 𝜂𝑥𝑧𝑥)2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡
≤ 𝐶(∫𝑇

𝑡0

∫1

�̃�2

𝜂2ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡 +∬
�̆�𝑡0

(𝑧2 + 𝑧2𝑥)

⋅ 𝑒2𝑠Φ𝑑𝑥 𝑑𝑡) ≤ 𝐶(∫𝑇

𝑡0

∫1

�̃�2

𝜂2ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡

+∬
�̆�𝑡0

(ℎ2𝑡 + 𝑠2𝜃2𝑧2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡) .

(65)

Hence, we can choose 𝑠0 so large that for all 𝑠 ≥ 𝑠0 and for a
positive constant 𝐶, the following estimate holds:

∫𝑇

𝑡0

∫1

𝛼2

( 1𝑠𝜃𝑍2
𝑡 + 𝑠𝜃𝑍2

𝑥 + 𝑠3𝜃3𝑍2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡
≤ 𝐶(∫𝑇

𝑡0

∫1

�̃�2

𝜂2ℎ2𝑡 𝑒2sΦ𝑑𝑥𝑑𝑡

+∬
�̆�𝑡0

(ℎ2𝑡 + 𝑠3𝜃3𝑧2) 𝑒2𝑠Φ𝑑𝑥 𝑑𝑡) .
(66)

Furthermore, using the fact that 𝑠𝜃3/2|𝜂𝜓|𝑍2 ≤ 𝐶𝑠3𝜃3𝑍2, by
(66) one has

∫𝑇

𝑡0

∫1

�̃�2

𝑠𝜃3/2 𝜂𝜓 𝑍2𝑒2𝑠Φ𝑑𝑥𝑑𝑡
≤ 𝐶(∫𝑇

𝑡0

∫1

�̃�2

𝜂2ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡

+∬
�̆�𝑡0

(ℎ2𝑡 + 𝑠3𝜃3𝑧2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡) .
(67)

The estimates (66)-(67) lead to

∫𝑇

𝑡0

∫1

�̃�2

( 1𝑠𝜃𝑍2
𝑡 + 𝑠𝜃3/2 𝜂𝜓 𝑍2 + 𝑠𝜃𝑍2

𝑥 + 𝑠3𝜃3𝑍2)
⋅ 𝑒2𝑠Φ𝑑𝑥𝑑𝑡 ≤ 𝐶(∫𝑇

𝑡0

∫1

�̃�2

𝜂2ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥 𝑑𝑡

+∬
�̆�𝑡0

(ℎ2𝑡 + 𝑠3𝜃3𝑧2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡) .
(68)

Now, since 𝑥0 ∉ (�̃�2, 1), by Lemma 16 we can prove that there
exists a positive constant 𝑘 such that for every (𝑡, 𝑥) ∈ [0, 𝑇]×[�̃�2, 1]

𝑎 (𝑥) 𝑒2𝑠𝜑(𝑡,𝑥) ≤ 𝑘𝑒2𝑠Φ and

(𝑥 − 𝑥0)2𝑎 (𝑥) 𝑒2𝑠𝜑(𝑡,𝑥) ≤ 𝑘𝑒2𝑠Φ. (69)

Then, using (69), (68) becomes

∫𝑇

𝑡0

∫1

�̃�2

( 1𝑠𝜃𝑍2
𝑡 + 𝑠𝜃3/2 𝜂𝜓 𝑍2 + 𝑠𝜃𝑎𝑍2

𝑥

+ 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑍2)𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝑘∫𝑇

𝑡0

∫1

�̃�2

( 1𝑠𝜃𝑍2
𝑡 + 𝑠𝜃3/2 𝜂𝜓 𝑍2 + 𝑠𝜃𝑍2

𝑥

+ 𝑠3𝜃3𝑍2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡
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≤ 𝑘𝐶(∫𝑇

𝑡0

∫1

�̃�2

𝜂2ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥 𝑑𝑡

+ ∫∫
�̆�𝑡0

(ℎ2𝑡 + 𝑠3𝜃3𝑧2) 𝑒2𝑠Φ𝑑𝑥𝑑𝑡) .
(70)

Hence, using the definition of 𝑍, it results
∫𝑇

𝑡0

∫1

𝛾2

( 1𝑠𝜃𝑧2𝑡 + 𝑠𝜃3/2 𝜂𝜓 𝑧2 + 𝑠𝜃𝑎𝑧2𝑥
+ 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑧2)𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡 = ∫𝑇

𝑡0

∫1

𝛾2

( 1𝑠𝜃𝑍2
𝑡

+ 𝑠𝜃3/2 𝜂𝜓 𝑍2 + 𝑠𝜃𝑎𝑍2
𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑍2)

⋅ 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 ≤ ∫𝑇

𝑡0

∫1

𝛼2

( 1𝑠𝜃𝑍2
𝑡 + 𝑠𝜃3/2 𝜂𝜓 𝑍2

+ 𝑠𝜃𝑎𝑍2
𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑍2)𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥 𝑑𝑡 +∬
𝜔𝑇𝑡0

(ℎ2𝑡 + 𝑠3𝜃3𝑧2)

⋅ 𝑒2𝑠Φ𝑑𝑥𝑑𝑡) ≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡

+∬
𝜔𝑇𝑡0

𝑠3𝜃3𝑧2𝑒2𝑠Φ𝑑𝑥𝑑𝑡) ,

(71)

for a positive constant 𝐶 and for 𝑠 large enough.
To complete the proof, it is sufficient to prove a similar

inequality on the interval [0, 𝛾2]. To this aim, we follow a
reflection procedure. Consider the function

𝑤 (𝑡, 𝑥) fl {{{
𝑧 (𝑡, 𝑥) , 𝑥 ∈ [0, 1] ,
−𝑧 (𝑡, −𝑥) , 𝑥 ∈ [−1, 0] . (72)

Therefore, 𝑤 solves the problem

𝑤𝑡 − (𝑎𝑤𝑥)𝑥 − �̃�
𝑏𝑤+ = 𝐺, (𝑡, 𝑥) ∈ (0, 𝑇) × (−1, 1) ,

𝑤 (𝑡, −1) = 𝑤 (𝑡, 1) = 0, 𝑡 ∈ (0, 𝑇) ,
(73)

being

�̃� (𝑥) fl {{{
𝑏 (𝑥) , 𝑥 ∈ [0, 1] ,
𝑏 (−𝑥) , 𝑥 ∈ [−1, 0] ,

𝐺 = {{{
ℎ𝑡 (𝑥) , 𝑥 ∈ [0, 1] ,
ℎ𝑡 (−𝑥) , 𝑥 ∈ [−1, 0] .

(74)

Now, consider a smooth function 𝜏 : [−1, 1] → [0, 1] such
that

𝜏 (𝑥) = {{{
1, 𝑥 ∈ [−𝛾1, 𝛾2] ,
0, 𝑥 ∈ [−1, −𝛾1] ∪ [𝛾2, 1] , (75)

and define the function 𝑊 = 𝜏𝑤, where 𝑤 is the solution of
(73). Then𝑊 solves

𝑊𝑡 − (𝑎𝑊𝑥)𝑥 − �̃�
𝑏𝑊 = 𝜏𝐺 − (𝑎𝜏𝑥𝑤)𝑥 − 𝑎𝜏𝑥𝑤𝑥 fl 𝐹,

(𝑡, 𝑥) ∈ (0, 𝑇) × (−𝛽1, 1) ,
𝑊 (𝑡, −𝛽1) = 𝑊 (𝑡, 1) = 0, 𝑡 ∈ (0, 𝑇) .

(76)

Observe that 𝑊𝑥(𝑡, −𝛽1) = 𝑊𝑥(𝑡, 1) = 0 and, by the assump-
tion on 𝑎 and the fact that 𝜏𝑥 is supported in [−𝛾1, −𝛾1] ∪[𝛾2, 𝛾2], 𝐹 ∈ 𝐿2((0, 𝑇) × 𝐼), where 𝐼 fl (−𝛽1, 1). Thus,
we can apply the analogue of Theorem 15 (which still holds
true, since 𝑎 belongs to𝑊1,1(−1, 1) in the weakly degenerate
case and to 𝑊1,∞(−1, 1) in the strongly degenerate one)
on (−𝛽1, 1) in place of (0, 1), obtaining that there exist two
positive constants 𝐶 and 𝑠0 (𝑠0 sufficiently large), such that𝑊
satisfies, for all 𝑠 ≥ 𝑠0,

∫𝑇

𝑡0

∫1

−𝛽1

[𝑠𝜃𝑎𝑊2
𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑊2 + 𝑠𝜃3/2 𝜂𝜓𝑊2

+ 1𝑠𝜃𝑊2
𝑡 ] 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 ≤ 𝐶∫𝑇

𝑡0

∫1

−𝛽1

𝐹2𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡.
(77)

Using again the fact that 𝜏𝑥 is supported in [−𝛾1, −𝛾1] ∪[𝛾2, 𝛾2] and the boundedness of 𝑎 and 𝑎 (recall that, using
the assumption on 𝑎, 𝑎 is 𝐶1 far away from 𝑥0 and 0 in the
weakly degenerate case and it is 𝑊1,∞(−1, 1) in the strongly
degenerate one), it follows that

∫𝑇

𝑡0

∫1

−𝛽1

[𝑠𝜃𝑎𝑊2
𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑊2 + 𝑠𝜃3/2 𝜂𝜓𝑊2

+ 1𝑠𝜃𝑊2
𝑡 ] 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶(∫𝑇

𝑡0

∫1

−𝛽1

𝜏2𝐺2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

+ ∫𝑇

𝑡0

(∫−𝛾1

−𝛾
1

+∫𝛾2

𝛾2

) [𝑤2 + 𝑤2
𝑥] 𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡) .

(78)

Now, by the definitions of 𝑤, we note that
∫𝑇

𝑡0

∫−𝛾1

−𝛾
1

[𝑤2 + 𝑤2
𝑥] 𝑒2𝑠𝜑(𝑥)𝑑𝑥𝑑𝑡

= ∫𝑇

𝑡0

∫−𝛾1

−𝛾
1

[𝑧2 (−𝑥) + 𝑧2𝑥 (−𝑥)] 𝑒2𝑠𝜑(𝑥)𝑑𝑥𝑑𝑡.
(79)
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Using a change of variable, by (57), one has

∫𝑇

𝑡0

∫−𝛾1

−𝛾
1

[𝑧2 (−𝑥) + 𝑧2𝑥 (−𝑥)] 𝑒2𝑠𝜑(𝑥)𝑑𝑥𝑑𝑡

= ∫𝑇

𝑡0

∫𝛾1

𝛾1

[𝑧2 (𝑥) + 𝑧2𝑥 (𝑥)] 𝑒2𝑠𝜑(−𝑥)𝑑𝑥𝑑𝑡

≤ ∫𝑇

𝑡0

∫𝛾1

𝛾1

[𝑧2 (𝑥) + 𝑧2𝑥 (𝑥)] 𝑒2𝑠Φ(𝑥)𝑑𝑥 𝑑𝑡.

(80)

Consequently,

∫𝑇

𝑡0

∫−𝛾1

−𝛾
1

[𝑤2 + 𝑤2
𝑥] 𝑒2𝑠𝜑(𝑥)𝑑𝑥𝑑𝑡

≤ ∫𝑇

𝑡0

∫𝛾1

𝛾1

[𝑧2 + 𝑧2𝑥] 𝑒2𝑠Φ(𝑥)𝑑𝑥 𝑑𝑡.
(81)

Going back to (78), by (81), and using the fact that 𝜑 ≤ Φ, we
obtain

∫𝑇

𝑡0

∫1

−𝛽1

[𝑠𝜃𝑎𝑊2
𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑊2 + 𝑠𝜃3/2 𝜂𝜓𝑊2

+ 1𝑠𝜃𝑊2
𝑡 ] 𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

≤ 𝐶(∫𝑇

𝑡0

∫1

−𝛽1

𝜏2𝐺2𝑒2𝑠Φ𝑑𝑥𝑑𝑡

+ ∫𝑇

𝑡0

(∫𝛾1

𝛾1

+∫𝛾2

𝛾2

) [𝑧2 + 𝑧2𝑥] 𝑒2𝑠Φ𝑑𝑥𝑑𝑡) .

(82)

Thus, applying the Caccioppoli inequality and recalling that𝐺 is defined through ℎ𝑡, one can find 𝐶 > 0 such that

∫𝑇

𝑡0

∫1

−𝛽1

[𝑠𝜃𝑎𝑊2
𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑊2 + 𝑠𝜃3/2 𝜂𝜓𝑊2

+ 1𝑠𝜃𝑊2
𝑡 ] 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶(∫𝑇

𝑡0

∫1

−𝛽1

𝜏2𝐺2𝑒2𝑠Φ𝑑𝑥𝑑𝑡
+ ∫𝑇

𝑡0
(∫𝛾1

𝛾1
+∫𝛾2

𝛾2
) 𝑧2𝑒2𝑠Φ𝑑𝑥𝑑𝑡

+ ∫𝑇

𝑡0

(∫
𝜔1

+∫
𝜔2

) [ℎ2𝑡 + 𝑠2𝜃2𝑧2] 𝑒2𝑠Φ𝑑𝑥𝑑𝑡)
≤ 𝐶(∬

𝑄𝑇𝑡0

ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡

+ ∫𝑇

𝑡0

(∫
𝜔1

+∫
𝜔2

) [ℎ2𝑡 + 𝑠2𝜃2𝑧2] 𝑒2𝑠Φ𝑑𝑥𝑑𝑡)
≤ 𝐶(∬

𝑄𝑇𝑡0

ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡 +∬
𝜔𝑇𝑡0

𝑠2𝜃2𝑧2𝑒2𝑠Φ𝑑𝑥𝑑𝑡) .

(83)

Hence, using the definitions of 𝑤 and 𝑊, there exists a
constant 𝐶 > 0 such that

∫𝑇

𝑡0

∫𝛾2

0
[𝑠𝜃𝑎𝑧2𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑧2 + 𝑠𝜃3/2 𝜂𝜓 𝑧2

+ 1𝑠𝜃𝑧2𝑡] 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 = ∫𝑇

𝑡0

∫𝛾2

0
[𝑠𝜃𝑎𝑤2

𝑥

+ 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑤2 + 𝑠𝜃3/2 𝜂𝜓 𝑤2 + 1𝑠𝜃𝑤2
𝑡]

⋅ 𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡 = ∫𝑇

𝑡0

∫𝛾2

0
[𝑠𝜃𝑎𝑊2

𝑥

+ 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑊2 + 𝑠𝜃3/2 𝜂𝜓𝑊2 + 1𝑠𝜃𝑊2
𝑡 ]

⋅ 𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡 ≤ ∫𝑇

𝑡0

∫1

−𝛽1

[𝑠𝜃𝑎𝑊2
𝑥

+ 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑊2 + 𝑠𝜃3/2 𝜂𝜓𝑊2 + 1𝑠𝜃𝑊2
𝑡 ]

⋅ 𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡 ≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡

+∬
𝜔𝑇𝑡0

𝑠2𝜃2𝑧2𝑒2𝑠Φ𝑑𝑥 𝑑𝑡) .

(84)

Finally adding up (71) and (84), we conclude that

𝐼0 fl ∬
𝑄𝑇𝑡0

[𝑠𝜃𝑎𝑧2𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 𝑧2 + 𝑠𝜃3/2 𝜂𝜓 𝑧2

+ 1𝑠𝜃𝑧2𝑡] 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶(∬
𝑄𝑇𝑡0

ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡 +∬
𝜔𝑇𝑡0

𝑠3𝜃3𝑧2𝑒2𝑠Φ𝑑𝑥 𝑑𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼1

,
(85)

for all 𝑠 ≥ 𝑠0 and for a positive constant 𝐶.
Step 2 (estimate from above of 𝐼1). In this step, our purpose is
to show that there exists some constant 𝐶 > 0 such that

𝐼1 ≤ 𝐶[ 1√𝑠 ∫
1

0
ℎ2 (𝑇, 𝑥) 𝑒2𝑠Φ(𝑇 ,𝑥) 𝑑𝑥 + 𝑢𝑡2𝐿2(𝜔𝑇𝑡0 )] . (86)

Let us recall that, by the definition of Ψ, there exists some
constant 𝑝 < 0 such thatΨ(𝑥) ≤ 𝑝 for all 𝑥 ∈ [0, 1].Therefore
we have

𝑠3𝜃3𝑒2𝑠Φ ≤ 𝑠3𝜃3𝑒2𝑠𝑝𝜃 → 0 as 𝑡 → 𝑡0 or 𝑇. (87)
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As a consequence, setting 𝐶 = supR{𝑦 → 𝑦3𝑒2𝑠𝑝𝑦} > 0, we
have

∬
𝜔𝑇𝑡0

𝑠3𝜃3𝑧2𝑒2𝑠Φ𝑑𝑥 𝑑𝑡 ≤ 𝐶 ‖𝑧‖2𝐿2(𝜔𝑇𝑡0 ) = 𝑢𝑡2𝐿2(𝜔𝑇𝑡0 ) . (88)

In order to complete the proof of (86), it remains to prove the
following lemma.

Lemma 17.There exists a constant 𝐶 > 0 such that
∬

𝑄𝑇𝑡0

ℎ2𝑡 𝑒2𝑠Φ𝑑𝑥𝑑𝑡 ≤ 𝐶√𝑠 ∫
1

0
ℎ2 (𝑇, 𝑥) 𝑒2𝑠Φ(𝑇 ,𝑥) 𝑑𝑥. (89)

We omit the proof of Lemma 17 which is classical and we
refer the reader to [2]. Using (88) and (89), we obtain (86).

Step 3 (estimate from below of 𝐼0). The purpose of the step
is to provide the following estimate: there exists a constant𝐶 > 0 such that

∫1

0
𝑧2 (𝑇, 𝑥) 𝑒2𝑠𝜑(𝑇 ,𝑥) 𝑑𝑥 ≤ 𝐶𝐼0. (90)

Since lim𝑡→𝑡0
𝑧2(𝑡, 𝑥)𝑒2𝑠𝜑(𝑡,𝑥) = 0, for a.e. 𝑥 ∈ (0, 1), we can

write

∫1

0
𝑧2 (𝑇, 𝑥) 𝑒2𝑠𝜑(𝑇 ,𝑥) 𝑑𝑥
= ∫𝑇

𝑡0

𝜕𝜕𝑡 (∫
1

0
𝑧2 (𝑡, 𝑥) 𝑒2𝑠𝜑(𝑡,𝑥)𝑑𝑥) 𝑑𝑡

= ∫𝑇

𝑡0

∫1

0
(2𝑧𝑧𝑡 + 2𝑠𝜑𝑡𝑧2) 𝑒2𝑠𝜑(𝑡,𝑥)𝑑𝑥𝑑𝑡.

(91)

Using Young’s inequality, one has

∫𝑇

𝑡0

∫1

0
2𝑧𝑧𝑡𝑒2𝑠𝜑𝑑𝑥 𝑑𝑡

= ∫𝑇

𝑡0

∫1

0
(2√𝑠𝜃𝑧𝑒𝑠𝜑) ( 1√𝑠𝜃𝑧𝑡𝑒𝑠𝜑)𝑑𝑥 𝑑𝑡

≤ ∬
𝑄𝑇𝑡0

(𝑠𝜃𝑧2𝑒2𝑠𝜑 + 1𝑠𝜃𝑧2𝑡 𝑒2𝑠𝜑) 𝑑𝑥𝑑𝑡
≤ ∬

𝑄𝑇𝑡0

𝑠𝜃𝑧2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 + 𝐼0.

(92)

Moreover, by the Hardy-Poincaré inequality, and using the
same computation as in the proof of (45), we get

∫𝑇

𝑡0

∫1

0
2𝑧𝑧𝑡𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶(∬
𝑄𝑇𝑡0

(𝑠𝜃𝑎 (𝑥) 𝑧2𝑥 + 𝑠3𝜃3 (𝑥 − 𝑥0)2𝑎 (𝑥) 𝑧2)

⋅ 𝑒2𝑠𝜑𝑑𝑥𝑑𝑡 + 𝐼0) ≤ 𝐶𝐼0.

(93)

Next, using the fact that |𝜑𝑡| ≤ 𝐶|𝜂𝜓|𝜃3/2, we have
∫𝑇

𝑡0

∫1

0
𝑠𝜑𝑡𝑧2𝑒2𝑠𝜑𝑑𝑥𝑑𝑡

≤ 𝐶∬
𝑄𝑇𝑡0

𝑠𝜃3/2 𝜂𝜓 𝑧2𝑒2s𝜑𝑑𝑥𝑑𝑡 ≤ 𝐶𝐼0.
(94)

Eventually, (91) associated with (92) and (93) gives (90).

Step 4 (conclusion). Using (90), (85), and next (86), there
exists some constant 𝐶 > 0 such that

∫1

0
𝑧2 (𝑇, 𝑥) 𝑒2𝑠𝜑(𝑇 ,𝑥)𝑑𝑥 𝑑𝑡
≤ 𝐶[ 1√𝑠 ∫

1

0
ℎ2 (𝑇, 𝑥) 𝑒2𝑠Φ(𝑇 ,𝑥) 𝑑𝑥 + 𝑢𝑡2𝐿2(𝜔𝑇𝑡0 )] .

(95)

On the other hand, let us recall that 𝑧 satisfies
𝑧 (𝑇, 𝑥) = 𝑢𝑡 (𝑇, 𝑥)

= (𝑎𝑢𝑥)𝑥 (𝑇, 𝑥) + 𝜆𝑏 𝑢 (𝑇, 𝑥) + ℎ (𝑇, 𝑥)
for a.e. 𝑥 ∈ [0, 1] .

(96)

Therefore,

∫1

0
ℎ2 (𝑇, 𝑥) 𝑒2𝑠𝜑(𝑇 ,𝑥) 𝑑𝑥
≤ 𝐶((𝑎𝑢𝑥)𝑥 (𝑇, 𝑥) + 𝜆𝑏 𝑢 (𝑇, 𝑥)

2

𝐿2(0,1)

+ ∫1

0
𝑧2 (𝑇, 𝑥) 𝑒2𝑠𝜑(𝑇 ,𝑥) 𝑑𝑥) .

(97)

Applying (95) to estimate the term ∫1
0
𝑧2(𝑇, 𝑥)𝑒2𝑠𝜑(𝑇 ,𝑥) 𝑑𝑥,

we obtain

∫1

0
ℎ2 (𝑇, 𝑥) 𝑒2𝑠𝜑(𝑇 ,𝑥) 𝑑𝑥
≤ 𝐶((𝑎𝑢𝑥)𝑥 (𝑇, 𝑥) + 𝜆𝑏 𝑢 (𝑇, 𝑥)

2

𝐿2(0,1)

+ 𝑢𝑡2𝐿2(𝜔𝑇𝑡0 ) + 1√𝑠 ∫
1

0
ℎ2 (𝑇, 𝑥) 𝑒2𝑠Φ(𝑇 ,𝑥) 𝑑𝑥) .

(98)

Choosing 𝑠 large enough such that 𝐶/√𝑠 = 1/2, we get
∫1

0
ℎ2 (𝑇, 𝑥) 𝑒2𝑠𝜑(𝑇 ,𝑥) 𝑑𝑥
≤ 𝐶[(𝑎𝑢𝑥)𝑥 (𝑇, 𝑥) + 𝜆𝑏 𝑢 (𝑇, 𝑥)

2

𝐿2(0,1)

+ 𝑢𝑡2𝐿2(𝜔𝑇𝑡0 )] .
(99)
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On the other hand, 𝑠 being now fixed, there exists some
constant 𝛾 > 0 such that

𝑒2𝑠𝜑(𝑇 ,𝑥) ≥ 𝛾 > 0. (100)

So we can write

𝛾∫1

0
ℎ2 (𝑇, 𝑥) 𝑑𝑥

≤ 𝐶[(𝑎𝑢𝑥)𝑥 (𝑇, 𝑥) + 𝜆𝑏 𝑢 (𝑇, 𝑥)
2

𝐿2(0,1)

+ 𝑢𝑡2𝐿2(𝜔𝑇𝑡0 )] .
(101)

Moreover, in view of (2),

|ℎ (𝑡, 𝑥)| ≤ ℎ (𝑇, 𝑥) + ∫𝑡

𝑇

ℎ𝑡 (𝑠, 𝑥) 𝑑𝑠
≤ 𝐶 ℎ (𝑇, 𝑥) .

(102)

Hence,

‖ℎ‖2𝐿2(𝑄) ≤ 𝐶∬
𝑄
ℎ2 (𝑇, 𝑥) 𝑑𝑥 𝑑𝑡

= 𝐶𝑇∫1

0
ℎ2 (𝑇, 𝑥) 𝑑𝑥

≤ 𝐶[(𝑎𝑢𝑥)𝑥 (𝑇, 𝑥) + 𝜆𝑏 𝑢 (𝑇, 𝑥)
2

𝐿2(0,1)

+ 𝑢𝑡2𝐿2(𝜔𝑇𝑡0 )] ,

(103)

which concludes the proof.

4. Numerical Approach

In this section, we develop an algorithm for numerically
reconstructing the unknown source term from the measured
final data.

4.1. Solvability of the Inverse Problem and Gradient Formula.
As the theoretical stability is guaranteed by Theorem 2, in
this subsection we study the inverse source problem from the
numerical viewpoint. To this end, let us define our inverse
problem which we use in computations.
Inverse Source Problem (ISP). Let 𝑢 be the solution to (1).
Determine the source term ℎ(𝑡, 𝑥) from the measured data at
the final time 𝑢(𝑇, .).

Problem (ISP) will be defined as the inverse source
problem associated with the singular parabolic equation (1).
Accordingly, for a given function ℎ ∈ U, from some class
of admissible source functions U, which will be defined
below, the singular parabolic problem (1) will be referred to
as a direct problem. A solution of the direct problem (1),
corresponding to the function ℎ ∈ U, will be defined as𝑢(𝑡, 𝑥; ℎ).

Remark 18. It should be mentioned that we do not need
the supplement distributed measurements to obtain the
numerical solution of the inverse problem.

Numerically, we treat ISP by interpreting its solution as a
minimizer of the following least squares functional with the
Tikhonov regularization:

min
ℎ∈U

𝐽 (ℎ) ,
𝐽 (ℎ) = 12 ‖𝑢 (𝑇, 𝑥; ℎ) − �̃� (𝑥)‖2𝐿2(0,1) + 𝜀2 ℎ − ℎ02𝐿2(𝑄) ,

(104)

where �̃� ∈ 𝐿2(0, 1) is the observation data with noise, ℎ0 is
the initial guess for ℎ, 𝜀 > 0 stands for the regularization
parameter, and U is the set of admissible unknown sources
defined in the following way:

U fl {ℎ ∈ 𝐻1 (0, 𝑇; 𝐿2 (0, 1)) : ‖ℎ‖𝐻1(0,𝑇;𝐿2(0,1))
≤ 𝑟, 𝑟 > 0} . (105)

Evidently, the set U is a bounded, closed, and convex subset
of𝐻1(0, 𝑇; 𝐿2(0, 1)).

We are now going to show the existence of minimizers to
problem (104). To do so, we need the following lemma.

Lemma 19. Assume Hypothesis 9. Let 𝑢 be the weak solution
of (1) corresponding to a given source term ℎ.Then, the function𝐹 : 𝐻1(0, 𝑇; 𝐿2(0, 1)) → 𝐶([0, 𝑇]; 𝐿2(0, 1)) ∩ 𝐿2(0, 𝑇;H)
defined as 𝐹(ℎ) fl 𝑢 is continuous.

Proof. First, take 𝑢0 ∈ 𝐷(𝐴). Then, let the source term ℎ
be perturbed by a small amount 𝛿ℎ such that ℎ + 𝛿ℎ ∈ U.
Consider 𝛿𝑢 = 𝑢𝛿 − 𝑢, where 𝑢𝛿 is the weak solution of (1)
with source term ℎ𝛿 fl ℎ+𝛿ℎ.Then 𝛿𝑢 ∈ 𝐶1([0, 𝑇]; 𝐿2(0, 1))∩𝐶(0, 𝑇;𝐷(𝐴)) satisfies the following sensitivity problem:

𝜕𝑡𝛿𝑢 − 𝜕𝑥 (𝑎𝜕𝑥𝛿𝑢) − 𝜆𝑏 𝛿𝑢 = 𝛿ℎ (𝑡, 𝑥) , (𝑡, 𝑥) ∈ 𝑄,
𝛿𝑢 (0) = 𝛿𝑢 (1) = 0, 𝑡 ∈ (0, 𝑇) ,

𝛿𝑢 (0, 𝑥) = 0, 𝑥 ∈ (0, 1) .
(106)

Let V(𝑡, 𝑥) be a smooth function. From (106) and by the Gauss
Green identity [16, Lemma 2.21], we have

∫1

0
𝜕𝑡𝛿𝑢V 𝑑𝑥 + ∫1

0
(𝑎𝜕𝑥𝛿𝑢V𝑥 − 𝜆𝑏 𝛿𝑢V) 𝑑𝑥

= ∫1

0
𝛿ℎV 𝑑𝑥.

(107)

We take 𝛿𝑢 as a mutual test function for V to deduce

12 𝑑𝑑𝑡 ∫
1

0
(𝛿𝑢)2 𝑑𝑥 + ∫1

0
(𝑎 (𝜕𝑥𝛿𝑢)2 − 𝜆𝑏 (𝛿𝑢)2)𝑑𝑥

= ∫1

0
𝛿ℎ𝛿𝑢 𝑑𝑥.

(108)
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Then, using Lemma 8, by the Cauchy-Schwarz inequality we
obtain

12 𝑑𝑑𝑡 ‖𝛿𝑢 (𝑡)‖2𝐿2(0,1) + Λ∫1

0
𝑎 (𝜕𝑥𝛿𝑢 (𝑡))2 𝑑𝑥

≤ 12 ‖𝛿𝑢 (𝑡)‖2𝐿2(0,1) + 12 ‖𝛿ℎ (𝑡)‖2𝐿2(0,1) ,
(109)

for every 𝑡 ≤ 𝑇, from which

𝑑𝑑𝑡 ‖𝛿𝑢 (𝑡)‖2𝐿2(0,1) ≤ ‖𝛿𝑢 (𝑡)‖2𝐿2(0,1) + ‖𝛿ℎ (𝑡)‖2𝐿2(0,1) . (110)

Applying Gronwall’s inequality, we obtain

‖𝛿𝑢 (𝑡)‖2𝐿2(0,1) ≤ 𝑒𝑇 (‖𝛿𝑢 (0)‖2𝐿2(0,1) + ‖𝛿ℎ‖2𝐿2(𝑄))
= 𝑒𝑇 ‖𝛿ℎ‖2𝐿2(𝑄) ,

(111)

for every 𝑡 ≤ 𝑇. From (109) and (111), we immediately get

∫𝑇

0

√𝑎𝛿𝑢𝑥 (𝑡)2𝐿2(0,1) 𝑑𝑡 ≤ 𝐶𝑇 ‖𝛿ℎ‖2𝐿2(𝑄) , (112)

for every 𝑡 ≤ 𝑇 and some universal constant 𝐶𝑇 > 0. Thus, by
(111) and (112), we obtain

sup
𝑡∈[0,𝑇]

‖𝛿𝑢 (𝑡)‖2𝐿2(0,1) + ∫𝑇

0
‖𝛿𝑢 (𝑡)‖2H 𝑑𝑡

≤ 𝐶𝑇 ‖𝛿ℎ‖2𝐿2(𝑄) ,
(113)

from which it follows that

‖𝛿𝑢‖2𝐶([0,𝑇];𝐿2(0,1)) + ‖𝛿𝑢‖2𝐿2(0,𝑇;H)

≤ 𝐶 ‖𝛿ℎ‖2𝐻1(0,𝑇;𝐿2(0,1)) ,
(114)

if 𝑢0 ∈ 𝐷(𝐴). Since 𝐷(𝐴) is dense in 𝐿2(0, 1), the same
inequality holds if 𝑢0 ∈ 𝐿2(0, 1). This completes the proof
Lemma 19.

An immediate consequence of Lemma 19 is the following
result.

Proposition 20. Assume Hypothesis 9. Then, the functional 𝐽
is continuous on U and there exists a minimizer ℎ⋆ ∈ U of𝐽(ℎ), i.e.,

𝐽 (ℎ⋆) = min
ℎ∈U

𝐽 (ℎ) . (115)

Here we will propose an iterative method to solve the
nonlinear optimization problem (104), and thus the infor-
mation of the derivatives of the objective functional plays a
significant and important role. Our approach for computing
the Fréchet derivatives is based on adjoint state method. This
used method is also called the variational adjoint method
or the adjoint problem approach [18, 21, 22]. A distinct
advantage of using such a method is due to the fact that
it permits to reduce the computational costs as well as its
relatively simple numerical implementation.

The following proposition characterizes the derivative of
the cost functional (104).

Proposition 21. TheTikhonov functional 𝐽 is Fréchet differen-
tiable and its derivative at each ℎ ∈ U is given by

𝐽 (ℎ) = V + 𝜀 (ℎ − ℎ0) , (116)

where V ∈ 𝐶([0, 𝑇]; 𝐿2(0, 1)) is the mild solution of the
following adjoint equation:

V𝑡 + (𝑎V𝑥)𝑥 + 𝜆𝑏 (𝑥)V = 0, (𝑡, 𝑥) ∈ 𝑄,
V (0) = V (1) = 0, 𝑡 ∈ (0, 𝑇) ,

V (𝑇, 𝑥) = 𝑢 (𝑇) − �̃�, 𝑥 ∈ (0, 1) .
(117)

For the proof of the above result, we shall use the fol-
lowing lemma which derives an integral relationship relating
the change 𝛿ℎ in the term source to the change of the output𝛿𝑢(𝑇) through the solution of an adjoint problem.

Lemma 22. Let ℎ, ℎ𝛿 be given elements. Denote by 𝑢 and 𝑢𝛿
the solutions of the direct problem (1) corresponding to the given
admissible term sources ℎ, ℎ𝛿 ∈ U. Then the following integral
identity holds:

∫1

0
𝛿𝑢 (𝑇) 𝑞 (𝑥) 𝑑𝑥 = ∫𝑇

0
∫1

0
𝛿ℎV 𝑑𝑥 𝑑𝑡, (118)

where 𝛿𝑢(𝑇) = 𝑢𝛿(𝑇) − 𝑢(𝑇), 𝛿ℎ = ℎ𝛿 − ℎ, and V(𝑡, 𝑥) fl
V(𝑡, 𝑥; 𝑞) solves the adjoint problem

V𝑡 + (𝑎V𝑥)𝑥 + 𝜆𝑏 (𝑥)V = 0, (𝑡, 𝑥) ∈ 𝑄,
V (0) = V (1) = 0, 𝑡 ∈ (0, 𝑇) ,

V (𝑇, 𝑥) = 𝑞 (𝑥) , 𝑥 ∈ (0, 1) ,
(119)

with an arbitrary input 𝑞(𝑥) ∈ 𝐿2(0, 1).
Proof of Proposition 21. Let 𝑢 and 𝑢𝛿 be the solutions of the
direct problem (1) corresponding the source terms ℎ, ℎ𝛿 = ℎ+𝛿ℎ ∈ U. By calculating the increment 𝛿𝐽(ℎ) fl 𝐽(ℎ𝛿 − 𝐽(ℎ)) of
the cost functional, we deduce that

𝛿𝐽 (ℎ) = ∫1

0
(𝑢 (𝑇) − �̃�) 𝛿𝑢 (𝑇) 𝑑𝑥 + 12 ‖𝛿𝑢 (𝑇)‖2𝐿2(0,1)

+ 𝜀∫𝑇

0
∫1

0
(ℎ − ℎ0) 𝛿ℎ 𝑑𝑥𝑑𝑡 + 𝜀2 ‖𝛿ℎ‖2𝐿2(𝑄) ,

(120)

for all ℎ, ℎ𝛿 ∈ U, where 𝛿𝑢 = 𝑢𝛿 − 𝑢.
Choosing the arbitrary input 𝑞 ∈ 𝐿2(0, 1) in the adjoint

problem (119) as 𝑞(𝑥) fl (𝑢(𝑇) − �̃�), we deduce from the
integral relationship (118) that

∫1

0
(𝑢 (𝑇) − �̃�) 𝛿𝑢 (𝑇) 𝑑𝑥 = ∫𝑇

0
∫1

0
𝛿ℎV 𝑑𝑥𝑑𝑡, (121)
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Using the integral equality (121) in the increment formula
(120), we deduce that

𝛿𝐽 (ℎ) = ∫𝑇

0
∫1

0
𝛿ℎV 𝑑𝑥𝑑𝑡

+ 𝜀∫𝑇

0
∫1

0
(ℎ − ℎ0) 𝛿ℎ 𝑑𝑥 𝑑𝑡

+ 12 ‖𝛿𝑢 (𝑇)‖2𝐿2(0,1) + 𝜀2 ‖𝛿ℎ‖2𝐿2(𝑄) .
(122)

To obtain the Fréchet differential of 𝛿𝐽(ℎ), by definition, we
need to show that

𝛿𝐽 (ℎ) = ⟨V + 𝜀 (ℎ − ℎ0) , 𝛿ℎ⟩𝐿2(𝑄) + O (‖𝛿ℎ‖2𝐿2(𝑄)) . (123)

To this aim, observe that if we substitute 𝑡 by 𝑇 in (111) it
follows that

‖𝛿𝑢 (𝑇)‖2𝐿2(0,1) ≤ 𝑒𝑇 ‖𝛿ℎ‖2𝐿2(𝑄) . (124)

i.e., the second right-hand side integral of (122) is of the order
O(‖𝛿ℎ‖2𝐿2(𝑄)). So, since the last two integrals in (122) are of the
orderO(‖𝛿ℎ‖2𝐿2(𝑄)), we deduce that the cost functional 𝐽(ℎ) is
Frćhet-differentiable, with Fréchet differential:

𝐽 (ℎ) = V + 𝜀 (ℎ − ℎ0) , ∀ℎ ∈ U. (125)

Proof of Lemma 22. The function 𝛿𝑢(𝑡) = 𝑢𝛿(𝑡) − 𝑢(𝑡) solves
the initial-boundary value problem

𝜕𝑡𝛿𝑢 = 𝜕𝑥 (𝑎𝜕𝑥𝛿𝑢) + 𝜆𝑏 𝛿𝑢 + 𝛿ℎ, (𝑡, 𝑥) ∈ 𝑄,
𝛿𝑢 (0) = 𝛿𝑢 (1) = 0, 𝑡 ∈ (0, 𝑇) ,

𝛿𝑢 (0, 𝑥) = 0, 𝑥 ∈ (0, 1) .
(126)

Multiply both sides of the parabolic equation (126) by V,
integrate on 𝑄, and then apply the integration by parts
formula on both sides multiple times. Then, taking into
account the initial and boundary conditions in problem (126),
we obtain the following identity:

∫1

0
𝛿𝑢 (𝑇) V (𝑇) 𝑑𝑥 − ∫𝑇

0
∫1

0
𝛿𝑢V𝑡𝑑𝑥 𝑑𝑡

= ∫𝑇

0
∫1

0
(𝜕𝑥 (𝑎𝜕𝑥𝛿𝑢) + 𝜆𝑏 𝛿𝑢 + 𝛿ℎ) V 𝑑𝑥𝑑𝑡

= ∫𝑇

0
∫1

0
((𝑎V𝑥)𝑥 + 𝜆𝑏 V) 𝛿𝑢𝑑𝑥 𝑑𝑡

+ ∫𝑇

0
∫1

0
𝛿ℎV 𝑑𝑥𝑑𝑡.

(127)

Since V(𝑇) = 𝑞(𝑥), thanks to (119) and (127), we arrive at

∫1

0
𝛿𝑢 (𝑇) 𝑞 (𝑥) 𝑑𝑥 = ∫1

0
𝛿𝑢 (𝑇) V (𝑇) 𝑑𝑥

= ∫𝑇

0
∫1

0
(V𝑡 + (𝑎V𝑥)𝑥 + 𝜆𝑏 V)𝛿𝑢 𝑑𝑥𝑑𝑡

+ ∫𝑇

0
∫1

0
𝛿ℎV 𝑑𝑥 𝑑𝑡 = ∫𝑇

0
∫1

0
𝛿ℎV 𝑑𝑥 𝑑𝑡.

(128)

This ends the proof.

4.2. Lipschitz Continuity of the Gradient and the Monotone
Iteration Scheme. As emphasized in [23, Chapter 3], any
gradientmethod for theminimization problem (104) requires
an estimation of the iteration parameter 𝑡𝑛 > 0 in the iteration
process

ℎ𝑛+1 = ℎ𝑛 − 𝑡𝑛𝐽 (ℎ𝑛) , 𝑛 = 0, 1, 2, . . . , (129)

where ℎ0 ∈ U is a given initial iteration. The choice of 𝑡𝑛
defines different gradient methods, although in many situa-
tion the estimation of this parameter is a difficult problem.
However, in the case of Lipschitz continuity of the gradient𝐽(ℎ) the parameter 𝑡𝑛 can be estimated via the Lipschitz
constant as follows (see [18]):

0 < 𝛿0 ≤ 𝑡𝑛 ≤ 2(𝐿 + 2𝛿1) , (130)

where 𝛿0, 𝛿1 > 0 are arbitrary parameters.
Now we will prove the Lipschitz continuity of the Fréchet

gradient.

Theorem 23. Let ℎ, 𝛿ℎ ∈ U.Then the Fréchet gradient (116) of
the Tikhonov functional is Lipschitz continuous, i.e.,

𝐽 (ℎ𝛿) − 𝐽 (ℎ)𝐿2(𝑄) ≤ 𝐿 ‖𝛿ℎ‖𝐿2(𝑄) , ∀ℎ, 𝛿ℎ ∈ U, (131)

where the Lipschitz constant𝐿 > 0 is defined via the parameters𝑇 and 𝜀 as follows:
𝐿 = √2 (𝑇𝑒𝑇 + 𝜀2). (132)

Proof. Let the functions V(𝑡, 𝑥; ℎ) and V(𝑡, 𝑥; ℎ𝛿) be the solu-
tions to the adjoint problem (119) with 𝑞(𝑥) = 𝑢(𝑇, 𝑥; ℎ) − �̃�
and 𝑞(𝑥) = 𝑢(𝑇, 𝑥; ℎ𝛿) − �̃�, respectively. We have

𝐽 (ℎ𝛿) − 𝐽 (ℎ)2𝐿2(𝑄) = ∫𝑇

0
∫1

0
|𝛿V + 𝜀𝛿ℎ|2 𝑑𝑥𝑑𝑡

≤ 2∫𝑇

0
∫1

0
|𝛿V|2 𝑑𝑥𝑑𝑡 + 2𝜀2 ‖𝛿ℎ‖2𝐿2(𝑄) ,

(133)
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where 𝛿V = 𝛿V(𝑡, 𝑥; ℎ) fl V(𝑡, 𝑥; ℎ𝛿) − V(𝑡, 𝑥; ℎ) is the solution
of the backward parabolic problem

𝜕𝑡𝛿V + 𝜕𝑥 (𝑎𝜕𝑥𝛿V) + 𝜆𝑏 𝛿V = 0, (𝑡, 𝑥) ∈ 𝑄,
𝛿V (0) = 𝛿V (1) = 0, 𝑡 ∈ (0, 𝑇) ,

𝛿V (𝑇, 𝑥) = 𝛿𝑢 (𝑇, 𝑥; ℎ) ,
𝑥 ∈ (0, 1) .

(134)

Multiplying (134) by 𝛿V, integrating over (0, 1), and using the
boundary conditions, we get

12 𝑑𝑑𝑡 ∫
1

0
𝛿V (𝑡, 𝑥; ℎ)2 𝑑𝑥

= ∫1

0
(𝑎 (𝜕𝑥𝛿V (𝑡, 𝑥; ℎ))2 − 𝜆𝑏 𝛿V (𝑡, 𝑥; ℎ)2)𝑑𝑥.

(135)

Using again (15), we have

12 𝑑𝑑𝑡 ∫
1

0
𝛿V (𝑡, 𝑥; ℎ)2 𝑑𝑥 ≥ Λ∫1

0
𝑎 (𝜕𝑥𝛿V (𝑡, 𝑥; ℎ))2 𝑑𝑥. (136)

Let

F (𝑡) fl ∫1

0
𝛿V (𝑡, 𝑥; ℎ)2 𝑑𝑥. (137)

SinceF(𝑡) ≥ 0,F is increasing on (0, 𝑇], and thus

F (𝑡) ≤ F (𝑇) , ∀𝑡 ∈ (0, 𝑇] . (138)

By (138), we obtain that

∫1

0
𝛿V (𝑡, 𝑥; ℎ)2 𝑑𝑥 ≤ ∫1

0
𝛿V (𝑇, 𝑥; ℎ)2 𝑑𝑥

= ∫1

0
𝛿𝑢 (𝑇, 𝑥; ℎ)2 𝑑𝑥.

(139)

Finally, by (111) it follows that

∫1

0
𝛿V (𝑡, 𝑥; ℎ)2 𝑑𝑥 ≤ 𝑒𝑇 ‖𝛿ℎ‖2𝐿2(𝑄) . (140)

Combining (133) and (140), we get the inequality (131).

An important application of this theorem is the following
lemma (see [23, Lemmas 3.4.4 and 3.4.5]).

Lemma 24. Let the Fréchet gradient of the Tikhonov func-
tional (104) defined on the set of admissible source terms U
be Lipschitz continuous with the Lipschitz constant 𝐿 > 0.
Denote by {ℎ𝑛} ⊂ U the sequence of iterations obtained
by the Landweber iteration algorithm (129). If the relaxation
parameter 𝑡𝑛 ∈ (0, 2/𝐿), then the following statements hold:

(i) {𝐽(ℎ𝑛)} is a monotone decreasing sequence;
(ii) lim𝑛→∞‖𝐽(ℎ𝑛)‖𝐿2(𝑄) = 0;
(iii) for the rate of convergence of the sequence {𝐽(ℎ𝑛)}, the

following estimate holds:

0 ≤ 𝐽 (ℎ𝑛) − 𝐽⋆ ≤ 2𝐿𝑑𝑛−1, 𝑑 > 0, 𝑛 = 1, 2, 3, . . . , (141)

where 𝐽⋆ fl infℎ∈U𝐽(ℎ).

5. Conclusion

In this paper, we have considered an inverse source problem
for a class of degenerate and singular parabolic equations.
Based on Carleman estimates, global Lipschitz stability result
is proved. Then, the identification of the source term is
formulated as a minimization problem combining the output
least squares and the Tikhonov regularization. It is proved
that the Fréchet derivative of the cost functional can be
formulated via the solution of the adjoint parabolic problem.
Lipschitz continuity of the gradient functional was also
proved, which implies the monotonicity of the numerical
sequence of iterations obtained by the Landweber iteration
algorithm. Some applications with numerical implementa-
tions are in progress.
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