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We give a scheme of approximation of the MK problem based on the symmetries of the underlying spaces. We take a Haar type
MRA constructed according to the geometry of our spaces. Thus, applying the Haar type MRA based on symmetries to the MK
problem, we obtain a sequence of transportation problem that approximates the original MK problem for each of MRA. Moreover,
the optimal solutions of each level solution converge in the weak sense to the optimal solution of original problem.

1. Introduction

The optimal transport problem was first formulated by
Monge in 1781 and concerned finding the optimal way in the
sense of minimal transportation cost of moving a pile of soil
from one site to another. This problem was given a modern
formulation in the work of Kantorovich in 1942 and so is now
known as the Monge-Kantorovich problem.

On the other hand, a big advantage over schemes of
approximation was given in the seminal article [1]; it intro-
duced approximation schemes for infinite linear program;
in particular, it showed that under suitable assumptions the
program’s optimum value can be finite-dimensional linear
programs and that, in addition, every accumulation point
of a sequence of optimal solutions for the approximating
programs is an optimal solution for the original problem.
An example given in this article is the Monge-Kantorovich
mass transfer (MK) problem on the space itself, where the
underlying space is compact.

In [2], a general method of approximation for the MK
problem is given, where 𝑋 and 𝑌 are Polish spaces; however,
this method is noneasier implementation. Later, in [3], a
scheme of approximation of MK problem is provided, which
consists in giving a sequence of finite transportation problems
underlying original MK problem (the space is compact);

nevertheless, a general procedure is given, but the examples
are in a two-dimensional cube and use the dyadic partition
of the cube for approximation. Our objective is to give other
families to approximate this kind of problems, based on Haar
type multiresolution analysis (MRA).The advantage of using
this technique is that we select a multiresolution analysis that
is constructed according to the symmetries of the underlying
space. Therefore, the new schemes of approximation take a
lot of characteristics of the space into consideration. Note
that the dyadic partition of the cube is a particular case of
the MRA type Haar using translations and dilations of the
underlying space.

The MRA is an important method to approximate
functions in different context (signal processing, differential
equations, etc.). In particular, we focus on Haar type MRA
on R𝑛; the constructions of this kind of MRA are associated
with the symmetries of the spaces; thus the approximations
are related to the geometrical properties of the space. In
this construction, the symmetries that we use are general
dilations, rotations, reflections, translations, and so forth; for
more details, see [4–6].

The main objective of this paper is giving a scheme of
approximation of the MK problem based on the symme-
tries of the underlying spaces. We take a Haar type MRA
constructed according to the geometry of our spaces. Thus,
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applying the Haar typeMRA based on symmetries to theMK
problem, we obtain a sequence of transportation problems
that approximate the original MK problem for each level of
MRA. Moreover, the optimal solutions of each level solution
converge in the weak sense to the optimal solution of original
problem.

This paper is organized as follows. In Section 2, we
introduce the basic elements of the Haar typemultiresolution
analysis and we give some examples of this kind of MRA.
In Section 3, we present the approximation of probability
measures using Haar type MRA. In Section 5, we apply the
Haar type multiresolution analysis to MK problem for each
level of this MRA; thus for each level, this new problem is
equivalent to transport problem. Moreover, we prove that
the optimal solution of MK problems is equal to the limit of
the optimal solutions of underlying transportation problems
when the level of theMRA goes to infinity. Finally, we give an
illustrative example of this method.

2. Haar Type Multiresolution Analysis

We introduce the basic concepts of Haar typemultiresolution
analysis, following Gröchenig and Madych in [4] and Guo et
al. in [5]. Similar results have been obtained independently by
Krishtal et al. to be published in [6].

Let Γ be a lattice such that Γ = 𝑀Z𝑛 for any𝑀 ∈ 𝐺𝐿𝑛(R).
The classical multiresolution analysis (MRA) associated with
a sequence of dilations {𝑎𝑗}𝑗∈Z = 𝐴, where |det 𝑎| ≤ 1,
is a sequence {𝑉𝑗}𝑗∈Z of closed subspaces of L2(R𝑛), which
satisfies the following conditions:

(i) 𝑉𝑘 ⊂ 𝑉𝑘+1.
(ii) ⋃𝑗∈Z 𝑉𝑗 =L2(R𝑛).
(iii) ⋂𝑗∈Z 𝑉𝑗 = {0}.
(iv) 𝑉𝑗 = 𝐷𝑎−𝑗𝑉0.
(v) There exists 𝜑 ∈ 𝑉0 such that {𝑇𝛾𝜑}, 𝛾 ∈ Γ, is an

orthonormal basis for 𝑉0.
Let 𝐵 be a finite subgroup of 𝐺𝐿𝑛(R) such that |det 𝑏| = 1

for all 𝑏 ∈ 𝐵 and Γ = 𝐵(Γ). The operator generator by the
dilations 𝐷𝑏, 𝑏 ∈ 𝐵, and the translations 𝑇𝛾, 𝛾 ∈ Γ form a
group. The relation

(𝐷𝑐𝑇𝜏) (𝐷𝑏𝑇𝛾) 𝑓 = 𝐷𝑐𝑏𝑇𝑏−1𝜏+𝛾𝑓. (1)

allows us to define the operation to 𝐵 × Γ given by

(𝑐, 𝜏) ⋅ (𝑏, 𝛾) = (𝑐𝑏, 𝑏−1𝜏 + 𝛾) (2)

and we obtain a new group denoted by 𝐵Γ. The 𝐵Γ-invariant
spaces are the closed subspaces 𝑉 of L2(R𝑛) such that𝐷𝑏𝑇𝛾𝑓 ∈ 𝑉 whenever 𝑓 ∈ 𝑉, 𝑏 ∈ 𝐵, and 𝛾 ∈ Γ. This leads us
to the following version of (v):

(v󸀠 ) There exists 𝜑 ∈ 𝑉0 such that {𝐷𝑏𝑇𝛾𝜑}, 𝑏 ∈ 𝐵 and𝛾 ∈ Γ, is an orthonormal basis for 𝑉0.
In consequence, we have the following concept.

Definition 1. Let 𝐴 = {𝑎𝑗}𝑖∈Z be dilatation set, let 𝐵 be a
finite subgroup of 𝐺𝐿𝑛(R) with |det 𝑏| = 1, and let Γ be
a complete lattice such that Γ = 𝐵(Γ). The multiresolution
analysis associated with the dilation set 𝐴 and the group 𝐵
or 𝐴𝐵-MRA is a collection {𝑉𝑗}𝑗∈Z of closed subspaces of
L2(R𝑛), which satisfies conditions (i), (ii), (iii), (iv), and (v󸀠).

The classical MRA is considered as an 𝐴𝐵-MRA when 𝐵
is the trivial group. Note that the space𝑉0 is not generated by
the Γ-translations of the single scaling function 𝜑; however,
the relation 𝐷𝑏𝑇𝛾𝜑 = 𝑇𝑏𝛾𝐷𝑏𝜑 and the conditions 𝐵(Γ) = Γ
imply that the functions 𝐷𝑏𝜑, with 𝑏 ∈ 𝐵, are the generators
of 𝑉0. Also, we have the following set:

Γ𝑗 = {𝑎𝑗𝛾 : 𝛾 ∈ 𝛾} (3)

Note that Γ𝑗 ⊂ Γ𝑗+1 and 𝐵Γ𝑗 = Γ.
We consider the scaling function 𝜑 = 𝐸𝜒Δ, where 𝜒Δ is

the characteristic function of Δ ⊂ R𝑛, 𝐸 ∈ R, and ‖𝜑‖2 = 1.
The region Δ satisfies

⋃
𝛼∈𝐵Γ

Δ 𝛼 = R
𝑛

(4)

where intΔ 𝛼 ∩ intΔ 𝛼󸀠 = 0 for 𝛼 ̸= 𝛼󸀠 and Δ 𝛼 is the action
of 𝛼 = (𝑏, 𝛾) on Δ. In addition, the symbol Δ𝑗𝛼 denotes
the translation and scaling of the region Δ by 𝛼 and 𝑎𝑗,
respectively. Thus, the function 𝐷𝑎𝑗𝐷𝑏𝑇𝛾𝜑 = |det 𝑎|−𝑗/2𝐸𝜒Δ𝑗𝛼
is denoted by 𝜑𝑗𝛼. And so we have the following relation:

∑
𝛼∈𝐵Γ

𝜑𝑗𝛼 = |det 𝑎|−𝑗/2 𝐸 ∑
𝛼∈𝐵Γ

𝜒Δ𝑗𝛼 = |det 𝑎|−𝑗/2 𝐸 ⋅ 𝜒R𝑛 . (5)

Finally, we define 𝑃𝑗 as the orthogonal projection from
L2(R𝑛) to 𝑉𝑗 which is given by

𝑃𝑗𝑓 = ∑
𝛼∈𝐵Γ

⟨𝑓, 𝜑𝑗𝛼⟩𝜑𝑗𝛼 (6)

for all 𝑓 ∈L2(R𝑛).
We show some examples of the multiresolution analysis

associated with the dilation set 𝐴 and the finite group 𝐵:
(1) We take a matrix 𝑎 = 𝑞 = ( 1 −11 1 ) and the group 𝐵 ={𝑏𝑖}, 0 ≤ 𝑖 ≤ 7, of symmetries of unit square; thus,

𝑏0 = (1 0
0 1) ,

𝑏1 = (0 1
1 0) ,

𝑏2 = (0 −1
1 0 ) ,

𝑏3 = (−1 0
0 1) ,

(7)
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Figure 1

Figure 2

and 𝑏𝑖 = −𝑏𝑖−4 for 4 ≤ 𝑖 ≤ 7. Let Δ 0 be the triangular
region with vertices in (0, 0), (1/2, 0), and (1/2, 1/2);
we denote Δ 𝑖 = 𝑏𝑖Δ 0 for 1 ≤ 𝑖 ≤ 7. If 𝜑 = 2√2𝜒Δ 0 ,
then the system

{𝐷𝑏𝑇𝑘𝜑 : 𝑏 ∈ 𝐵, 𝑘 ∈ Z
2} (8)

is an orthogonal basis for its closed span𝑉0.The space𝑉0 is the subspace ofL2(R2), consisting of all square
integrable functions that are constant on each Z2-
translate of the triangles Δ 𝑖, 1 ≤ 𝑖 ≤ 7. Thus, the
spaces 𝑉𝑗 = 𝐷𝑞−𝑗𝑉0, 𝑗 ∈ Z, consist of all functions in
L2(R2), which are constant in each 𝑞−𝑗Z2-translate
of the triangles 𝑞−1Δ 𝑖, 1 ≤ 𝑖 ≤ 7, in consequence𝑉𝑗 ⊂ 𝑉𝑗+1. Hence, {𝑉𝑗} is an 𝐴𝐵-MRA with 𝜑 as a
scaling function.
Figure 1 is reproduced from Krishtal et al. (2007)
[under the Creative Commons Attribution
License/public domain].

(2) Let 𝐵 be the group generated by the matrix 𝜌 =
(1/2) ( 1 −√3

√3 1
). This group has order of 6 and is the

counter-clockwise rotation by 𝜋/3 radians. Consider
the hexagon with vertices in set

{(±√32 , 0) , (√34 , ±34) , (−
√34 , ±34)} . (9)

LetΔ 0 be the triangle with vertices in (0, 0), (√3/2, 0),
and (√3/4, 3/4). We define Δ 𝑖 = 𝜌𝑖Δ 0 for 0 ≤ 𝑖 ≤ 5.
We take 𝑐 = (1/4) ( 0 3√3

6 3
) and we define Γ = 𝑐Z2.The

set of all functions that are constant on Γ-translates of
triangles Δ 𝑖, 0 ≤ 𝑖 ≤ 5, is the space 𝑉0 ⊂ L2(R2).
Moreover, the elements of Γ translate the center of the
hexagon to the point of Γ, and so we have a partition
of R2. Let 𝑞 = ( 1 −√3

√3 1
) and the function 𝜑 = 𝐸𝜒Δ 0 ,

with 𝐸 = 4/ 4√27. The MRA {𝑉𝑗} is obtained by the
system

{𝐷𝑞𝑗𝐷𝜌𝑖𝑇𝛾𝜑 : 𝑗 ∈ Z, 0 ≤ 𝑖 ≤ 5, 𝛾 ∈ Γ} (10)

where the spaces𝑉𝑗 are 𝑞−𝑗-dilatation of𝑉0, for 𝑗 ∈ Z.
Figure 2 can be found in [6].
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3. Approximation of Measures Using
Multiresolution Analysis

3.1. Absolutely Continuous Measures with respect to Lebesgue
Measures. We consider the following conditions:

(A1) 𝑋 is a compact subset of R𝑛.
(A2) The measure 𝜇 is absolutely continuous with respect

to 𝜆, where 𝜆 is the Lebesgue measure.

Condition (A2) guarantees the existence of functions 𝑓 ∈
L1(𝑋), where 𝑓 is the Radon-Nikodym derivative with
respect to Lebesgue measure 𝜆.

In this analysis, we also assume the following extra
condition:

(A3) The functions 𝑓 also belong inL2(𝑋𝑘).
Notice that

𝑓 ∈L
1 (𝑋) ∩L

2 (𝑋) ⊂L
2 (R𝑛) . (11)

Let {𝑉𝑗} be an 𝐴𝐵-MRA on R𝑛; the elements of {𝑉𝑗} are
given by scaling functions 𝜑 = 𝐸1𝜒Δ, the latice Γ, finite group𝐵1, and dilatation 𝐴 = {𝑎𝑗1}.
Remark 2. Note that the classical multiresolution analysis of
Haar onL2(R2) is a particular case of𝐴𝐵-MRAonR2, where
the complete lattice is Γ = Z2, the group 𝐵 is trivial, and the
dilation associated is 𝐴 = {2−𝑗(1, 1)}. In this case, we have
that scaling function is 𝜑Δ, where Δ = [0, 1] × [0, 1] is the
fundamental domain associated with the action of Γ on R2.

We denote by 𝑃𝑗 the projection from L2(R𝑛) into 𝑉𝑗,
which is given by

𝑃𝑗𝑓 = ∑
𝛼∈(𝐵Γ)𝑗

⟨𝑓, 𝜑𝑗𝛼⟩𝜑𝑗𝛼 (12)

for all 𝑓 ∈ L2(R𝑛). Moreover, if the function 𝑓 has support
in𝑋, then the above sum is finite, since 𝑋 is compact.

From now on, we shall only functions with support in the
compact set 𝑋 and we have L2(𝑋) ⊂ L2(R𝑛); that is, each
function 𝑓 ∈ L2(𝑋) can be considered in L2(R𝑛), where𝑓(𝑥) = 0 if 𝑥 ∉ 𝑋.

We know that the 𝐴𝐵-MRA is dense in L2(𝑋); thus we
have that 󵄩󵄩󵄩󵄩󵄩𝑃𝑗𝑓 − 𝑓󵄩󵄩󵄩󵄩󵄩2 󳨀→ 0, when 𝑗 󳨀→ ∞ (13)

Using the fact that𝑋 is compact, we obtain that
󵄩󵄩󵄩󵄩󵄩𝑃𝑗𝑓 − 𝑓󵄩󵄩󵄩󵄩󵄩1 ≤ 𝜆 (𝑋)1/2 󵄩󵄩󵄩󵄩𝑃𝑗𝑓 − 𝑓󵄩󵄩󵄩󵄩2 (14)

From the above equation, we define the approximation of
the measure to the level 𝑗 by

d𝜇𝑗 = 𝑃𝑗𝑓 d𝜆, (15)

which are measures in 𝑋 for each 𝑗. Now we want to prove
that these measures are probability measures.

Definition 3. The expectation E with respect to Lebesgue
measure 𝜆 of function 𝑓 is defined by

E [𝑓] = ∫
R𝑛
𝑓 d𝜆, (16)

where 𝑓 is a Lebesgue measurable function. Also, the con-
ditional expectation of 𝑓 given 𝐴, with 𝐴 being a Lebesgue
measurable set, is defined by E[𝑓 | 𝐴] = E[𝑓 ⋅ 𝜒𝐴].

In particular, the expectation on the Lebesgue measure 𝜆
satisfies the following property.

Theorem 4. Consider that 𝑗 ∈ Z is fixed and 𝑓 ∈ L2(R𝑛).
Then E[𝑃𝑗𝑓] = E[𝑓], where 𝑃𝑗 is the projection of the level 𝑗
associated with 𝐴𝐵-MRA {𝑉𝑗}.
Proof. We take 𝑓 ∈L2(R𝑛); now we calculate E[𝑃𝑗𝑓]; thus

E [𝑃𝑗𝑓] = ∫
R𝑛

∑
𝛼∈𝐵Γ

⟨𝑓, 𝜑𝑗𝛼⟩𝜑𝑗𝛼 d𝜆
= ∑
𝛼∈𝐵Γ

⟨𝑓, 𝜑𝑗𝛼⟩∫
R𝑛
𝜑𝑗𝛼 d𝜆

(17)

We have that the functions 𝜑𝑗𝛼 = 𝐸𝑗𝜒Δ𝑗𝛼 , where Δ𝑗𝛼 is the
translation and dilation of the fundamental region Δ and𝐸𝑗 = 𝜆(Δ𝑗𝛼)−1/2; this value does not depend on 𝛼. From this,
we have that

∫
R𝑛
𝜑𝑘 = ∫

Δ 𝑘

𝜑𝑘 = 𝐸−1𝑗 . (18)

Using the above equations, we have that

E [𝑃𝑗𝑓] = ∑
𝛼∈𝐵Γ

⟨𝑓, 𝜒Δ𝑗𝛼⟩ . (19)

Moreover, using the fact thatΔ𝑗𝛼∩Δ𝑗𝛽 = 0 for 𝛼 ̸= 𝛽, it is clear
that

E [𝑃𝑗𝑓] = ⟨𝑓, ∑
𝛼∈𝐵Γ

𝜒Δ𝑗𝛼⟩ = ⟨𝑓, 𝜒R𝑛⟩ = E [𝑓] . (20)

As immediate consequence of the previous theorem, we
get the following result.

Corollary 5. We suppose that the measure 𝜇 on 𝑋 satisfies(A1)-(A2); then the sequences of probability measures {𝜇𝑗} ⊂𝑀+(𝑋) given by (15) converge to 𝜇 inL1 andL2 sense.

3.2. Non-Absolutely-Continuous Measures with respect to
Lebesgue Measure. Now, we consider that 𝜇 is a probability
measure on the compact set 𝑋, which is unnecessarily
absolutely continuous measure with respect to Lebesgue
measure 𝜆. Note that each element of sequence (15) can be
written by

𝜇𝑗 (𝑈) = ∑
𝛼∈𝐵Γ

𝜇 (Δ𝑗𝛼) 𝜆 (𝑈 ∩ Δ𝑗𝛼)
𝜆 (Δ𝑗𝛼) (21)
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for all Borel measurable sets 𝑈 on 𝑋. Moreover, these
approximations are well defined for every measure 𝜇 on𝑋.
Definition 6. Let {𝜇𝑛; 𝑛 ≥ 0} be a sequence of probability
measures on a metric space (𝑋, 𝑑). We say that 𝜇𝑛 converges
weakly to 𝜇 and denote 𝜇𝑛→𝑤 𝜇 if 𝜇𝑛(𝑓) → 𝜇(𝑓) as 𝑛 → ∞
for all bounded continuous functions 𝑓 on𝑀, where 𝜇(𝑓) =∫
𝑀
𝑓𝑑𝜇.

Theorem 7. Given a measure 𝜇 on the compact set 𝑋, the
sequence of measures {𝜇𝑗} on𝑋 defined in (21) converge weakly
to measure 𝜇.
Proof. Let 𝑓 : 𝑋 → R be a continuous and bounded real
function. From the fact that𝑋 is compact, we obtain that 𝑓 is
absolutely continuous function on𝑋; thus, given 𝜖 > 0, there
exists 𝛿 > 0 such that

󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 < 𝛿 implies 󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)󵄨󵄨󵄨󵄨 < 𝜖2 (22)

We take 𝑗0 ∈ Z such that for all 𝑥, 𝑦 ∈ Δ𝑗𝛼 implies |𝑥 − 𝑦| < 𝛿
for all 𝑗 ≥ 𝑗0 and 𝛼 ∈ 𝐵Γ. Moreover, we know that there exist𝛼1, . . . , 𝛼𝑟 ∈ 𝐵Γ such that

𝑋 ⊂ 𝑟⋃
𝑚=1

Δ𝑗𝛼𝑚 . (23)

In consequence, we obtain the following relations:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑋 𝑓 d𝜇 − ∫

𝑋
𝑓 d𝜇𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫∪Δ𝑗𝛼𝑚 𝑓 d𝜇 − ∫
∪Δ
𝑗
𝛼𝑚

𝑓 d𝜇𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑟∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ𝑗𝛼𝑚 𝑓 d𝜇 − ∫
Δ
𝑗
𝛼𝑚

𝑓 d𝜇𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑟∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ𝑗𝛼𝑚 𝑓 d𝜇 − ∫
Δ
𝑗
𝛼𝑚

𝑓𝜇 (Δ𝑗𝛼𝑚)𝜆 (Δ𝑗𝛼𝑚)d𝜆
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ;

(24)

we take an element 𝑥𝑗𝛼𝑚 ∈ Δ𝑗𝛼𝑚 to obtain the following
relations:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Δ𝑗𝛼𝑚 𝑓 d𝜇 − ∫

Δ
𝑗
𝛼𝑚

𝑓 (𝑥𝑗𝛼𝑚) d𝜇 + 𝑓 (𝑥𝑗𝛼𝑚) 𝜇 (Δ𝑗𝛼𝑚)

− ∫
Δ
𝑗
𝛼𝑚

𝑓𝜇 (Δ𝑗𝛼𝑚)𝜆 (Δ𝑗𝛼𝑚)d𝜆
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫Δ𝑗𝛼𝑚

󵄨󵄨󵄨󵄨󵄨𝑓 − 𝑓 (𝑥𝑗𝛼𝑚)󵄨󵄨󵄨󵄨󵄨 d𝜇

+ 𝜇 (Δ𝑗𝛼𝑚)𝜆 (Δ𝑗𝛼𝑚) ∫Δ𝑗𝛼𝑚
󵄨󵄨󵄨󵄨󵄨𝑓 − 𝑓 (𝑥𝑗𝛼𝑚)󵄨󵄨󵄨󵄨󵄨 d𝜆

(25)

Therefore,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑋 𝑓 d𝜇 − ∫
𝑋
𝑓 d𝜇𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

𝑟∑
𝑚=1

[
[
∫
Δ
j
𝛼𝑚

󵄨󵄨󵄨󵄨󵄨𝑓 − 𝑓 (𝑥𝑗𝛼𝑚)󵄨󵄨󵄨󵄨󵄨 d𝜇

+ 𝜇 (Δ𝑗𝛼𝑚)𝜆 (Δ𝑗𝛼𝑚) ∫Δ𝑗𝛼𝑚
󵄨󵄨󵄨󵄨󵄨𝑓 − 𝑓 (𝑥𝑗𝛼𝑚)󵄨󵄨󵄨󵄨󵄨 d𝜆]]

< 𝑟∑
𝑚=1

[
[
𝜖2 ∫Δ𝑗𝛼𝑚 d𝜇 +

𝜇 (Δ𝑗𝛼𝑚)𝜆 (Δ𝑗𝛼𝑚)
𝜖2 ∫Δ𝑗𝛼𝑚 d𝜆]]

= 𝜖2

⋅ 𝑟∑
𝑚=1

[
[
𝜇 (Δ𝑗𝛼𝑚) + 𝜇 (Δ𝑗𝛼𝑚)𝜆 (Δ𝑗𝛼𝑚)𝜆 (Δ

𝑗
𝛼𝑚
)]
]

= 𝜖 𝑟∑
𝑚=1

𝜇 (Δ𝑗𝛼𝑚) = 𝜖 ⋅ 𝜇 (𝑋) = 𝜖.
(26)

4. Discretization of the Monge-Kantorovich
Problem Using Multiresolution Analysis

Let 𝑀(𝑋 × 𝑌) be the linear space of finite signed on 𝑋 × 𝑌
and let𝑀+(𝑋 × 𝑌) be the set of all nonnegative measures in𝑀(𝑋 × 𝑌). Given 𝜇 ∈ 𝑀(𝑋 × 𝑌), we denote by Π1𝜇 andΠ2𝜇
the marginal of 𝜇 on𝑋 and 𝑌, respectively; that is,

Π1𝜇 (𝐴 × 𝑌) = ]1 (𝐴) ,
Π2𝜇 (𝑋 × 𝐵) = ]2 (𝐵) (27)

for all sets 𝐴 and 𝐵, such that ]1 and ]2 are measurable,
respectively.

The Monge-Kantorovich mass transfer problem is given
as follows:

MK: minimize ⟨𝜇, 𝑐⟩ fl ∫ 𝑐 d𝜇
subject to: Π1𝜇 = ]1,

Π2𝜇 = ]2,
𝜇 ∈ 𝑀+ (𝑋 × 𝑌)

(28)

A measure 𝜇 ∈ 𝑀(𝑋 × 𝑌) is said to be a feasible solution
for MK problem if it satisfies (28) and ⟨𝜇, 𝑐⟩ is finite. TheMK
problem is called consistent if the set of feasible solutions is
nonempty, in which case its optimal value is defined as

inf (MK)
= inf {⟨𝜇, 𝑐⟩ : 𝜇 is a feasible solution for MK} . (29)

It is said that the MK problem is solvable if there is a
feasible solution 𝜇∗ that attains the optimal value. In this case,𝜇∗ is called an optimal solution for the MK problem and the
value inf(MK) is written as min(MK) = ⟨𝜇∗, 𝑐⟩.

Note that since ]1 and ]2 are probability measures,
a feasible solution for MK is also a probability measure.
Moreover, if 𝑐 is a continuous function on 𝑋 × 𝑌 and 𝑋
and 𝑌 are compact subsets on R𝑛, then the product measure𝜇 fl ]1 × ]2 is a feasible solution. Therefore the MK problem
is consistent, and so the MK problem is solvable in this case.

We assume the following conditions: 𝑋 and 𝑌 are com-
pact subsets ofR𝑛 and 𝑐 : 𝑋×𝑌 → R is a bounded continuous
function.
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Let {𝑉𝑗} and {𝑉󸀠𝑗 } be 𝐴𝐵-MRA on R𝑛 with scaling
functions𝜑1 = 𝐸1𝜒Δ 1 and𝜑2 = 𝐸2𝜒Δ 2 , lattices Γ1 and Γ2, finite
groups 𝐵1 and 𝐵2, and dilatations 𝐴1 = {𝑎𝑗1} and 𝐴2 = {𝑎𝑗2},
respectively.We can obtain a new𝐴𝐵-MRA {𝑉∗𝑗 } onR2𝑛 with
scaling functions 𝜑 = 𝜑1𝜑2 = 𝐸1𝐸2𝜒Δ 1×Δ 2 , lattice Γ = Γ1 × Γ2,
finite group 𝐵 = 𝐵1 × 𝐵2, and dilatation {𝑎𝑗1 × 𝑎𝑗2}. The
projections of these 𝐴𝐵-MRA to the level 𝑗 are denoted by𝑃𝑗1 , 𝑃𝑗2 , and 𝑄𝑗.

Now we proceed to discretization of the MK-problem
using the results of Section 2; then we have that 𝜇𝑗, ]𝑗1, and
]𝑗2 are the projections to level 𝑗 of the respective 𝐴𝐵-MRA;
thus, using thesemeasures, we obtain the discretization of the
MK-problem in the level 𝑗, which is given by

MK𝑗: minimize ⟨𝜇𝑗, 𝑐⟩ fl ∫ 𝑐 d𝜇𝑗
subject to: Π1𝜇𝑗 = ]𝑗1,

Π2𝜇𝑗 = ]𝑗2,
𝜇𝑗 ∈ 𝑀+ (𝑋 × 𝑌) .

(30)

We shall give explicit expressions for the discretization
of the measures and the cost function associated with MK-
problem using the 𝐴𝐵-MRA, which are given by

𝜇𝑗 = ∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝜇𝑗𝛼,𝛽𝜑𝑗1,𝛼 (𝑥) 𝜑𝑗2,𝛽 (𝑦) ,

with 𝜇𝑗𝛼,𝛽 = ⟨𝜇, 𝜑𝑗1,𝛼𝜑𝑗2,𝛽⟩ ≥ 0
𝑐𝑗 = ∑

(𝛼,𝛽)∈(𝐵Γ)
𝑗
0

𝑐𝑗𝛼,𝛽𝜑𝑗1,𝛼 (𝑥) 𝜑𝑗2,𝛽 (𝑦) ,

with 𝑐𝑗𝛼,𝛽 = ⟨𝑐, 𝜑𝑗1,𝛼𝜑𝑗2,𝛽⟩
]𝑗1 = ∑

𝛼∈(𝐵Γ1)
𝑗
0

𝑎𝑗𝛼𝜑𝑗1,𝛼 (𝑥) , with 𝑎𝑗𝛼 = ⟨]1, 𝜑𝑗1,𝛼⟩

]𝑗2 = ∑
𝛽∈(𝐵Γ2)

𝑗
0

𝑏𝑗𝛽𝜑𝑗2,𝛽 (𝑦) , with 𝑏𝑗𝛽 = ⟨]2, 𝜑𝑗2,𝛽⟩

(31)

where 𝜇𝑗𝛼,𝛽, 𝑎𝑗𝛼,𝛽, and 𝑏𝛼,𝛽 are nonnegative real numbers. Now
we calculate ⟨𝜇𝑗, 𝑐⟩; thus

⟨𝜇𝑗, 𝑐⟩ = ⟨𝜇𝑗, 𝑄𝑗𝑐 + (𝑄𝑗𝑐)⊥⟩ = ⟨𝑄𝑗𝑐, 𝜇𝑗⟩ , (32)

and hence, using the above equation and the orthonormality
of family {𝜑𝑗1,𝛼𝜑𝑗2,𝛽}, we obtain

⟨𝜇𝑗, 𝑐⟩ = ∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝑐𝑗𝛼,𝛽 ⋅ 𝜇𝑗(𝛼,𝛽). (33)

We consider that 𝛼𝑖 is a fixed element in (𝐵Γ1)𝑗0 and we
have that Δ𝑗1,𝛼𝑖 is the region associated with 𝛼𝑖 for 𝑖 = 1, . . . , 𝑟;
then we obtain

𝜇𝑗 (Δ𝑗1,𝛼𝑖 ×R
𝑛) = ∫

Δ
𝑗
1,𝛼𝑖

×R𝑛
d𝜇𝑗

= ∫
R2𝑛

𝜒Δ𝑗1,𝛼𝑖
⋅ 𝜒R𝑛 ∑

(𝛼,𝛽)∈𝐵Γ

𝜇𝑗𝛼,𝛽𝜑𝑗1,𝛼 (𝑥) 𝜑𝑗2,𝛽 (𝑦) d𝜆 (𝑥) d𝜆 (𝑦)
= ∑
(𝛼,𝛽)∈𝐵Γ

𝜇𝑗𝛼,𝛽 ∫
R𝑛
(𝜒Δ𝑗1,𝛼𝑖 ⋅ 𝐸1𝜒Δ𝑗1,𝛼) (𝑥) d𝜆 (𝑥)

⋅ ∫
R𝑛
(𝜒R𝑛 ⋅ 𝐸2𝜒Δ𝑗

2,𝛽

) (𝑦) d𝜆 (𝑦) = ∑
𝛽∈(𝐵Γ2)

𝑗
0

𝜇𝑗𝛼𝑖 ,𝛽.

(34)

On the other hand, we have that

]𝑗1 (Δ𝑗1,𝛼𝑖) = ∫
Δ
𝑗
1,𝛼𝑖

𝑃𝑗1𝑓1 (𝑥) d𝜆 (𝑥)
= ∫

Δ
𝑗
1,𝛼𝑖

∑
𝛼∈(𝐵Γ1)

𝑗
0

𝑎𝑗𝛼𝜑𝑗1,𝛼 (𝑥)

= ∑
𝛼∈(𝐵Γ1)

𝑗
0

𝑎𝑗𝛼 ∫
R𝑛
(𝜒Δ𝑗1,𝛼𝑖 ⋅ 𝐸1𝜒Δ𝑗1,𝛼) (𝑥) d𝜆 (𝑥)

= 𝑎𝑗𝛼𝑖

(35)

From the above equations, we have that the condition𝜇𝑗(Δ𝑗1,𝛼𝑖 ×R𝑛) = ]𝑗1(Δ𝑗1,𝛼𝑖) is equivalent to
∑

𝛽∈(𝐵Γ2)
𝑗
0

𝜇𝑗𝛼𝑖 ,𝛽 = 𝑎𝑗𝛼𝑖 ,, 𝑖 = 1, . . . , 𝑟. (36)

Analogously, for all the elements 𝛽1, . . . , 𝛽𝑠 of (𝐵Γ2)𝑗0, we
have that

∑
𝛼∈(𝐵Γ1)

𝑗
0

𝜇𝑗𝛼,𝛽𝑘 = 𝑏𝑗𝛽𝑘 , 𝑘 = 1, . . . , 𝑠. (37)

UsingTheorem 4, we obtain that

∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝜇𝑗𝛼,𝛽 =
𝑟∑
𝑘=1

𝑎𝑗𝛼𝑘 =
𝑠∑
𝑘=1

𝑏𝑗𝛽𝑘 = 1 (38)

In summary, we have that the𝑀𝐾𝑗 problem given by (30)
is equivalent to the following problem:

MKD𝑗: minimize ∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝜇𝑗𝛼,𝛽 ⋅ 𝑐𝑗𝛼,𝛽
subject to: ∑

𝛽∈(𝐵Γ2)
𝑗
0

𝜇𝑗𝛼𝑘 ,𝛽 = 𝑎𝑗𝛼𝑘 𝑘 = 1, . . . 𝑟
∑

𝛼∈(𝐵Γ1)
𝑗
0

𝜇𝑗𝛼,𝛽𝑘 = 𝑏𝑗𝛽𝑘 , 𝑘 = 1, . . . 𝑠
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∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝜇𝑗𝛼,𝛽 = 1
𝜇𝑗𝛼,𝛽 ≥ 0, ∀ (𝛼, 𝛽) ∈ (𝐵Γ)𝑗0

(39)

TheproblemMKD𝑗, given the above system, has a feasible
solution, so we know that 𝑐 is bounded.Thenwe have that the
problemMKD𝑗 has an optimal solution; for more details, see
Chapter 10 in [7].

Let 𝜇∗ be the optimal solution of MK problem given in
(28). We use the optimal solution 𝜇∗ to induce a sequence of
measures 𝜇𝑗∗ such that 𝜇𝑗∗ = 𝑄𝑗𝜇∗ (see Section 3.2). Let 𝜂𝑗∗ be
the optimal solution of MK𝑗 problem given in (30).

For 𝑗 ∈ Z, we defined the following 𝜎-algebras:
F

𝑗
1 = ⟨Δ𝑗1,𝛼⟩ , ∀𝛼 ∈ 𝐵Γ𝑗1

F
𝑗
2 = ⟨Δ𝑗2,𝛽⟩ , ∀𝛽 ∈ 𝐵Γ𝑗2

F
𝑗 = ⟨Δ𝑗𝛼,𝛽⟩ , ∀ (𝛼, 𝛽) ∈ 𝐵Γ𝑗

(40)

where ⟨𝐴 𝑖⟩𝑖∈𝐼 denotes the 𝜎-algebra generated by the sets 𝐴 𝑖

with 𝑖 ∈ 𝐼 and the lattices 𝐵Γ𝑗1 , 𝐵Γ𝑗2 , and 𝐵Γ𝑗 are defined as in
(3).

Definition 8. LetF󸀠 be a sub-𝜎-algebra ofF, and let𝑋 ∈L1

be a random variable. We say that the random variable 𝑋󸀠

is the conditional expectation of 𝑋 with respect to F󸀠 and
denote it by E[𝑋 | F󸀠] if and only if

(i) 𝑋󸀠 ∈L1.
(ii) 𝑋󸀠 isF󸀠-measurable.
(iii) E[𝑋󸀠𝜒𝐴] = E[𝑋𝜒𝐴], for all 𝑎 ∈ F󸀠.

Remark 9. Given 𝑓 ∈L1(𝑋1 × 𝑋2), we have that
E [𝑓 | F𝑗] = E [𝑄𝑗 (𝑓)] . (41)

There are analogous results for 𝑃𝑗1 and 𝑃𝑗2 through the
conditional expectations ofF𝑗

1 andF
𝑗
2, respectively.

Proposition 10. Let 𝜇 be a feasible solution of the MK
problem; then 𝜇𝑗 is a feasible solution of the𝑀𝐾𝐷𝑗-problem.

Proof. We suppose that 𝜇 satisfies (28). Then we have the
following relations:

Π1𝜇𝑗 (𝐸) = 𝜇𝑗∗ (𝐸 ×R
𝑛) = ∫

𝐸×R𝑛
d𝜇𝑗∗

= ∫
𝐸
∫
R𝑛

∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝜇𝑗𝛼,𝛽𝜑𝑗1,𝛼 (𝑥) 𝜑𝑗2,𝛽 (𝑦) d (𝑥) d (𝑦)

= ∫
𝐸

∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝜇𝑗𝛼,𝛽𝜑𝑗1,𝛼 (𝑥) ∫
R𝑛
𝜑𝑗2,𝛽 (𝑦) d (𝑦) d (𝑥)

= ∫
𝐸

∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

𝜇𝑗𝛼,𝛽𝜑𝑗1,𝛼 (𝑥) (𝐸𝑗2)−1 d (𝑥)

= ∫
𝐸

∑
(𝛼,𝛽)∈(𝐵Γ)

𝑗
0

∫
Δ 1,𝛼×Δ 2,𝛽

𝐸𝑗1 d𝜇𝜑𝑗1,𝛼 (𝑥) d (𝑥)

= ∫
𝐸
∑
𝛼∈Γ1

∑
𝛽∈[(𝐵Γ)

𝑗
0]𝛼

(𝐸𝑗1)2 𝜒Δ𝑗1,𝛼 (𝑥) d (𝑥)

= ∫
𝐸
∑
𝛼∈Γ1

[∫
Δ 1,𝛼×R

𝑛
d𝜇] (𝐸𝑗1)2 𝜒Δ𝑗1,𝛼 (𝑥) d (𝑥)

= ]𝑗1 (𝐸)
(42)

where [(𝐵Γ)𝑗0]𝛼 = {(𝛼, 𝛽) ∈ (𝐵Γ)𝑗0 : 𝛼 is fixed} and 𝐸 a
measurable set. Similarly, we obtain that Π2𝜇𝑗(𝐸) = ]𝑗2(𝐸).
Therefore the result is as follows.

Remark 11. If 𝜇∗ is an optimal solution of the MK problem,
then 𝜇𝑗∗ is a feasible solution of the MKD𝑗-problem.

Proposition 12. Given 𝐸 ∈ F
𝑗
1 and 𝐹 ∈ F

𝑗
2, one has

𝜂𝑗 (𝐸 ×R
𝑛) = 𝜇 (𝐸 ×R

𝑛) ,
]𝑗1 (𝐸) = ]1 (𝐸)

𝜂𝑗 (R𝑛 × 𝐹) = 𝜇 (R𝑛 × 𝐹) ,
]𝑗2 (𝐹) = ]2 (𝐹) ,

(43)

where 𝜇 and 𝜂𝑗 are feasible solutions of the MK and 𝑀𝐾𝑗

problems, respectively.

Proof. Let Δ𝑗𝛼 be a generator element of 𝜎-algebraF𝑗. Then

𝜇 (Δ𝑗𝛼 ×R
𝑗) = Π1𝜇 (Δ𝑗𝛼) = ]1 (Δ𝑗𝛼) = ]𝑗1 (Δ𝑗𝛼)
= Π1𝜂𝑗 (Δ𝑗𝛼) = 𝜂𝑗 (Δ𝑗𝛼 ×R

𝑗) (44)

In above equation, we use the fact that ]𝑗1(𝐸) = ]1(𝐸) for all𝐸 ∈ F𝑗 in consequence 𝜂𝑗(𝐸×R𝑛) = 𝜇(𝐸×R𝑛) for all𝐸 ∈ F
𝑗
1.

Analogously, we have that 𝜂𝑗(R𝑛 × 𝐹) = 𝜇(R𝑛 × 𝐹).
Definition 13. Let (𝑋, 𝜏) be a topological space, and let F
be 𝜎-algebra on 𝑋 that contains the topology 𝜏. Let M be
a collection of measures defined on F. The collection M is
called tight if, for any 𝜖 > 0, there is a compact subset 𝐾𝜖 of𝑋 such that, for all measures 𝜇 ∈ M, |𝜇|(𝑋 \ 𝐾𝜖) < 𝜖, where|𝜇| is the total variation measure of 𝜇.
Proposition 14. Consider the sequence {𝜂𝑗∗} of probability
measures, where 𝜂𝑗∗ is the optimal solution of 𝑀𝐾𝑗 for each𝑗 ∈ Z. Then there exists a subsequent {𝜂𝑗𝑛∗ } and a probability
measure 𝜂∗ such that 𝜇𝑗𝑛∗ → 𝜇∗ weakly. Moreover, the
probability measure 𝜂∗ is an optimal solution of𝑀𝐾.
Proof. We know that 𝑋1 and 𝑋2 are compact sets, provided
that the measures {𝜇𝑗∗} are tight for each 𝑗 ∈ Z. Now, using
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Prokhorov’s Theorem (for details, see Chapter 1 in [8]), there
exists a subsequence {𝜇𝑗𝑛∗ } of {𝜇𝑗∗} and a probability measure𝜂∗ such that 𝜇𝑗𝑛∗ → 𝜂∗ weakly.

Notice that 𝜇𝑗𝑛∗ is an optimal solution of MK𝑗𝑛 ; thus, we
obtain

Π1𝜇𝑗𝑛∗ = ]𝑗𝑛1 ,
Π2𝜇𝑗𝑛∗ = ]𝑗𝑛2 .

(45)

Using theTheorem,we have thatΠ1𝜇𝑗𝑛∗ → ]1 andΠ2𝜇𝑗𝑛∗ → ]2
weakly. From this fact, it is clear that 𝜂∗ is a feasible solution
of MK.

Now, we consider 𝜇∗ as the optimal solution of MK. from
Proposition 10, we have that 𝜇𝑗∗ is feasible solution of MK𝑗. It
follows that

⟨𝜂𝑗∗, 𝑐⟩ ≤ ⟨𝜇𝑗∗, 𝑐⟩ ; (46)

taking the limit when 𝑗 → ∞, we have

⟨𝜂∗, 𝑐⟩ ≤ ⟨𝜇∗, 𝑐⟩ . (47)

On the other hand, 𝜂∗ is a feasible solution of MK; then

⟨𝜇∗, 𝑐⟩ ≤ ⟨𝜂∗, 𝑐⟩ , (48)

which completes the proof of the theorem.

5. An Illustrative Example of This Method

In this section, we present an example of the ideas presented
in the previous section. Let 𝐶 be the square with vertices in
the points

{(−52 , ±12) , (−32 , ±12)} (49)

and let𝐻 be a hexagon with vertices being in set

{(±√32 , 0) , (√34 , ±34) , (−
√34 , ±34)} (50)

We consider the function 𝑐 : 𝐶×𝐻 → R defined by 𝑐(𝑥, 𝑦) =‖𝑥 − 𝑦‖2. We claim to solve the following problem:

MK minimize: ⟨𝜇, 𝑐⟩
subject to: Π1𝜇 = 𝜆1,

Π2𝜇 = 𝜆2,
𝜇 ∈ 𝑀+ (𝑋 × 𝑌)

(51)

where 𝜆1 and 𝜆2 are the normalized Lebesgue measures to 𝐶
and𝐻, respectively; that is, 𝜆1(𝐶) = 𝜆2(𝐻) = 1. We consider
the following 𝐴𝐵-MRA onL2(R2):

(1) {𝑉𝑗1 }, where the fundamental region isΔ 1 = [0, 1/2]×[0, 1/2] and the scaling function 𝜑1 = 2𝜒[0,1/2]×[0,1/2],
the lattice is Γ1 = Z2, the finite group 𝐵1 is the trivial
group, and the dilation 𝐴1 = {2−𝑗(1, 1)}.

Figure 3

(2) {𝑉𝑗2 }, where the scaling function 𝜑2 = 𝐸𝜒Δ 2 , with Δ 2

being the triangle with vertices in (0, 0), (√3/2, 0),
and (√3/4, 3/4) and 𝐸 = 4/ 4√27; the lattice is Γ2 =𝑐1Z2, where 𝑐1 = (1/4) ( 0 3√3

6 3
); the finite group 𝐵2 is

the rotation group of a regular hexagon with vertices
in the unit circle; the scaling is given by 𝐴2 = {𝑎𝑗},
where 𝑎 = ( 1 −√3

√3 1
).

We denote by 𝐶𝑗𝑚 and 𝑇𝑗𝑛 the squares and the triangles asso-
ciated with level 𝑗 of the multiresolution analysis presented
above. Since 𝑐 is a continuous function in each pair of sets(𝐶𝑗𝑚, 𝑇𝑗𝑛), we have that 𝑐|𝐶𝑗𝑚×𝑇𝑗𝑛 is approximated to 𝑐(𝑥𝑗𝑚, 𝑦𝑗𝑛),
where 𝑥𝑗𝑚 and 𝑦𝑗𝑚 are the centroids of𝐶𝑗𝑚 and𝑇𝑗𝑛 , respectively.

In particular, we present a discretization of MK problem
given by (51) for the level 𝑗 = 2; the graphical description of
the process of discretization is given in Figure 3 (which was
generated using Mathematica 11.1.0).

Using {𝑉𝑗1 } and {𝑉𝑗2 } in 𝐶 and𝐻, respectively, notice that𝐶 is the union of congruent squares {𝐶2𝑚}64𝑚=1 with disjoined
interiors. Similarly, the hexagon𝐻 is the union by congruent
equilateral triangles {𝑇2𝑛 }96𝑛=1, with disjoined interiors. Note
that 𝜆(𝐶2𝑚) = 1/64 and 𝜆(𝑇2𝑛 ) = 1/96.

In consequence, a discrete approximation for the problem
defined in (51) is as follows:

MKD2: minimize
64∑
𝑚=1

96∑
𝑛=1

󵄩󵄩󵄩󵄩󵄩𝑥2𝑚 − 𝑦2𝑛󵄩󵄩󵄩󵄩󵄩2 ⋅ 𝜇2𝑚,𝑛
subject to:

96∑
𝑛=1

𝜇2𝑚,𝑛 = 196 𝑚 = 1, . . . , 64
64∑
𝑚=1

𝜇2𝑚,𝑛 = 164 , 𝑛 = 1, . . . , 96
16∑
𝑚=1

24∑
𝑛=1

𝜇2𝑚,𝑛 = 1, 𝜇2𝑚,𝑛 ≥ 0
∀𝑚 = 1, . . . , 64, 𝑛 = 1, . . . , 96.

(52)

The optimal solution of this linear programming problem is
4.02996. In Table 1 we present the solution for some levels.
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Table 1

Level Solution
MK1 4.037306413676646
MK2 4.029959684992724
MK3 4.026748275774876

6. Conclusions

The application of the Haar type multiresolution analysis
(MRA) to the problem of Monge-Kantorovich allows us
to obtain a discretization scheme for this problem at each
level of the MRA; moreover, this MRA is based on the
symmetries of the underlying space. This is an advantage
because it provided us a natural method of discretization
based on the geometry. Each level of the MRA induces a
soluble finite linear programming problem. So, we obtain a
sequence of optimal solutions of these transport problems
and this sequence converges weakly to the optimal solution
of the original problem.
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