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We show that the geometric and PH-preserving properties of the Enneper surface allow us to find PH interpolants for all regular𝐶1 Hermite data-sets. Each such data-set is satisfied by two scaled Enneper surfaces, and we can obtain four interpolants on each
surface. Examples of these interpolants were found to be better, in terms of bending energy and arc-length, than those obtained
using a previous PH-preserving mapping.

1. Introduction

Pythagorean-hodograph (PH) curves were first introduced
by Farouki and Sakkalis [1] as polynomial curves in R2 with
polynomial speed functions, which have polynomial arc-
lengths, rational curvature functions, and rational offsets, all
of which derive from their polynomial speed functions.These
properties make PH curves good candidates for CAGD and
CAD/CAMapplications such as interpolation of discrete data
and control of motion along curved paths [2–4]. Also, these
PH curves have subsequently been extended, with several
applications, to rational curves with rational speed functions
in R𝑛 [3, 5, 6].

PH curves have been the subject of a great deal of study,
both their formal representation [7–9] and their practical
applications [7–11]. PH curves have been generalized [11] to
participate in medial axis transforms [3, 12], becoming MPH
curves in the Minkowski space R𝑚,1 [8, 13, 14], and this has
motivated a lot of further research. There has also been a
lot of work on the use of PH curves for interpolating planar
[7, 8, 10, 15, 16] and spatial data-sets [17–21], in particular
to meet 𝐺1 Hermite [20, 22, 23] and 𝐶2 Hermite conditions
[7]. In particular, 𝐶1 Hermite interpolation problems have
been solved by several techniques [13, 24–27] including PH-
preservingmappings [24], which have recently been extended
[13] to MPH-preserving mappings.

In this paper, we show that we can use Enneper surfaces
to solve 𝐶1 Hermite interpolation problems with PH curves,
by exploiting two properties of the Enneper surface: the
geometric property that it contains two straight lines and the
PH-preserving nature of its parametrization. Since Farouki
and Neff ’s original work on 𝐶1 Hermite interpolation with
PH curves, there have been many developments: in partic-
ular, it has been shown [24] that 𝐶1 Hermite interpolation
problems with PH curves in R3 can be reduced to problems
inR2 and generic interpolants can then be obtained to satisfy
a given 𝐶1 Hermite data-set. This is achieved by a special
cubic PH-preserving mapping which satisfies the data-set.
However, significant drawbacks remain with this method:
one is that the algebraic manipulations required are long and
complicated; and the other is that this method is restricted
to a special class of 𝐶1 Hermite data-sets. We will address
both of these issues: using the Enneper surface, we can solve𝐶1 Hermite interpolation problems more efficiently for all
regular 𝐶1 Hermite data-sets; and we will show that the
interpolants obtained by thismethodmay be expected to have
better shapes than those obtained by the special mapping, in
terms of both bending energy and arc-length.

The rest of this paper is organized as follows: In Section 2,
we define the Pythagorean-hodograph curve and the PH-
preservingmapping and give examples. In Section 3, we show
that the parametrization of the Enneper surface in standard
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form is PH-preserving and that, by rescaling the Enneper
surface, we can find two cubic surfaces that satisfy any regular𝐶1 Hermite data-set. We also prove that we can obtain eight
interpolants on the two cubic surfaces that satisfy a regular𝐶1 Hermite data-set. In Section 4, we compare our method
with the use of PH-preserving cubicmappings [24], from two
different perspectives: the amount of algebraic computation
required and the geometric characterizations of the resulting
curves. By empirical comparison of interpolants for the same
data-set, we show that ourmethod ismore efficient and stable
than the use of mappings. In Section 5, we summarize the
results of this work and propose some themes for further
study.

2. Preliminary

Let R𝑛 be the 𝑛-dimensional Euclidean space, for 𝑛 ∈ N,
and let P[𝑡] be the set of polynomial functions with real
coefficients. We express a polynomial curve in R𝑛 as a
mapping r : R → R𝑛 from the space of real numbers R
to R𝑛, such that the component functions of r, which are𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡), are members of P[𝑡].
Definition 1. A polynomial curve r(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . ,𝑥𝑛(𝑡)) is said to be a Pythagorean-hodograph (PH) curve if
its velocity vector or hodograph r(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡))
satisfies the Pythagorean conditionr (𝑡)2𝑛 = 𝑥1 (𝑡)2 + 𝑥2 (𝑡)2 + ⋅ ⋅ ⋅ + 𝑥𝑛 (𝑡)2 = 𝜎 (𝑡)2 , (1)

where ‖ ∗ ‖𝑛 denotes the Euclidean norm of R𝑛 and 𝜎(𝑡) ∈
P[𝑡].
Definition 2. A polynomial mapping 𝜙 : R𝑛 → R𝑚 is said to
be PH-preserving if, for every PH curve r(𝑡) in R𝑛, 𝜙(r(𝑡)) is
a PH curve in R𝑚.

Example 3. Let Ψ be an affine transformation given byΨ (p) = 𝜆Rp + k, for ∀p ∈ R
3, (2)

whereR is an orthogonal matrix inR3, 𝜆 ∈ R\{0} is a scaling
factor, and k is a constant vector in R3. Then, for a PH curve
r(𝑡) = (𝑢(𝑡), V(𝑡)) in R2, the mapping Ψ̃ : R2 → R3 defined
by Ψ̃ (r (𝑡)) = Ψ (p (𝑡)) , where p (𝑡) = (𝑢 (𝑡) , V (𝑡) , 0) (3)

is PH-preserving, sinceΨ̃ (r (𝑡))23 = ⟨Ψ̃ (r (𝑡)) , Ψ̃ (r (𝑡))⟩= ⟨𝜆Rp (𝑡) , 𝜆Rp (𝑡)⟩= 𝜆2 ⟨p (𝑡) , p (𝑡)⟩ = 𝜆2 p (𝑡)23= 𝜆2 (𝑢 (𝑡)2 + V (𝑡)2) ,
(4)

where ⟨, ⟩ denotes the usual inner product in R3.

In addition, let P(𝑢, V) = (𝑥(𝑢, V), 𝑦(𝑢, V), 𝑧(𝑢, V)) be a
polynomial mapping given by𝑥 (𝑢, V) = 𝑢5 − 10𝑢3V2 + 5𝑢V4 + 𝑢3 − 3𝑢V2,𝑦 (𝑢, V) = V5 − 10V3𝑢2 + 5V𝑢4 + V3 − 3V𝑢2,𝑧 (𝑢, V) = 2√15𝑢V (𝑢2 − V2) . (5)

Then, for a r(𝑡) = (𝑢(𝑡), V(𝑡)) in R2, since𝑑𝑑𝑡𝑥 (𝑢 (𝑡) , V (𝑡)) = 5𝑢 (𝑡)4 𝑢 (𝑡) − 30𝑢 (𝑡)2 V (𝑡)2 𝑢 (𝑡)− 20𝑢 (𝑡)3 V (𝑡) V (𝑡)+ 5V (𝑡)4 𝑢 (𝑡)+ 20𝑢 (𝑡) V (𝑡)3 V (𝑡)+ 3𝑢 (𝑡)2 𝑢 (𝑡) − 3V (𝑡)2 𝑢 (𝑡)− 6𝑢 (𝑡) V (𝑡) V (𝑡) ,
(6)

𝑑𝑑𝑡𝑦 (𝑢 (𝑡) , V (𝑡)) = 5V (𝑡)4 V (𝑡) − 30V (𝑡)2 𝑢 (𝑡)2 V (𝑡)− 20V (𝑡)3 𝑢 (𝑡) 𝑢 (𝑡)+ 5𝑢 (𝑡)4 V (𝑡)+ 20V (𝑡) 𝑢 (𝑡)3 𝑢 (𝑡)+ 3V (𝑡)2 V (𝑡) − 3𝑢 (𝑡)2 V (𝑡)− 6𝑢 (𝑡) V (𝑡) 𝑢 (𝑡) ,
(7)

𝑑𝑑𝑡𝑧 (𝑢 (𝑡) , V (𝑡)) = 6√15𝑢 (𝑡)2 V (𝑡) 𝑢 (𝑡)+ 2√15𝑢 (𝑡)3 V (𝑡)− 2√15V (𝑡)3 𝑢 (𝑡)− 6√15𝑢 (𝑡) V (𝑡)2 V (𝑡) ,
(8)

we obtainP (r (𝑡))23 = ( 𝑑𝑑𝑡𝑥 (𝑢 (𝑡) , V (𝑡)))2+ ( 𝑑𝑑𝑡𝑦 (𝑢 (𝑡) , V (𝑡)))2 + ( 𝑑𝑑𝑡𝑧 (𝑢 (𝑡) , V (𝑡)))2= (𝑢 (𝑡)2 + V (𝑡)2)2 (5𝑢 (𝑡)2 + 5V (𝑡)2 + 3)2⋅ (𝑢 (𝑡)2 + V (𝑡)2) .
(9)

This means thatP(𝑢, V) is PH-preserving. Figure 1(a) shows
the image of P in R3, which is the PH-preserving surface
parameterized by P. The blue curve on the surface is the
image of the curve 𝛾(𝑡) = (𝑡−(1/3)𝑡3, 𝑡2) shown in Figure 1(b),
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Figure 1: (a) A PH-preserving surface parameterized byP, derived in Example 3, when 0 ≤ 𝑡 ≤ 1; the blue curve on the surface is the image
of 𝛾(𝑡), shown in (b).

which is a segment of the Tchirnhausen cubic. This is a PH
curve in R2, and thus the curve on the surface is a PH curve
in R3.

3. Construction of 𝐶1 Hermite PH Interpolants
on the Scaled Enneper Surface

Definition 4. Let Σ ∈ R3 be a surface with the parametriza-
tionΦ : R2 → R3 given by

Φ (𝑢, V) = (𝑢33 − 𝑢V2 + 𝑢, V33 − V𝑢2 + V, 2𝑢V) . (10)Σ is called the Enneper surface in standard form.

It is known [28] that PH curves in the domain of the
Enneper surface can be mapped to PH curves on the surface:
thus the parametrization of the Enneper surface is PH-
preserving. We revisit this result briefly.

Theorem 5. Φ is PH-preserving.

Proof. Assume that r(𝑡) = (𝑢(𝑡), V(𝑡)) is a PH curve in R2.
Then, sinceΦ (r (𝑡))23 = (𝑢 (𝑡)2 𝑢 (𝑡) − 𝑢 (𝑡) V (𝑡)2− 2𝑢 (𝑡) V (𝑡) V (𝑡) + 𝑢 (𝑡))2 + (V (𝑡)2 V (𝑡)− V (𝑡) 𝑢 (𝑡)2 − 2V (𝑡) 𝑢 (𝑡) 𝑢 (𝑡) + V (𝑡))2+ (2𝑢 (𝑡) V (𝑡) + 2𝑢 (𝑡) V (𝑡))2 = (𝑢 (𝑡)2 + V (𝑡)2

+ 1)2 (𝑢 (𝑡)2 + V (𝑡)2) ,
(11)

the curve Φ(r(𝑡)) in R3 is a PH curve. This completes the
proof.

Theorem6. Σ contains two straight lines 𝑙𝑦 = {(𝑥, 𝑦, 𝑧) ∈ R3 |𝑥 = 0, 𝑧 = 0} and 𝑙𝑥 = {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝑦 = 0, 𝑧 = 0} on the𝑥𝑦-plane {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝑧 = 0}.
Proof. If 𝑧(𝑢, V) = 2𝑢V = 0, or equivalently 𝑢 = 0 or V = 0,
we immediately obtain Φ(0, V) = (0, V3/3 + V, 0) or Φ(𝑢, 0) =(𝑢3/3 + 𝑢, 0, 0). This completes the proof.

Remark 7. The Enneper surface is the nontrivial polynomial
minimal surface of the lowest possible degree; equivalently
it is area-minimizing, and the parametrization Φ is confor-
mal (i.e., angle-preserving). Now we consider the surfaces
obtained by rescaling the Enneper surface. Let Σ𝜆 be a
polynomial surface of degree 3 given by the parametrizationΦ𝜆 = 𝜆Φ where Φ is the standard parametrization of the
Enneper surface and 𝜆 is a nonzero real number. Then Σ𝜆
is also a polynomial minimal surface of degree 3, and Φ𝜆 is
PH-preserving, as shown in Example 3. From now on, we
will call the surface Σ𝜆 the scaled Enneper surface (or s-
Enneper surface) associated with a scaling factor 𝜆. Note that
all s-Enneper surfaces contain 𝑙𝑥 and 𝑙𝑦, which we will use in
Theorem 9.

Definition 8. A 𝐶1 Hermite data-set 𝐻1𝐶 = {p0, p1, k0, k1}
consists of two end-points p0 and p1, and two velocities k0
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and k1 at those end-points, wherep0,p1, k0 and k1 ∈ R3.𝐻1𝐶 is
said to be regular if p1−p0, k0 and k1 are linearly independent.

Also note that if p0 and p1 lie on a surface Σ, and k0 and
k1 are tangents to that surface, then we can say that Σ satisfies𝐻1𝐶. If 𝜙 is a mapping which generates the surface Σ, then we
can also say that 𝜙 satisfies𝐻1𝐶.
Theorem9. For a regular𝐶1 Hermite data-set𝐻1𝐶 = {(0, 0, 0),(1, 0, 0), k0 = (V01, V02, 0), k1 = (V11, V12, V13)}, we can find two
s-Enneper surfaces satisfying𝐻1𝐶.
Proof. Let Σ𝜆 be the s-Enneper surface obtained by the
parametrization Φ𝜆 = 𝜆Φ where Φ is the parametrization of
the Enneper surface in standard form. First, since Φ𝜆(0, 0) =𝜆Φ(0, 0) = (0, 0, 0) for all 𝜆 ∈ R \ {0}, it is obvious that
p0 = (0, 0, 0) lies on Σ𝜆. In addition, as stated in Remark 7, by
Theorem 5, we can find a point in 𝑙𝑥 given by (𝑢30/3 + 𝑢0, 0, 0)
and a suitable scaling factor 𝜆, such that p1 = (1, 0, 0) ∈ Σ𝜆:
since 𝑙𝑥 ∈ Σ𝜆, we can assume the existence of some 𝑢0 and 𝜆
such thatΦ𝜆 (𝑢0, 0) = 𝜆Φ (𝑢0, 0) = 𝜆(𝑢303 + 𝑢0, 0, 0) . (12)

Hence, if𝜆 = 3𝑢30 + 3𝑢0 for some non-zero 𝑢0 ∈ R, (13)

we have Φ𝜆(𝑢0, 0) = p1 = (1, 0, 0) ∈ Σ𝜆. That is, p0 = (0, 0, 0)
and p1 = (1, 0, 0) lie on the s-Enneper surface parameterized
by Φ𝜆. Next we note that, since Φ𝜆𝑢(0, 0) = 𝜆(1, 0, 0) andΦ𝜆V (0, 0) = 𝜆(0, 1, 0), the unit vector n0 normal to Σ𝜆 at(0, 0, 0) is (0, 0, 1). This means that ⟨n0, k0⟩ = 0. Moreover,
since Φ𝜆𝑢 (𝑢0, 0) = 𝜆 (𝑢20 + 1, 0, 0) ,Φ𝜆V (𝑢0, 0) = 𝜆 (0, −𝑢20 + 1, 2𝑢0) , (14)

we can obtain the unit vector n1 normal to Σ𝜆 at (1, 0, 0) as
follows:

n1 = (0, −2𝑢01 + 𝑢20 , 1 − 𝑢201 + 𝑢20) . (15)

Here, since ⟨n1, k1⟩ = −2𝑢01 + 𝑢20 V12 + 1 − 𝑢201 + 𝑢20 V13, (16)

we can solve

V13𝑢20 + 2V12𝑢0 − V13 = 0 (17)

when V13 ̸= 0 and we obtain𝑢0 = −V12
V13

± √1 + (−V12
V13

)2. (18)

Then, since the given data-set is regular, it is obvious that
V13 ̸= 0. Therefore k0 and k1 are tangent to the s-Enneper
surface Σ𝜆 when

𝑢0 = −V12
V13

± √1 + (−V12
V13

)2,
𝜆 = 3𝑢30 + 3𝑢0 . (19)

Consequently, Σ𝜆 satisfies𝐻1𝐶. This completes the proof.

Remark 10. Note that, if a data-set 𝐻1𝐶 = {p0, p1, k0, k1} is
not regular, the three vectors p1 − p0, k0, and k1 must lie on
the same plane. This means that the interpolation problem
that must be solved to obtain PH curves satisfying the given
data-set is equivalent to a planar 𝐶1 Hermite interpolation,
which has been studied thoroughly [3, 10, 15, 16], in parallel,
including the case of solving the interpolation problem for
such a data-set with MPH curves [14, 29, 30].

Example 11. Let 𝐻1𝐶 = {(0, 0, 0), (1, 0, 0), k0 = (1, 1, 0), k1 =(2, 1, 2)}. Then, using Theorem 9, we can obtain the two s-
Enneper surfaces shown in Figure 2: Figure 2(a) is the s-
Enneper surface when 𝑢0 = (−1 + √5)/2 and 𝜆 = (21 +15√5)/38 and Figure 2(b) is the s-Enneper surface when𝑢0 = (−1 − √5)/2 and 𝜆 = (21 − 15√5)/38.
Theorem 12. For a 𝐶1 Hermite data-set 𝐻1𝐶 = {(0, 0, 0),(1, 0, 0), k0 = (V01, V02, 0), k1 = (V11, V12, V13)}, where V13 ̸= 0.
We can obtain four PH interpolants satisfying 𝐻1𝐶 on each of
the two s-Enneper surfaces which satisfy𝐻1𝐶.
Proof. By Theorem 9, for 𝐻1𝐶 = {(0, 0, 0), (1, 0, 0), k0 = (V01,
V02, 0), k1 = (V11, V12, V13)} with V13 ̸= 0, we can obtain
two s-Enneper surfaces satisfying 𝐻1𝐶. Then, by using the
parametrizationΦ𝜆 of each s-Enneper surface, we can obtain
a new 𝐶1 Hermite data-set �̃�1𝐶 = {p̃0 = (0, 0), p̃1 = (𝑢0, 0),
k̃0, k̃1} on R2 from the given 𝐻1𝐶, which satisfies Φ𝜆(0, 0) =(0, 0, 0), Φ𝜆(𝑢0, 0) = (1, 0, 0), 𝐷Φ𝜆(k̃0) = k0, and 𝐷Φ𝜆(k̃1) =
k1, where 𝐷Φ𝜆 denotes the derivative mapping of Φ𝜆. Let𝑢0 = (−V12/V13) ± √1 + (−V12/V13)2 and 𝜆 = 3/(𝑢30 + 3𝑢0);
then for each parametrization Φ𝜆 of the s-Enneper sur-
faces satisfying 𝐻1𝐶, we have that Φ𝜆(0, 0) = (0, 0, 0) andΦ𝜆(𝑢0, 0) = (1, 0, 0) as shown in the proof ofTheorem9.Next,
assume that k̃0 = (Ṽ01, Ṽ02) and k̃1 = (Ṽ11, Ṽ12). Then, since

𝐷Φ𝜆 (k̃0) = Ṽ01𝐷Φ𝜆 (1, 0) + Ṽ02𝐷Φ𝜆 (0, 1)= Ṽ01Φ𝜆𝑢 (0, 0) + Ṽ02Φ𝜆V (0, 0) ,𝐷Φ𝜆 (k̃1) = Ṽ11𝐷Φ𝜆 (1, 0) + Ṽ12𝐷Φ𝜆 (0, 1)= Ṽ11Φ𝜆𝑢 (𝑢0, 0) + Ṽ12Φ𝜆V (𝑢0, 0) ,
(20)
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Figure 2: Two s-Enneper surfaces satisfying 𝐻1𝐶 in Example 11: (a) the s-Enneper surface Σ𝜆1 that satisfies 𝐻1𝐶 when 𝑢0 = (−1 + √5)/2 and𝜆 = (21 + 15√5)/38; and (b) the s-Enneper surface Σ𝜆2 that satisfies𝐻1𝐶 when 𝑢0 = (−1 − √5)/2 and 𝜆 = (21 − 15√5)/38.
solving simultaneously 𝐷Φ𝜆(k̃0) = k0 = (V01, V02, 0) and𝐷Φ𝜆(k̃1) = k1 = (V11, V12, V13) with respect to Ṽ01, Ṽ02, Ṽ12
and Ṽ22, we obtain

Ṽ01 = V01𝜆 ,
Ṽ02 = V02𝜆 , (21)

Ṽ11 = V11𝜆 (𝑢20 + 1) ,
Ṽ12 = V132𝜆𝑢0 . (22)

Finally, we solve the 𝐶1 Hermite interpolation problem for
the reduced data-set �̃�1𝐶 with planar PH quintics in R2.
Note that if the given data-set 𝐻1𝐶 is regular, then the
reduced data-set �̃�1𝐶 is also regular, since Φ𝜆 is conformal
(i.e., angle-preserving). For the regular 𝐶1 Hermite data-
set �̃�1𝐶, we can always [10] find four interpolants: two of
them are simple and the others are loops. Therefore, sinceΦ𝜆 is PH-preserving, if r is a PH interpolant satisfying �̃�1𝐶,
then Φ𝜆(r) is also a PH interpolant satisfying the given
data-set 𝐻1𝐶, which lies on the s-Enneper surface with the
parametrization Φ𝜆. Consequently, we can obtain four PH
interpolants satisfying 𝐻1𝐶 on each of the two s-Enneper
surfaces which satisfy the data-set. Moreover, since Φ𝜆 is
conformal, the topological property of each interpolant on
the s-Enneper surface, whether it is a simple curve or a loop,
is the same as that of the preimage of itself obtained from the
inverse ofΦ𝜆. This completes the proof.

Example 13. Let 𝐻1𝐶 be the same 𝐶1 Hermite data-set as
in Example 11. Then, by Theorem 12, we can obtain eight
interpolants on the two s-Enneper surfaces which satisfy𝐻1𝐶,
as shown in Figure 3.They consist of four interpolants on the
s-Enneper surface Σ𝜆1 , with 𝑢0 = (−1 + √5)/2 and 𝜆 = (21 +15√5)/38, as shown in Figure 3(b), and four interpolants on
the s-Enneper surfaceΣ𝜆2 , with𝑢0 = (−1−√5)/2 and𝜆 = (21−15√5)/38, as shown in Figure 3(d). These eight interpolants
are obtained from the images of the corresponding planar
interpolants, shown in Figures 3(a) and 3(c), which satisfy
the reduced data-sets �̃�1𝐶𝑗 obtained by the parametrization of
each s-Enneper surface Σ𝜆𝑗 where 𝑗 = 1, 2.
Corollary 14. For an arbitrary regular 𝐶1 Hermite data-set𝐻1𝐶 = {p0, p1, k0, k1} in R3, we can obtain eight interpolants
on the surfaces that satisfy 𝐻1𝐶, by scaling and exploiting the
isometry of the two s-Enneper surfaces.

Proof. Let Ψ be an affine mapping in R3, obtained by
composing a translation, an orthogonal transformation, and
a scaling, as shown in Example 3, so thatΨ(p0) = (0, 0, 0) andΨ(p0) = (1, 0, 0). Then, using Ψ, we can obtain a new regular𝐶1 Hermite data-set𝐻1𝐶∗ as follows:𝐻1𝐶∗ = {Ψ (p0) = (0, 0, 0) , Ψ (p0)= (1, 0, 0) , 𝜎Rk0, 𝜎Rk1} , (23)

where 𝜎 and R are, respectively, the scaling factor and the
orthogonalmatrix ofΨ. Herewe can useTheorem 12 to obtain
eight interpolants on two s-Enneper surfaces satisfying𝐻1𝐶∗.
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Figure 3: Two s-Enneper surfaces and interpolants satisfying𝐻1𝐶 and �̃�1𝐶𝑗 (𝑗 = 1, 2) in Example 13: (a) four interpolants satisfying �̃�1𝐶1 ; (b)
four interpolants satisfying𝐻1𝐶 on Σ𝜆1 ; (c) four interpolants satisfying �̃�1𝐶2 ; (d) four interpolants satisfying𝐻1𝐶 on Σ𝜆2 .
In addition, as shown in Example 3, sinceΨ is PH-preserving,
we can obtain eight interpolants on the cubic surfaces given
byΨ−1(Σ𝜆𝑗 ), whereΣ𝜆𝑗 is the s-Enneper surface satisfying𝐻1𝐶∗,
for 𝑗 = 1, 2.
Example 15. Let 𝐻1𝐶 = {p0 = (0, 0, 0), p1 = (1, 1, 1), k0 =(−1, 1, 1), k1 = (−1, 0, 1)}. Then, as stated in Corollary 14,
using the orthogonal matrix R given by

𝜎R = ( 13 13 13−√23 √26 √260 −√66 √66 ) (24)

with the scaling factor 𝜎 = 1/√3, we can reduce the given
data-set to the 𝐶1 Hermite data-set𝐻1𝐶∗ = {(0, 0, 0), (1, 0, 0),𝜎Rk0 = (1/3, 2√2/3, 0), 𝜎Rk1 = (0, √2/2, √6/6)}.

By Theorems 9 and 12, we can obtain two s-Enneper
surfaces and eight interpolants satisfying 𝐻1𝐶∗. So, using
the inverse transformation Ψ−1 = 𝜎−1R−1 for the surfaces
and interpolants, we finally obtain two cubic surfaces and
interpolants satisfying the original data-set 𝐻1𝐶, as shown
in Figure 4: The cubic surface and the interpolants shown
in Figure 4(b) are obtained by the inverse transforma-
tion Ψ−1(Σ𝜆1 ), where Σ𝜆1 is the s-Enneper surface obtained
when 𝑢0 = 2 − √3 and 𝜆 = (48 + 27√3)/26; and
the cubic surface and the interpolants in Figure 4(d) are
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Figure 4: The s-Enneper surfaces and interpolants that satisfy 𝐻1𝐶 in Example 15: (a) four planar interpolants when 𝑢0 = 2 − √3 and 𝜆 =(48 + 27√3)/26; (b) four interpolants satisfying 𝐻1𝐶 on the cubic surface Ψ−1(Σ𝜆1 ); (c) four planar interpolants when 𝑢0 = −2 − √3 and𝜆 = −(48 + 27√3)/26; (d) four interpolants satisfying𝐻1𝐶 on the cubic surface Ψ−1(Σ𝜆2 ).
obtained by Ψ−1(Σ𝜆2 ), where Σ𝜆2 is the s-Enneper surface
obtained when 𝑢0 = −2 − √3 and 𝜆 = (−48 + 27√3)/26.
Remark 16. Note that when the given data-set 𝐻1𝐶 is
not regular, that is, p1 − p0, k0 and k1 are linearly
dependent, these three vectors must lie on a plane in
R3. That allows us to reduce this interpolation prob-
lem to a planar 𝐶1 Hermite interpolation problem using
a suitable PH-preserving affine transformation. Thus we
can obtain [10] four planar PH interpolants satisfying𝐻1𝐶.

4. Comparison with Interpolants Obtained by
Other PH-Preserving Mappings

In this section, we compare our method with the use of PH-
preserving cubic mappings [24]. First note that, for a regular𝐶1 Hermite data-set 𝐻1𝐶 in R3, we can use mappings to
obtain 16 interpolants satisfying 𝐻1𝐶, which consist of four
interpolants on each of four cubic surfaces satisfying 𝐻1𝐶,
as shown in Figure 5(a). Whereas, applying our method to
the same data-set, we can obtain eight interpolants satisfying𝐻1𝐶, which consist of four interpolants on each of two cubic
surfaces satisfying𝐻1𝐶, as shown in Figure 5(b). Now we will
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(a) (b)

Figure 5: Comparison of interpolants satisfying𝐻1𝐶 = {p0 = (0, 0, 0), p1 = (1, 0, 0), k0 = (0, 1, 1), k1 = (0, 1, −1)} of Example 11 in [24]: (a)
16 interpolants obtained by using general PH-preserving cubic mappings; (b) 8 interpolants obtained using the s-Enneper surface. In each
subfigure, the interpolant with the lowest bending energy is shown as the orange curve; the shortest interpolant is shown as the green curve;
and the longest interpolant is shown as the curve denoted by dashed lines.

compare these two methods in terms of their requirements
for algebraic computation and the geometries of the resulting
curves.

Ourmethod requires less algebraic computation to deter-
mine the cubic surfaces satisfying the given data-set than
the mapping method: when using the mapping method, to
determine the PH-preserving surfaces satisfying the given
data-set, lengthy computation processes are additionally
required in fixing the free parameters of the surfaces, since
they havemany free parameters with complicated constraints
unlike Enneper surfaces.Moreover, ourmethod only requires
the given data-set to meet the regularity condition, whereas
mapping requires a data-set which meets several conditions.

We will now examine the shapes of the interpolants
produced by mapping and by our method. Looking at the
interpolants in Figure 5, it is clear that those in Figure 5(a)
are longer and more complicated than those in Figure 5(b),
which means that the surfaces satisfying the given data-set𝐻1𝐶 must be different.

Next, we will compare the interpolants obtained using
each method in terms of bending energy:

E (𝛾) = ∫
𝛾
(𝜅2 + 𝜏2) 𝑑𝑠, (25)

where 𝜅 and 𝜏 are the curvature and torsion of an interpolant𝛾. The bending energyE of a curve is an established measure
of its fairness. We can consider an interpolant to have a better
shape than another if it has lower bending energy with a
similar arc-length. If we look at the bending energies and arc-
lengths in Tables 1 and 2, we observe the following:

(i) While the curve with the lowest bending energy in
Figure 5(a) has the longest arc-length, which is about
twice that of the shortest curve, the curve with the
lowest bending energy in Figure 5(b) is not much
longer than the shortest curve.

Table 1: Comparison of the bending energies and arc-length of the
3 important interpolants shown in Figure 5(a).

Curve Bending energy Arc-length
Dashed-orange 1 37.308 2.306
Dashed-orange 2 37.308 2.306
Green 153.924 1.228

Table 2: Comparison of the bending energies and arc-lengths of the
3 important interpolants shown in Figure 5(b).

Curve Bending energy Arc-length
Orange 23.378 1.609
Green 599.572 1.251
Dashed-blue 71.977 1.805

(ii) The diversity of arc-lengths among the curves in
Figure 5(a) is much larger than the diversity of those
in Figure 5(b), where the lengths of the shortest and
longest curves are in the ratio 1 : 2.36.

(iii) Finally, the lowest bending energy of any curve in
Figure 5(b) is 63% lower than that of the curve with
the lowest bending energy in Figure 5(a).

These results suggest that our method can produce better
interpolants through amore convenient and shorter algebraic
computation than mapping.

5. Concluding Remarks and Suggestions for
Further Study

We have proved that the parametrization of the Enneper
surface in standard form is PH-preserving and that it also
preserves the 𝑥- and 𝑦-axes in the parametric plane. We went
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on to show how to produce interpolants which lie on two s-
Enneper surfaces and satisfy a regular𝐶1 Hermite data-set in
R3. We also proved that eight interpolants can be obtained,
four on each of the surfaces. We also compared our method
with a previous method [24] based on PH-preserving cubic
mappings and showed that we can obtain interpolants with
lower bending energy without significant increase in arc-
length.

The work reported in this paper raises further questions:
first, as shown in Section 4, by using different parame-
terizations to solve the 𝐶1 Hermite interpolation problem
satisfying a single data-set 𝐻1𝐶, we obtain different cubic
surfaces.Then the Enneper surface is a minimal surface: does
that mean that all the cubic PH-preserving mappings are
harmonic? Further, are the surfaces produced by the cubic
PH-preserving mappings used in the mapping method also
minimal?This brings us to the question of how to characterize
all possible cubic PH-preserving mappings. Now, as shown
in Example 3 of [24], PH-preserving mappings are not
necessarily harmonic; and so PH-preserving surfaces need
not to be minimal.

Extending our perspective to include PH-preserving
mappings raises another question which brings us nearer to
core of the PH-preserving property: what is the key to the
property of PH preservation: conformality, harmonicity, or
both? finally, we might consider the following interesting
questions: can we design new PH-preserving mappings by
using specific PH curves in R2 such as PH-cuts of Laurent
series [27]?Wehave been considering these last two questions
and currently believe that the PH-preserving property of
mappings is mainly dependent upon conformality. We have
to be in a position to write on this topic shortly. In addition,
PH and MPH curves are tightly connected, as stated in [11].
Hence, considering our recent work [13] onMPH-preserving
mappings, we also naturally reach the following questions:
what would be the equivalent of Enneper surfaces in the
Minkowski setting? Can we again achieve 𝐶1 interpolation,
but this time with MPH curves? These could also be the nice
themes for further study.
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