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An efficient iterationmethod is introduced and used for solving a type of systemof nonlinearVolterra integro-differential equations.
The scheme is based on a combination of the spectral collocation technique and the parametric iteration method. This method is
easy to implement and requires no tedious computational work. Some numerical examples are presented to show the validity and
efficiency of the proposed method in comparison with the corresponding exact solutions.

1. Introduction

Systems of integro-differential equations and their solu-
tions play a pivotal role in the fields of science, industrial
mathematics, control theory of financial mathematics, and
engineering [1–3]. Physical systems, such as biological appli-
cations in population dynamics, and genetics where impulses
arise naturally or are caused by control are modeled by a
system of integro-differential equations [4, 5]. The initial
value problem for a nonlinear system of integro-differential
equations were used to model the competition between
tumor cells and the immune system [6]. In [7], two systems
of specific inhomogeneous integro-differential equations are
studied in order to examine the noise term phenomenon.
Thus applications of numerical methods for solving these
equations are attractive.This has led to a great deal of research
in recent years with the use of numerical methods such as
the variational iteration method [8], differential transform
method [9], Bezier curves method [10], radial basis function
networks [11], biorthogonal systems [12], the block pulse
functionsmethod [13], and a collocationmethod in combina-
tion with operational matrices of Bernstein polynomials [14].

The parametric iteration method (PIM) is an analytic
approximate method that provides the solution of linear and
nonlinear problems as a sequence of iterations. In fact, the
PIM as a fixed- point iteration method is a reconstruction of

the variational iterationmethod. Since the implementation of
the PIM generally leads to the calculation of unneeded terms,
where more time is consumed in repeated calculations for
series solutions, so to overcome these shortcomings, a useful
improvement of the PIM was proposed in [15].

The aim of this work is to present an effective algorithm,
requiring no tedious computational work, based on the
improved PIM and the spectral collocation technique to
obtaining an accurate solution for the following system of
Volterra integro-differential equations as follows:

̇𝑦𝑖 (𝑡) = 𝑓𝑖 (𝑡, 𝑦1 (𝑡) , 𝑦2 (𝑡) , . . . , 𝑦𝑛 (𝑡))
+ ∫𝑡
0
𝑘𝑖 (𝑡, 𝑠) 𝐹𝑖 (𝑦1 (𝑠) , 𝑦2 (𝑠) , . . . , 𝑦𝑛 (𝑠)) 𝑑𝑠,

𝑦𝑖 (0) = (𝑦0)𝑖 ,
(1)

for 𝑖 = 1, . . . , 𝑛 and 𝑡 ∈ [0, 𝑇]. The functions 𝑓𝑖(𝑡, 𝑦1(𝑡),𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)) are given real valued functions, 𝑘𝑖(𝑡, 𝑠), 𝑖 = 1,2, . . . , 𝑛, are kernels of the integral equations, and 𝐹𝑖(𝑦1(𝑠),𝑦2(𝑠), . . . , 𝑦𝑛(𝑠)) are linear or nonlinear functions of 𝑦1(𝑠),𝑦2(𝑠), . . . , 𝑦𝑛(𝑠).
To demonstrate the utility of the proposed method, some

examples of system of Volterra integro-differential equations
are given, which are solved using the establishedmethod.The
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obtained results are compared with the exact solutions. In all
cases, the present algorithm performed excellently.

2. Parametric Iteration Method

The PIM gives rapidly convergence by using successive
approximations of the exact solution if such a solution exists;
otherwise the approximations can be used for numerical
aims. To convey the basic idea of this method, we first
consider (1) as below:

𝐿 [𝑦𝑖 (𝑡)] + 𝑁 [𝑦𝑖 (𝑡)] = 𝑔𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑛, (2)

where 𝐿 denotes the auxiliary linear operator with respect to𝑦𝑖. In (2) 𝑁 is a nonlinear continuous operator with respect
to 𝑦𝑖 and 𝑔𝑖(𝑡) is the source term.

Next, we construct a family of explicit iterative processes
for (2) [15, 16]

𝐿 [𝑦𝑘+1𝑖 (𝑡) − 𝑦𝑘𝑖 (𝑡)] = ℎ𝐴 [𝑦𝑘𝑖 (𝑡)] , 𝑖 = 1, . . . , 𝑛, (3)

where

𝐴[𝑦𝑘𝑖 (𝑡)] = 𝐿 [𝑦𝑘𝑖 (𝑡)] + 𝑁 [𝑦𝑘𝑖 (𝑡)] − 𝑔𝑖 (𝑡)
≡ ̇𝑦𝑘𝑖 (𝑡) − 𝑓𝑖 (𝑡, 𝑦𝑘1 (𝑡) , 𝑦𝑘2 (𝑡) , . . . , 𝑦𝑘𝑛 (𝑡))
− ∫𝑡
0
𝑘𝑖 (𝑡, 𝑠) 𝐹𝑖 (𝑦𝑘1 (𝑠) , 𝑦𝑘2 (𝑠) , . . . , 𝑦𝑘𝑛 (𝑠)) 𝑑𝑠,

(4)

with the initial conditions 𝑦𝑘+1𝑖 (0) = 𝑦0𝑖 .
Also, we can construct a family of the implicit PIM for (2)

as follows:

𝐿 [𝑦𝑘+1𝑖 (𝑡) − 𝑦𝑘𝑖 (𝑡)]
= ℎ {𝐿 [𝑦𝑘𝑖 (𝑡)] + 𝑁 [𝑦𝑘+1𝑖 ] − 𝑔𝑖 (𝑡)} , 𝑖 = 1, . . . , 𝑛, (5)

with the above initial condition.𝑦0𝑖 is the initial guess which can be freely found from
solving its corresponding linear equation (𝐿[𝑦0𝑖 ] = 0 or𝐿[𝑦0𝑖 ] = 𝑔𝑖(𝑡)) and the subscript 𝑘 denotes the 𝑘th iteration.
The parameter ℎ ̸= 0 denotes the so-called auxiliary
parameter, which can be identified easily and efficiently by
the technique proposed in [15]. Also we are free to choose
the auxiliary linear operator 𝐿, the auxiliary parameter ℎ, and
the initial approximation 𝑦0𝑖 , which is fundamental to the
validity and flexibility of the PIM. Accordingly, the successive
approximations of 𝑦𝑘𝑖 (𝑡), 𝑘 ≥ 0, for the PIM iterative
relation will be obtained readily in the auxiliary parameterℎ. Consequently, the exact solution can be obtained by using
the following:

𝑦𝑖 (𝑡) = lim
𝑘→∞

𝑦𝑘𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑛. (6)

When the original PIM fails, then the presence of the
parameter ℎ in (3) or (5) can play an important role in the
frame of the PIM. However, we can always discover a valid
region of ℎ for every physical problemby plotting the solution

or its derivatives versus the parameter ℎ in some points. An
approximate optimal value of the convergence accelerating
parameter ℎ can be determined at the order of approximation
by the residual error [17]:

𝑅𝑒𝑠𝑖 (ℎ)
= ∫𝑇
0
{𝐿 [𝑦𝑘𝑖 (𝑡; ℎ)] + 𝑁 [𝑦𝑘𝑖 (𝑡; ℎ)] − 𝑔𝑖 (𝑡)}2 𝑑𝑡. (7)

Now, one can minimize (7) by imposing the requirement𝑑𝑅𝑒𝑠𝑖(ℎ)/𝑑ℎ = 0.
3. Description of the Method

The PIM procedure provides the solution of the system
of Volterra integro-differential equations as a sequence of
iterates; its successive iterations may be very complex so
that the resulting integrals in its iterative relation may
not be performed analytically. Here, we will overcome this
shortcoming of the PIM for solving (1) by proposing a spectral
collocation PIM. As will be shown in this paper later, the new
method will be very simple to implement and save time and
calculations.

Assume that 𝑦𝑖(𝑡), 𝑖 = 1, . . . , 𝑛, are the 𝑖th component
of the solution y and also the 𝑖th equation of system (1).
Consider basis functions 𝜙𝑖,𝑗, which are polynomials of
degree𝑁−1 satisfying𝜙𝑖,𝑗(𝑡𝑘) = 𝛿𝑖𝑗,𝑘 for the shiftedChebyshev
nodes (note that 𝑡1 = 𝑇 and 𝑡𝑁 = 0):
𝑡𝑘 = 𝑇2 [cos((𝑘 − 1) 𝜋𝑁 − 1 ) + 1] ,

𝑘 = 1, . . . , 𝑁, 𝑖 = 1, . . . , 𝑛.
(8)

The unknown function 𝑦𝑖(𝑡) (𝑖 = 1, . . . , 𝑛) is approximated as
a truncated series of polynomials. The polynomial

𝑝𝑖 (𝑡) ≅ 𝑦𝑖 (𝑡) = 𝑁∑
𝑗=1

𝜑𝑖,𝑗 (𝑡) 𝑦𝑖,𝑗 (9)

interpolates the points (𝑡𝑗, 𝑦𝑖,𝑗), 𝑗 = 1, . . . , 𝑁, that is, 𝑝𝑖(t) =
y𝑖, where t = (𝑡1, . . . , 𝑡𝑁) and y𝑖 = (𝑦1, . . . , 𝑦𝑁) are vectors.
The values of the interpolating polynomial of first derivative
at the nodes are 𝑝̇𝑖(t) = 𝐷(1)y𝑖, 𝑖 = 1, . . . , 𝑛, where the𝑘,𝑗th element of the differentiation matrix 𝐷(1) is 𝜙(1)𝑖,𝑗 (𝑡𝑘).
Also the values of the integrals at the nodes are defined by
∫𝑡
0
𝑘𝑖(𝑡, 𝑠)𝑦(𝑠)𝑑𝑠 = 𝑉 ⋅ y𝑖, 𝑖 = 1, . . . , 𝑛, where 𝑉 is the Volterra

integration matrix [18, 19] (for more details observe [19]).
Generally, in order to solve system (1) using a spectral

collocation scheme, the interpolating polynomials 𝑝𝑖(𝑡) (𝑖 =1, . . . , 𝑛) are required to satisfy the equations of the system
at the interior nodes. The values of the interpolating polyno-
mials at the interior nodes 𝑡2, . . . , 𝑡𝑁 are 𝑝𝑖(t𝑚) = (y𝑖)𝑚 =𝐼𝑚,:y𝑖 (𝑚 = 1 : 𝑁 − 1), where 𝐼𝑚,: denotes the 𝑚 row of the𝑁 × 𝑁 identity matrix and the derivative values are 𝑝̇𝑖(t𝑚) =𝐷(1)𝑚,:y𝑖. The initial condition that involves the interpolating
polynomials can be handled by using the formulas 𝑝𝑖(t𝑁) =
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Table 1: The 𝐿2 and 𝐿∞ errors for Example 1.

𝑁 6 8 10 12 14 16
𝐿2 − 𝑒𝑟𝑟𝑜𝑟 𝑦1(𝑡) 3.1𝑒 − 005 1.4𝑒 − 007 4.3𝑒 − 10 9.0𝑒 − 13 8.5𝑒 − 16 2.0𝑒 − 15𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 𝑦1(𝑡) 2.0𝑒 − 005 8.1𝑒 − 008 2.2𝑒 − 10 4.1𝑒 − 13 4.4𝑒 − 16 8.8𝑒 − 16𝐿2 − 𝑒𝑟𝑟𝑜𝑟 𝑦2(𝑡) 8.4𝑒 − 006 2.3𝑒 − 008 6.7𝑒 − 11 1.3𝑒 − 13 9.6𝑒 − 16 1.1𝑒 − 15𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 𝑦2(𝑡) 6.7𝑒 − 006 1.5𝑒 − 008 4.4𝑒 − 11 8.4𝑒 − 14 4.4𝑒 − 16 6.6𝑒 − 16
No. of Itre. 23 21 31 17 21 25

(y𝑖)𝑁 = 𝐼𝑁,:y𝑖, where this notation 𝐼𝑁,: denotes the last row of
the (𝑁 × 𝑁) identity matrix.

For the interpolating polynomial to satisfy the 𝑖th differ-
ential equation of the system of Volterra integro-differential
equations (1) at each interior node, the collocation equation

𝑝̇𝑖 (t𝑚) = 𝑓𝑖 (t𝑚, 𝑝1 (t𝑚) , . . . , 𝑝𝑛 (t𝑚))
+ ∫𝑡
𝑜
𝑘𝑖 (t, 𝑠) 𝐹𝑖 (𝑝1 (𝑠) , . . . , 𝑝𝑛 (s)) 𝑑𝑠,

𝑝𝑖 (t𝑁) = 𝑦0𝑖 , 𝑖 = 1, . . . , 𝑛
(10)

should be satisfied. Substituting the differentiation and the
integration matrix relations into (10), we get

[𝐷(1)𝑚,:𝐼𝑁,: ] y𝑖 = [𝐼𝑚,:𝑓𝑖 (t𝑚, y1, . . . , y𝑛)𝑦0𝑖 ]

+ [𝐼𝑚,: (𝑉 ⋅ 𝐹𝑖 (y1, . . . , y𝑛))0 ] ,
𝑖 = 1, . . . , 𝑛.

(11)

Now, in view of (3) and the definitions of 𝐿 and 𝐴,
by substituting the differentiation and integration matrix
relations, we will have the following explicit PIM for solving
(1) which is called the spectral PIM (SPIM):

y𝑘+1𝑖 = y𝑘𝑖 + ℎ[𝐷
(1)
𝑚,:𝐼𝑁,: ]
−1

([𝐷(1)𝑚,:𝐼𝑁,: ] y𝑘𝑖

− [𝐼𝑚,:𝑓𝑖 (t𝑚, y1, . . . , y𝑛)𝑦0𝑖 ]

− [𝐼𝑚,: (𝑉 ⋅ 𝐹𝑖 (y1, . . . , y𝑛))0 ]) .

(12)

If we define L = [𝐷(1)𝑚,:, 𝐼𝑁,:]𝑇, f = [𝑓𝑖(t𝑚, y1, . . . , y𝑛), 𝑦0𝑖 ]𝑇,
and Ny𝑘 = [𝐼𝑚,: (𝑉 ⋅ 𝐹𝑖(y1, . . . , y𝑛)), 0]𝑇, then we will have
the following explicit iterative relation for finding the solution
vector y𝑘+1𝑖

y𝑘+1𝑖 = y𝑘𝑖 + ℎL−1 (Ly𝑘𝑖 − f − Ny𝑘𝑖 ) . (13)

Here the vector y𝑘+1𝑖 is defined as

y𝑘+1𝑖 = {𝑦𝑘+1𝑖 (𝑡1) , . . . , 𝑦𝑘+1𝑖 (𝑡𝑁)} . (14)

Now one can start with the initial guess y0𝑖 for obtaining
the approximations y𝑖.

4. Illustrative Examples

In this section, we give several test examples to confirm
our analysis. To examine the accuracy of the results, 𝐿2 and𝐿∞ are employed to assess the efficiency of the method
SPIM. All the computations were performed using software
Matlab and terminated when the current iterate satisfies ‖y𝑘−
y𝑘−1‖ ≤ 10−16, where y𝑘 is the solution vector of the 𝑘th SPIM
iteration.

Example 1. Consider the following system of Volterra
integro-differential equations [20]:

̇𝑦1 (𝑡) = 1 − 12 ̇𝑦22 (𝑡)
+ ∫𝑡
0
((𝑡 − 𝑠) 𝑦2 (𝑠) + 𝑦2 (𝑠) 𝑦1 (𝑠)) 𝑑𝑠,

̇𝑦2 (𝑡) = 2𝑡 + ∫𝑡
0
((𝑡 − 𝑠) 𝑦1 (𝑠) − 𝑦22 (𝑠) + 𝑦21 (𝑠)) 𝑑𝑠,

(15)

with the initial conditions 𝑦1(0) = 0 and 𝑦2(0) = 1. The exact
solution of this system is (𝑦1(𝑡), 𝑦2(𝑡)) = (sinh 𝑡, cosh 𝑡).

Table 1 illustrates the𝐿2 and𝐿∞ errors for different values
of 𝑁 as well as the number of iterations to reach the above-
mentioned stopping criteria. Also Figure 1 shows the absolute
error of the proposed method for 𝑁 = 16. As expected, the
exponential rate of convergence is observed for the system
of nonlinear Volterra integro-differential equations, which
confirmed our theoretical predictions.

Example 2. Consider the following system of Volterra
integro-differential equations with the exact solution(𝑦1(𝑡), 𝑦2(𝑡)) = (𝑡 + 𝑒𝑡, 𝑡 − 𝑒𝑡) [8]:

̇𝑦1 (𝑡) = 1 + 𝑡 − 𝑡2 − 𝑦2 (𝑡) + ∫𝑡
0
(𝑦1 (𝑠) + 𝑦2 (𝑠)) 𝑑𝑠,

̇𝑦2 (𝑡) = −1 − 𝑡 + 𝑦1 (𝑡) − ∫𝑡
0
(𝑦1 (𝑠) − 𝑦2 (𝑠)) 𝑑𝑠,

(16)

subjected to initial conditions 𝑦1(0) = 1 and 𝑦2(0) = −1.
The results of 𝐿2 and 𝐿∞ errors of 𝑦1(𝑡) and 𝑦2(𝑡)

for the different values of 𝑁 as well as the number of
iterations to reach the stopping criteria are given in Table 2.
Figure 2 depicts the absolute error of the presented method
for 𝑁 = 16. Again, the exponential rate of convergence
is observed for the system of nonlinear Volterra integro-
differential equations.
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Figure 1: Errors of 𝑦1 and 𝑦2 for Example 1 when𝑁 = 16.
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Figure 2: Errors of 𝑦1 and 𝑦2 for Example 2 when𝑁 = 16.

Table 2: The 𝐿2 and 𝐿∞ errors for Example 2.

𝑁 6 8 10 12 14 16
𝐿2 − 𝑒𝑟𝑟𝑜𝑟𝑦1(𝑡) 2.0𝑒 − 005 2.5𝑒 − 008 1.8𝑒 − 11 1.0𝑒 − 14 4.3𝑒 − 15 5.5𝑒 − 15𝐿∞ − 𝑒𝑟𝑟𝑜𝑟𝑦1(𝑡) 1.2𝑒 − 005 1.2𝑒 − 008 8.2𝑒 − 12 3.9𝑒 − 15 2.6𝑒 − 15 2.6𝑒 − 15𝐿2 − 𝑒𝑟𝑟𝑜𝑟𝑦2(𝑡) 1.3𝑒 − 005 1.6𝑒 − 008 1.3𝑒 − 11 6.8𝑒 − 15 1.4𝑒 − 15 2.1𝑒 − 15𝐿∞ − 𝑒𝑟𝑟𝑜𝑟𝑦2(𝑡) 8.9𝑒 − 006 1.0𝑒 − 008 7.1𝑒 − 12 3.1𝑒 − 15 8.8𝑒 − 16 1.1𝑒 − 15
No. of Itre. 28 22 22 29 24 21
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Table 3: The 𝐿2 and 𝐿∞ errors for Example 3 when𝑁 = 16.
𝑁 6 8 10 12 14 16
𝐿2 − 𝑒𝑟𝑟𝑜𝑟𝑦1(𝑡) 1.9𝑒 − 004 9.7𝑒 − 007 6.4𝑒 − 008 4.8𝑒 − 10 8.0𝑒 − 12 6.9𝑒 − 14𝐿∞ − 𝑒𝑟𝑟𝑜𝑟𝑦1(𝑡) 1.2𝑒 − 004 5.5𝑒 − 007 3.1𝑒 − 008 2.2𝑒 − 10 3.2𝑒 − 12 2.7𝑒 − 14𝐿2 − 𝑒𝑟𝑟𝑜𝑟𝑦2(𝑡) 1.8𝑒 − 005 4.2𝑒 − 007 8.2𝑒 − 009 5.9𝑒 − 11 1.3𝑒 − 12 2.5𝑒 − 15𝐿∞ − 𝑒𝑟𝑟𝑜𝑟𝑦2(𝑡) 1.2𝑒 − 005 2.9𝑒 − 007 5.3𝑒 − 009 3.3𝑒 − 11 7.6𝑒 − 13 1.1𝑒 − 15
No. of Itre. 23 18 17 16 15 15
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Figure 3: Errors of 𝑦1 and 𝑦2 for Example 3 when𝑁 = 16.

Example 3. Finally, let us consider the following system of
nonlinear Volterra integro-differential equations [20]:

̇𝑦1 (𝑡) = 2𝑦2 (𝑡) − 13𝑡4 + cos (𝑦1 (𝑡)) − 1
+ ∫𝑡
0
(2𝑠 sin (𝑦1 (𝑠)) + 𝑠𝑡𝑦2 (𝑠)) 𝑑𝑠,

̇𝑦2 (𝑡) = 1 − 𝑡 sin (𝑦2 (𝑡)) − 12𝑡2 sin (𝑦1 (𝑡))
+ ∫𝑡
0
(𝑠𝑡2 cos (𝑦1 (𝑠)) + 𝑡 cos (𝑦2 (𝑠))) 𝑑𝑠,

(17)

with the initial conditions of 𝑦1(0) = 0 and 𝑦2(0) = 0 whose
exact solution is given by 𝑦1(𝑡) = 𝑡2 and 𝑦2(𝑡) = 𝑡.

The errors and number of iterations for the different
values of 𝑁 are presented in Table 3. The other results are
presented in Figure 3 with𝑁 = 16 similar to Examples 1 and
2.

5. Conclusion

In this paper, we presented a powerful numerical approach
based on a combination of the Chebyshev spectral collo-
cation technique and the parametric iteration method for

solving the linear and nonlinear system of Volterra integro-
differential equations. This method inherits the strengths of
the PIM and is easy to implement and is accurate when
applied to the linear andnonlinear systemofVolterra integro-
differential equations. The comparison of the approximate
solution and the exact solution reveals that the present
method is very accurate and convenient for solving the
linear and nonlinear system of Volterra integro-differential
equations.
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