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The Riemann solutions of a deposition model are shown. A singular flux-function limit of the obtained Riemann solutions is
considered. As a result, it is shown that the Riemann solutions of the depositionmodel just converge to the Riemann solutions of the
limit system, the scalar conservation law with a linear flux function involving discontinuous coefficient. Especially, for some initial
data, the two-shock Riemann solution of the deposition model tends to the delta-shock Riemann solution of the limit system; by
contrast, for some initial data, the two-rarefaction-wave Riemann solution of the deposition model tends to the vacuum Riemann
solution of the limit system. Some numerical results exhibiting the formation processes of delta-shocks and vacuum states are
presented.

1. Introduction

Consider the following deposition model of conservation
laws:

V𝑡 + (𝑢V)𝑥 = 0,𝑢𝑡 + (𝜖V)𝑥 = 0, (1)

where V ⩾ 0 denotes the density of the population per-
forming the deposition, 𝑢 = −𝜕𝑥ℎ(𝑥, 𝑡) with ℎ(𝑥, 𝑡) being
the deposition height, and 𝜖 is a positive parameter. The
first equation describes the conservation of total population.
The second one is derived from the rules governing the
time evolution of the deposition system: the deposition
rate is proportional to the density of the population, and
the population is driven by a velocity field proportional to
the negative gradient of height. It was also derived as a
decent hydrodynamic limit of some systems of interacting
particles with two conserved quantities [1, 2].This system can
also describe the macroscopic behaviors of some (so-called
chemotactic) bacterial populations, which are attracted by a
chemical substrate [3–5].

The first task of this paper is to solve the Riemann
problem, one of the fundamental problems associated with

nonlinear hyperbolic conservation laws, for (1) with initial
data

(𝑢, V) (𝑥, 𝑡 = 0) = (𝑢±, V±) , ±𝑥 > 0, (2)

where V± > 0. System (1) is nonstrictly hyperbolic, and both
characteristic fields are genuinely nonlinear. The elementary
waves include shocks and rarefaction waves. By the analysis
method in phase plane, the unique global Riemann solution is
constructed with five different kinds of structures containing
shock(s) and/or rarefaction wave(s).

As 𝜖 → 0+, system (1) formally becomes

𝑢𝑡 = 0,
V𝑡 + (𝑢V)𝑥 = 0, (3)

which can be rewritten in the form of scalar conservation law
with a linear flux function involving discontinuous coefficient

V𝑡 + (𝑢 (𝑥) V)𝑥 = 0. (4)

The scalar hyperbolic conservation laws with the discontinu-
ous flux functions arise inmany areas, such as the continuous
sedimentation of solid particles in a liquid, the two-phase
flow in porous media, and the traffic flow theory. System (3)
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has been studied very extensively; for example, see [6–8] and
the references cited therein. It has been shown that delta-
shocks and vacuum states do occur in the Riemann solutions
of (3).

Let us recall some knowledge with respect to delta-
shocks and vacuum states. Delta-shocks are an important
kind of nonclassical wave for systems of conservation laws.
Mathematically, they are characterized by the delta functions
appearing in the state variables. Physically, they can describe
the concentration phenomenon. As for delta-shocks, see
[9–18]. The other extreme situation is the vacuum state. It
describes the cavitation phenomenon. Recently, the phenom-
ena of concentration and cavitation and the formation of
delta-shock and vacuum state have attracted wide attention
from researchers. For example, Li [19] and Chen and Liu [20,
21] discussed this topic by considering the vanishing pressure
limits of solutions of the isentropic and nonisentropic Euler
equations. With respect to this topic, also see [22–24].

The second task of this paper is to study the behaviors
of solutions of system (1) as the flux 𝜖V vanishes (i.e., 𝜖 →0+) by the Riemann problem. We are especially concerned
with the phenomena of concentration and cavitation and the
formation of delta-shocks and vacuum states in the limit. As
a result, we rigorously show that as 𝜖 → 0+, the Riemann
solutions of (1) just converge to the Riemann solutions of
(3) with the same initial data. Especially, when 𝑢+ ⩽ 0 ⩽𝑢−, the two-shock solution of (1) and (2) tends to the delta-
shock solution of (3) and (2), where the intermediate density
between the two shocks tends to a weighted 𝛿-measure which
forms the delta-shock; by contrast, when 𝑢+ ⩾ 0 ⩾ 𝑢−, the
two-rarefaction-wave solution of (1) and (2) tends to the two-
contact-discontinuity solution of (3) and (2), in which the
nonvacuum intermediate state between the two rarefaction
waves tends to a vacuum state. It can also be seen that such a
flux-function limit may be very singular: the limit functions
of solutions are no longer in the spaces of functions𝐵𝑉or𝐿∞,
and the space of Radon measures is a natural space in order
to deal with such a limit.

The rest of the paper is organized as follows. In Section 2,
we recall the Riemann problem for system (3). In Section 3,
we solve the Riemann problem for (1) by the analysis method
in phase plane. Sections 4 and 5 are devoted to the studies
of the limits of solutions of the Riemann problem for (1) as𝜖 → 0+. In Section 6, we present some numerical results to
examine the formation processes of delta-shocks and vacuum
states as 𝜖 decreases. Finally, we give the conclusions in
Section 7.

2. Solutions of the Riemann Problem for (3)

In this section, we briefly recall the Riemann problem for (3)
with initial data (2), for which we also refer the readers to the
papers [6, 7]. The characteristic roots of (3) are 𝜆1(𝑢, V) = 0
and 𝜆2(𝑢, V) = 𝑢, and the corresponding right characteristic
vectors are󳨀→𝑟 1 = (𝑢, −V)𝑇 and󳨀→𝑟 2 = (0, 1)𝑇, respectively.They
satisfy∇𝜆𝑖 ⋅󳨀→𝑟 𝑖 ≡ 0 (𝑖 = 1, 2), where, in what follows, ∇ = (𝜕/𝜕𝑢, 𝜕/𝜕V) is the gradient operator.Therefore, (3) is nonstrictly
hyperbolic because of 𝜆1 = 𝜆2 at 𝑢 = 0, and 𝜆𝑖 (𝑖 = 1, 2) is
linearly degenerate.

Since the equations and the Riemann initial data are
invariant under uniform stretching of coordinates (𝑥, 𝑡) →(𝛽𝑥, 𝛽𝑡) (𝛽 > 0), we consider the self-similar solutions(𝑢, V)(𝑥, 𝑡) = (𝑢, V)(𝜉), where 𝜉 = 𝑥/𝑡. Then this Riemann
problem turns into

−𝜉𝑢𝜉 = 0,−𝜉V𝜉 + (𝑢V)𝜉 = 0,(𝑢, V) (±∞) = (𝑢±, V±) .
(5)

This is a two-point boundary value problem of first-order
ordinary differential equations with the boundary values in
the infinity.

Besides the constant states and the vacuum states (V ≡ 0),
the self-similar wave (𝑢, V)(𝜉) (𝜉 = 𝑥/𝑡) of the first family is a
standing wave discontinuity

SW:
{{{
𝜉 = 0,𝑢𝑙V𝑙 = 𝑢𝑟V𝑟 (6)

and that of the second family is a contact discontinuity

𝐽: 𝜉 = 𝑢𝑙 = 𝑢𝑟, (7)

where the indices 𝑙 and 𝑟 denote the left and right states,
respectively.

Using the above waves, by the analysis in phase plane, one
can construct the solutions of Riemann problem (3) and (2)
in the following cases.

(1) When 𝑢− > 0, 𝑢+ > 0, the solution is SW + 𝐽:
(𝑢, V) (𝜉) = {{{{{{{{{

(𝑢−, V−) , 𝜉 < 0,
(𝑢+, 𝑢−V−𝑢+ ) , 0 < 𝜉 < 𝑢+,(𝑢+, V+) , 𝜉 > 𝑢+.

(8)

(2) When 𝑢− < 0, 𝑢+ < 0, the solution is 𝐽 + SW:

(𝑢, V) (𝜉) = {{{{{{{{{
(𝑢−, V−) , 𝜉 < 𝑢−,
(𝑢−, 𝑢+V+𝑢− ) , 𝑢− < 𝜉 < 0,(𝑢+, V+) , 𝜉 > 0.

(9)

(3) When 𝑢− ⩽ 0 ⩽ 𝑢+, the solution is 𝐽 + Vac + 𝐽:

(𝑢, V) (𝜉) =
{{{{{{{{{{{{{{{

(𝑢−, V−) , 𝜉 < 𝑢−,(𝑢−, 0) , 𝑢− < 𝜉 < 0,(𝑢+, 0) , 0 < 𝜉 < 𝑢+,(𝑢+, V+) , 𝜉 > 𝑢+.
(10)

However, for the case 𝑢+ ⩽ 0 ⩽ 𝑢−, the singularity
cannot be a jump with finite amplitude; that is, there is no
solution which is piecewise smooth and bounded. Hence a
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solution containing a weighted 𝛿-measure (i.e., delta-shock)
supported on a line should be introduced in order to establish
the existence in a space of measures from the mathematical
point of view.

Denote by BM(R) the space of bounded Borel measures
on R, then the definition of a measure solution of (3) in
BM(R) can be given as follows.

Definition 1. A pair (𝑢, V)(𝑥, 𝑡) is called a measure solution of
(3) if it satisfies that

(a) 𝑢 ∈ 𝐿∞([0,∞), 𝐿∞(R)) ∩ 𝐶([0,∞),𝐻−s(R))
(b) V ∈ 𝐿∞([0,∞),BM(R)) ∩ 𝐶([0,∞),𝐻−𝑠(R)), 𝑠 > 0
(c) 𝑢 is measurable with respect to V almost for all 𝑡 ≥ 0.

And (3) is satisfied in the measure and distributional senses;
that is,

∫∞
0
∫
R

𝑢𝜓𝑡𝑑𝑥 𝑑𝑡 = 0,
∫∞
0
∫
R

(𝜓𝑡 + 𝑢𝜓𝑥) 𝑑V 𝑑𝑡 = 0 (11)

for all 𝜓 ∈ 𝐶∞0 ([0,∞) ×R).
Remark 2. The continuity conditions in 𝐶([0,∞),𝐻−𝑠(R))
may be used to give an interpretation for (𝑢, V)(𝑥, 𝑡) to take
on initial values [25].

Definition 3. A two-dimensional weighted delta function𝑤(𝑠)𝛿𝐿 supported on a smooth curve 𝐿 parameterized as 𝑥 =𝑥(𝑠), 𝑡 = 𝑡(𝑠) (𝑐 ≤ 𝑠 ≤ 𝑑) is defined by

⟨𝑤 (𝑠) 𝛿𝐿, 𝜓 (𝑥, 𝑡)⟩ = ∫𝑑
𝑐
𝑤 (𝑠) 𝜓 (𝑥 (𝑠) , 𝑡 (𝑠)) 𝑑𝑠 (12)

for all 𝜓 ∈ 𝐶∞0 ([0,∞) ×R).
We propose to find a solution of (3) of the form(𝑢, V) (𝑥, 𝑡)

= {{{{{{{{{
(𝑢1, V1) (𝑥, 𝑡) , 𝑥 < 𝑥 (𝑡) ,(𝑢𝛿 (𝑡) , 𝑤 (𝑡) 𝛿 (𝑥 − 𝑥 (𝑡))) , 𝑥 = 𝑥 (𝑡) ,(𝑢2, V2) (𝑥, 𝑡) , 𝑥 > 𝑥 (𝑡) ,

(13)

where 𝑢𝛿(𝑡), 𝑤(𝑡), 𝑥(𝑡) ∈ 𝐶1[0,∞), and (𝑢1, V1)(𝑥, 𝑡) and(𝑢2, V2)(𝑥, 𝑡) are respective bounded smooth solutions of (3).
We assert that (13) is a measure solution of (3) if the

relation 𝑑𝑥 (𝑡)𝑑𝑡 = 𝑢𝛿 (𝑡) ,
−𝑢𝛿 (𝑡) [𝑢] = 0,𝑑𝑤 (𝑡)𝑑𝑡 = −𝑢𝛿 (𝑡) [V] + [𝑢V]

(14)

is satisfied, where [𝑔] = 𝑔1 − 𝑔2 is the jump of 𝑔 across
the discontinuity with 𝑔 being the limit value of 𝑔 on the

discontinuity. The proof is similar to that in [11, 17], and
we omit it. System (14) is called the generalized Rankine-
Hugoniot relation.

In addition, to guarantee uniqueness of solution, we
propose the following admissible condition:

𝜆2 (𝑢2, V2) ⩽ 𝜆1 (𝑢2, V2) ⩽ 𝑑𝑥 (𝑡)𝑑𝑡 ⩽ 𝜆1 (𝑢1, V1)
⩽ 𝜆2 (𝑢1, V1) , (15)

which means that all characteristics on both sides of discon-
tinuity line are not outgoing.

A discontinuity in the form (13) satisfying (14) and (15)
will be called a delta-shock, symbolized by 𝛿.
Remark 4. Here the delta-shock is defined as a measure
solution just as in [10, 17, 18, 25]. In fact, like [14, 15], it can also
be defined as a solution in the sense of distributions, which
gives a natural generalization of the classical definition of
the weak 𝐿∞-solution and specifies the definition of measure
solution.

Remark 5. Here in a delta-shock, we assign 𝑢 to be 𝑢𝛿(𝑡) on
the discontinuity line. Physically, for instance, in adhesion
particle dynamics, the formation of delta-shock can describe
the process of the concentration of particles, and such an
assignment can be interpreted as the velocity of colliding
particles [17].

Nowwe consider the Riemann problem (3) and (2) for the
case 𝑢+ ⩽ 0 ⩽ 𝑢−. At this time, the solution is a delta-shock
in the form

(𝑢, V) (𝑥, 𝑡)
= {{{{{{{{{

(𝑢−, V−) , 𝑥 < 𝑥 (𝑡) ,(𝑢𝛿 (𝑡) , 𝑤 (𝑡) 𝛿 (𝑥 − 𝑥 (𝑡))) , 𝑥 = 𝑥 (𝑡) ,(𝑢+, V+) , 𝑥 > 𝑥 (𝑡) .
(16)

Solving the generalized Rankine-Hugoniot relation (14)
under the admissible condition (15) gives

𝑥 (𝑡) = 0,𝑢𝛿 (𝑡) = 0,𝑤 (𝑡) = (𝑢−V− − 𝑢+V+) 𝑡.
(17)

3. Solutions of the Riemann Problem for (1)

In this section, we solve the Riemann problem for system
(1) with initial data (2) and examine the dependence of the
Riemann solutions on the parameter 𝜖 > 0. For (1), the
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characteristic roots and corresponding right characteristic
vectors are

𝜆𝜖1 = 𝑢 − √𝑢2 + 4𝜖V2 ,
𝜆𝜖2 = 𝑢 + √𝑢2 + 4𝜖V2 ,
󳨀→𝑟 𝜖1 = (1, 𝑢 − √𝑢2 + 4𝜖V2𝜖 )𝑇 ,
󳨀→𝑟 𝜖2 = (1, 𝑢 + √𝑢2 + 4𝜖V2𝜖 )𝑇 .

(18)

It is easy to calculate that

∇𝜆𝜖𝑖 ⋅ 󳨀→𝑟 𝜖𝑖 = 1 + (−1)𝑖 𝑢√𝑢2 + 4𝜖V ̸= 0 (𝑖 = 1, 2) . (19)

So (1) is nonstrictly hyperbolic because of 𝜆𝜖1 = 𝜆𝜖2 as 𝑢 =
V = 0, and both characteristic fields are genuinely nonlinear
in virtue of (19).

As usual, we seek the self-similar solutions (𝑢, V)(𝑥, 𝑡) =(𝑢, V)(𝜉), where 𝜉 = 𝑥/𝑡. Then the Riemann problem turns
into the two-point boundary value problem

−𝜉𝑢𝜉 + (𝜖V)𝜉 = 0,−𝜉V𝜉 + (𝑢V)𝜉 = 0, (20)

(𝑢, V) (±∞) = (𝑢±, V±) . (21)

For any smooth solution, (20) becomes

(−𝜉 𝜖
V 𝑢 − 𝜉)(𝑢V)

𝜉

= 0. (22)

Besides the constant states, the smooth solutions are com-
posed of the backward rarefaction waves

𝜉 = 𝜆𝜖1 = 𝑢 − √𝑢2 + 4𝜖V2 ,
𝑑V𝑑𝑢 = 𝑢 − √𝑢2 + 4𝜖V2𝜖 , (23)

and the forward rarefaction waves

𝜉 = 𝜆𝜖2 = 𝑢 + √𝑢2 + 4𝜖V2 ,
𝑑V𝑑𝑢 = 𝑢 + √𝑢2 + 4𝜖V2𝜖 . (24)

For them, we have

d𝜆𝜖𝑖
d𝑢 = 𝜕𝜆𝜖𝑖𝜕𝑢 + 𝜕𝜆𝜖𝑖𝜕V dV

d𝑢 = 1 + (−1)𝑖 𝑢√𝑢2 + 4𝜖V > 0,𝑖 = 1, 2. (25)

Let (𝑢𝑙, V𝑙) and (𝑢𝑟, V𝑟) denote the states connected by
a rarefaction wave on the left and right sides, respectively.
Then the conditions 𝜆𝜖1(𝑢𝑟, V𝑟) > 𝜆𝜖1(𝑢𝑙, V𝑙) and 𝜆𝜖2(𝑢𝑟, V𝑟) >𝜆𝜖2(𝑢𝑙, V𝑙) are required for the forward and backward rarefac-
tionwaves, respectively. From (25), we have that both forward
and backward rarefaction wave should satisfy

𝑢𝑟 > 𝑢𝑙. (26)

By solving the differential equations in (23) and (24), we
further have the backward and forward rarefaction waves as
follows:

←󳨀𝑅 : {{{{{{{
𝜉 = 𝜆𝜖1 (𝑢, V) = 𝑢 − √𝑢2 + 4𝜖V2 ,
√√𝑢2𝑟 + 4𝜖V𝑟 − 𝑢𝑟 (√𝑢2𝑟 + 4𝜖V𝑟 + 2𝑢𝑟) = √√𝑢2𝑙 + 4𝜖V𝑙 − 𝑢𝑙 (√𝑢2𝑙 + 4𝜖V𝑙 + 2𝑢𝑙) , 𝑢𝑟 > 𝑢𝑙,

󳨀→𝑅 : {{{{{{{
𝜉 = 𝜆𝜖2 (𝑢, V) = 𝑢 + √𝑢2 + 4𝜖V2 ,
√√𝑢2𝑟 + 4𝜖V𝑟 + 𝑢𝑟 (√𝑢2𝑟 + 4𝜖V𝑟 − 2𝑢𝑟) = √√𝑢2𝑙 + 4𝜖V𝑙 + 𝑢𝑙 (√𝑢2𝑙 + 4𝜖V𝑙 − 2𝑢𝑙) , 𝑢𝑟 > 𝑢𝑙.

(27)

For a given state (𝑢𝑙, V𝑙), all possible states which can
connect to (𝑢𝑙, V𝑙) on the right by a backward rarefactionwave
must be located on the curve←󳨀𝑅 (𝑢𝑙, V𝑙) : √√𝑢2 + 4𝜖V − 𝑢 (√𝑢2 + 4𝜖V + 2𝑢)

= √√𝑢2
𝑙
+ 4𝜖V𝑙 − 𝑢𝑙 (√𝑢2𝑙 + 4𝜖V𝑙 + 2𝑢𝑙) ,

𝑢 > 𝑢𝑙.
(28)

For a given state (𝑢𝑟, V𝑟), all possible states which can connect
to (𝑢𝑟, V𝑟) on the left by a forward rarefaction wave must be
located on the curve󳨀→𝑅 (𝑢𝑟, V𝑟) : √√𝑢2 + 4𝜖V + 𝑢 (√𝑢2 + 4𝜖V − 2𝑢)
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= √√𝑢2𝑟 + 4𝜖V𝑟 + 𝑢𝑟 (√𝑢2𝑟 + 4𝜖V𝑟 − 2𝑢𝑟) ,
𝑢 < 𝑢𝑟.

(29)

It is easy to check that the backward shock curve←󳨀𝑅(𝑢𝑙, V𝑙) is
monotonously decreasing and convex, and the forward shock
curve 󳨀→𝑅(𝑢𝑟, V𝑟) is monotonously increasing and convex.
Furthermore, ←󳨀𝑅(𝑢𝑙, V𝑙) has the 𝑢-axis as the asymptote as𝐾𝑙 > 0 and interacts with the 𝑢-axis at 𝑢 = − 3√𝐾2𝑙 /2 as𝐾𝑙 ⩽ 0,
where

𝐾𝑙 = √√𝑢2𝑙 + 4𝜖V𝑙 − 𝑢𝑙 (√𝑢2𝑙 + 4𝜖V𝑙 + 2𝑢𝑙) ; (30)

󳨀→𝑅(𝑢𝑟, V𝑟) has the 𝑢-axis as the asymptote as 𝑀𝑟 > 0 and
interacts with the 𝑢-axis at 𝑢 = 3√𝑀2𝑟 /2 as𝑀𝑟 ⩽ 0, where

𝑀𝑟 = √√𝑢2𝑟 + 4𝜖V𝑟 + 𝑢𝑟 (√𝑢2𝑟 + 4𝜖V𝑟 − 2𝑢𝑟) . (31)

Let us turn to the discontinuous solutions. For a bounded
discontinuity at 𝑥 = 𝑥(𝑡), the Rankine-Hugoniot relation
reads −𝜎 [𝑢] + [𝜖V] = 0,−𝜎 [V] + [𝑢V] = 0, (32)

where 𝜎 = 𝑑𝑥/𝑑𝑡, [𝑢] = 𝑢𝑙 − 𝑢𝑟 with 𝑢𝑙 = 𝑢(𝑥(𝑡) − 0, 𝑡) and𝑢𝑟 = 𝑢(𝑥(𝑡) + 0, 𝑡), and so forth.
From (32), one easily obtains

(𝜖 [V][𝑢])2 − 𝜖[𝑢V][𝑢] = 0. (33)

By noticing [𝑢V][𝑢] = V𝑙 + 𝑢𝑟 [V][𝑢] = V𝑟 + 𝑢𝑙 [V][𝑢] , (34)

we solve (33) to obtain

𝜖 [V][𝑢] = 𝑢𝑟 ± √𝑢
2
𝑟 + 4V𝑙2 = 𝑢𝑙 ± √𝑢2𝑙 + 4𝜖V𝑟2 . (35)

Then we obtain two kinds of discontinuities

𝜎1 = 𝑢𝑟 − √𝑢2𝑟 + 4𝜖V𝑙2 ,
𝑢𝑙 − √𝑢2𝑙 + 4𝜖V𝑟 = 𝑢𝑟 − √𝑢2𝑟 + 4𝜖V𝑙,

(36)

𝜎2 = 𝑢𝑟 + √𝑢2𝑟 + 4𝜖V𝑙2 ,
𝑢𝑙 + √𝑢2𝑙 + 4𝜖V𝑟 = 𝑢𝑟 + √𝑢2𝑟 + 4𝜖V𝑙.

(37)

Notice that the second equations in (36) and (37) are
equivalent to

V𝑟 − V𝑙 = (𝑢𝑟 − √𝑢2𝑟 + 4𝜖V𝑙2𝜖 ) (𝑢𝑟 − 𝑢𝑙)
= (𝑢𝑙 − √𝑢2𝑙 + 4𝜖V𝑟2𝜖 ) (𝑢𝑟 − 𝑢𝑙) ,

(38)

V𝑟 − V𝑙 = (𝑢𝑟 + √𝑢2𝑟 + 4𝜖V𝑙2𝜖 ) (𝑢𝑟 − 𝑢𝑙)
= (𝑢𝑙 + √𝑢2𝑙 + 4𝜖V𝑟2𝜖 ) (𝑢𝑟 − 𝑢𝑙) ,

(39)

respectively.
In order to identity the admissible solutions, the discon-

tinuity (36) associating with 𝜆1 should satisfy

𝜎1 < 𝜆𝜖1 (𝑢𝑙, V𝑙) < 𝜆𝜖2 (𝑢𝑙, V𝑙) ,𝜆𝜖1 (𝑢𝑟, V𝑟) < 𝜎1 < 𝜆𝜖2 (𝑢𝑟, V𝑟) , (40)

while the discontinuity (37) associating with 𝜆2 should satisfy𝜆𝜖1 (𝑢𝑙, V𝑙) < 𝜎2 < 𝜆𝜖2 (𝑢𝑙, V𝑙) ,𝜆𝜖1 (𝑢𝑟, V𝑟) < 𝜆𝜖2 (𝑢𝑟, V𝑟) < 𝜎2. (41)

Then one can check that both inequalities (40) and (41) are
equivalent to

𝑢𝑟 < 𝑢𝑙. (42)

The discontinuity (36) with (42) is called a backward
shock and symbolized by ←󳨀𝑆 , and (37) with (42) is called a
forward shock and symbolized by 󳨀→𝑆 .

For a given state (𝑢𝑙, V𝑙), all possible states which can
connect to (𝑢𝑙, V𝑙) on the right by a backward shock must be
located on the curve←󳨀𝑆 (𝑢𝑙, V𝑙) : 𝑢𝑙 − √𝑢2𝑙 + 4𝜖V = 𝑢 − √𝑢2 + 4𝜖V𝑙, 𝑢 < 𝑢𝑙. (43)

For a given state (𝑢𝑟, V𝑟), all possible states which can connect
to (𝑢𝑟, V𝑟) on the left by a forward shock must be located on
the curve󳨀→𝑆 (𝑢𝑟, V𝑟) : 𝑢 + √𝑢2 + 4𝜖V𝑟 = 𝑢𝑟 + √𝑢2𝑟 + 4𝜖V, 𝑢 > 𝑢𝑟. (44)

One can check that the backward shock curve ←󳨀𝑆 (𝑢𝑙, V𝑙) is
monotonously decreasing, convex, and lim𝑢→−∞V = +∞,
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and the forward shock curve 󳨀→𝑆 (𝑢𝑟, V𝑟) is monotonously
increasing, convex, and lim𝑢→+∞V = +∞.

Denote←󳨀𝑊(𝑢𝑙, V𝑙) = ←󳨀𝑅(𝑢𝑙, V𝑙) ∪ ←󳨀𝑆 (𝑢𝑙, V𝑙) and 󳨀→𝑊(𝑢𝑟, V𝑟) =󳨀→𝑅(𝑢𝑟, V𝑟) ∪ 󳨀→𝑆 (𝑢𝑟, V𝑟). Then the curve ←󳨀𝑊(𝑢𝑙, V𝑙) is mono-
tonously decreasing, convex, and lim𝑢→−∞V = +∞; besides,
it has the 𝑢-axis as the asymptote as𝐾𝑙 > 0 and interacts with
the 𝑢-axis at 𝑢 = − 3√𝐾2

𝑙
/2 as 𝐾𝑙 ⩽ 0. The curve 󳨀→𝑊(𝑢𝑟, V𝑟)

is monotonously increasing, convex, and lim𝑢→+∞V = +∞;
besides, it has the 𝑢-axis as the asymptote as 𝑀𝑟 > 0 and
interacts with the 𝑢-axis at 𝑢 = 3√𝑀2𝑟 /2 as𝑀𝑟 ⩽ 0.

We can construct the solutions of the Riemann problem
by using the standard analysis method in the phase plane [26,
27]. Draw the backwardwave curve←󳨀𝑊(𝑢−, V−) passing the left
state (𝑢−, V−) and the forward wave curve 󳨀→𝑊(𝑢+, V+) passing
the right state (𝑢+, V+). According to the different locations
of the intersection point of ←󳨀𝑊(𝑢−, V−) and 󳨀→𝑊(𝑢+, V+), one
can construct the unique global Riemann solution with five
different structures as follows:

(i) a backward rarefaction wave + nonvacuum intermedi-
ate state + a forward rarefaction wave,

(ii) a backward rarefaction wave + nonvacuum interme-
diate state + a forward shock,

(iii) a backward shock + nonvacuum intermediate state +
a forward rarefaction wave,

(iv) a backward shock + nonvacuum intermediate state +
a forward shock,

(v) a backward rarefaction wave + vacuum intermediate
state (V ≡ 0) + a forward rarefaction wave.

The conclusion can be stated in the following theorem.

Theorem 6. The Riemann problem for (1) with initial data (2)
has a unique piecewise smooth solution consisting of waves of
constant states, vacuums, shocks, and rarefaction waves.

4. Limits of Solution of (1) and (2) for𝑢−>𝑢+, 𝑢−V−>𝑢+V+
In this section, we study the limits of solution of (1) and (2) as𝜖 → 0+ for the case 𝑢− > 𝑢+, 𝑢−V− > 𝑢+V+. We especially pay
more attention on the phenomenon of concentration and the
formation of delta-shocks in the limit.

Lemma 7. If 𝑢− > 𝑢+, 𝑢−V− > 𝑢+V+, then there exists 𝜖0 > 0
such that (𝑢+, V+) ∈ ←󳨀𝑆 󳨀→𝑆 (𝑢−, V−) for any 𝜖 < 𝜖0.
Proof. All states (𝑢, V) connected with (𝑢−, V−) by 𝑆1 or 𝑆2
satisfy

←󳨀𝑆 (𝑢−, V−) : V − V− = (𝑢 − √𝑢2 + 4𝜖V−2𝜖 ) (𝑢 − 𝑢−) ,
𝑢 < 𝑢−,

(45)

or

󳨀→𝑆 (𝑢−, V−) : V − V− = (𝑢 + √𝑢2 + 4𝜖V−2𝜖 ) (𝑢 − 𝑢−) ,
𝑢 < 𝑢−.

(46)

If V+ = V−, 𝜖0 may be taken as any real positive number. If
V+ ̸= V−, we have the conclusion by taking

𝜖0 = (𝑢+ − 𝑢−) (𝑢+V+ − 𝑢−V−)(V+ − V−)2 . (47)

The proof is finished.

For fixed 𝜖 < 𝜖0, let𝑈𝜖(𝜉) denote the two-shock Riemann
solution for (1) and (2):

𝑈𝜖 (𝜉) = (𝑢𝜖, V𝜖) (𝜉) = {{{{{{{{{
(𝑢−, V−) , 𝜉 < 𝜎𝜖1,(𝑢𝜖∗, V𝜖∗) , 𝜎𝜖1 < 𝜉 < 𝜎𝜖2,(𝑢+, V+) , 𝜉 > 𝜎𝜖2,

(48)

where (𝑢−, V−) and (𝑢𝜖∗, V𝜖∗) are connected by a shock←󳨀𝑆 with
speed 𝜎𝜖1, and (𝑢𝜖∗, V𝜖∗) and (𝑢+, V+) are connected by a shock󳨀→𝑆 with speed 𝜎𝜖2:

←󳨀𝑆 :
{{{{{{{{{{{{{{{
𝜎𝜖1 = 𝑢− − √𝑢2− + 4𝜖V𝜖∗2 ,
V𝜖∗ − V− = (𝑢− − √𝑢2− + 4𝜖V𝜖∗2𝜖 ) (𝑢𝜖∗ − 𝑢−) , 𝑢𝜖∗ < 𝑢−, V𝜖∗ > V−, (49)

󳨀→𝑆 :
{{{{{{{{{{{{{{{
𝜎𝜖2 = 𝑢+ + √𝑢2+ + 4𝜖V𝜖∗2 ,
V+ − V𝜖∗ = (𝑢+ + √𝑢2+ + 4𝜖V𝜖∗2𝜖 ) (𝑢+ − 𝑢𝜖∗) , 𝑢𝜖∗ > 𝑢+, V𝜖∗ > V+. (50)
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The following lemmas describe the limit behaviors of the
intermediate state (𝑢𝜖∗, V𝜖∗) and the speeds of two shocks as𝜖 → 0+.
Lemma 8. V𝜖∗ is monotonously decreasing with respect to 𝜖.
Proof. From (49) and (50), we have the equation with respect
to V𝜖∗

𝑢− − 𝑢+ = 𝑢+V+ − 𝑢−V−V𝜖∗
+ √𝑢2− + 4𝜖V𝜖∗ ⋅ (1 − V−

V𝜖∗
)

+ √𝑢2+ + 4𝜖V𝜖∗ ⋅ (1 − V+
V𝜖∗
) fl 𝐻(V𝜖∗) . (51)

For 𝜖1 > 𝜖2, assume V𝜖1∗ ⩾ V𝜖2∗ ; then we have 𝐻(V𝜖1∗ ) >𝐻(V𝜖2∗ ), which contradicts with 𝐻(V𝜖1∗ ) = 𝐻(V𝜖2∗ ) = 𝑢− − 𝑢+.
Therefore, for 𝜖1 > 𝜖2, we must have V𝜖1∗ < V𝜖2∗ , which gives the
conclusion. The proof is complete.

Lemma 9. 𝜖V𝜖∗ is monotonously increasing with respect to 𝜖.
Proof. For 𝜖1 > 𝜖2, assume 𝜖1V𝜖1∗ ⩽ 𝜖2V𝜖2∗ ; then we have𝐻(V𝜖1∗ ) < 𝐻(V𝜖2∗ ), which contradicts with 𝐻(V𝜖1∗ ) = 𝐻(V𝜖2∗ ) =𝑢−−𝑢+.Therefore, for 𝜖1 > 𝜖2, wemust have 𝜖1V𝜖1∗ > 𝜖2V𝜖2∗ .
Lemma 10. One has

lim
𝜖→0+

V𝜖∗ = {{{{{{{{{
𝑢−V−𝑢+ , for 𝑢− > 𝑢+ > 0, 𝑢−V− > 𝑢+V+,𝑢+V+𝑢− , for 0 > 𝑢− > 𝑢+, 𝑢−V− > 𝑢+V+,+∞, for 𝑢− ⩾ 0 ⩾ 𝑢+.

(52)

Proof. When 𝑢− > 𝑢+ > 0, 𝑢−V− > 𝑢+V+ or 0 > 𝑢− >𝑢+, 𝑢−V− > 𝑢+V+, assume lim𝜖→0+V
𝜖
∗ = +∞; then from (51),

we have

𝑢− − 𝑢+ = √𝑢2− + 4 lim
𝜖→0+

𝜖V𝜖∗ + √𝑢2+ + 4 lim
𝜖→0+

𝜖V𝜖∗, (53)

which is impossible. So when 𝑢− > 𝑢+ > 0, 𝑢−V− > 𝑢+V+ or0 > 𝑢− > 𝑢+, 𝑢−V− > 𝑢+V+, we have lim𝜖→0+V𝜖∗ = 𝐾 ̸= +∞.
Then from (51), we can deduce

𝐾 = 𝑢+V+ − 𝑢−V− − 󵄨󵄨󵄨󵄨𝑢−󵄨󵄨󵄨󵄨 V− − 󵄨󵄨󵄨󵄨𝑢+󵄨󵄨󵄨󵄨 V+𝑢− − 𝑢+ − 󵄨󵄨󵄨󵄨𝑢−󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢+󵄨󵄨󵄨󵄨 , (54)

which gives the desired conclusions. When 𝑢− ⩾ 0 ⩾ 𝑢+,
similarly, there must be lim𝜖→0+V

𝜖
∗ = +∞.

Lemma 11. One has
lim
𝜖→0+

𝜖V𝜖∗ = 0. (55)

Proof. Let lim𝜖→0+𝜖V𝜖∗ = 𝑀 < +∞. When 𝑢− > 𝑢+ >0, 𝑢−V− > 𝑢+V+ or 0 > 𝑢− > 𝑢+, 𝑢−V− > 𝑢+V+, in virtue
of Lemma 10,𝑀 = 0 is obvious. When 𝑢− ⩾ 0 ⩾ 𝑢+, from
(51), one has

𝑀(𝑢− − 𝑢+)2 = 0, (56)

when𝑀 = 0.

Lemma 12. One has

lim
𝜖→0+

𝑢𝜖∗ = {{{{{{{{{
𝑢+, for 𝑢− > 𝑢+ > 0, 𝑢−V− > 𝑢+V+,𝑢−, for 0 > 𝑢− > 𝑢+, 𝑢−V− > 𝑢+V+,0, for 𝑢− ⩾ 0 ⩾ 𝑢+.

(57)

Proof. From the second equation in (50), we have

𝑢𝜖∗ = 𝑢+ + 12 (𝑢+ − √𝑢2+ + 4𝜖V𝜖∗)(V+V𝜖∗ − 1) . (58)

Then the conclusions can be easily obtained by virtue of
Lemmas 10 and 11.

Lemma 13. One has
lim
𝜖→0+

(𝜎𝜖1, 𝜎𝜖2)
= {{{{{{{{{

(0, 𝑢+) , for 𝑢− > 𝑢+ > 0, 𝑢−V− > 𝑢+V+,(𝑢−, 0) , for 0 > 𝑢− > 𝑢+, 𝑢−V− > 𝑢+V+,(0, 0) , for 𝑢− ⩾ 0 ⩾ 𝑢+.
(59)

Proof. Taking

𝜎𝜖1 = 𝑢− − √𝑢2− + 4𝜖V𝜖∗2 ,
𝜎𝜖2 = 𝑢+ + √𝑢2+ + 4𝜖V𝜖∗2

(60)

and the Lemma 11 into account, one can easily get the
conclusions.

Let 𝑈0(𝜉) = lim𝜖→0+𝑈𝜖(𝜉). Then when 𝑢− > 𝑢+ >0, 𝑢−V− > 𝑢+V+,
𝑈0 (𝜉) = {{{{{{{{{

(𝑢−, V−) , 𝜉 < 𝜎1,(𝑢+, V∗) , 𝜎1 < 𝜉 < 𝜎2,(𝑢+, V+) , 𝜉 > 𝜎2,
(61)

where 𝜎1 = 0, 𝜎2 = 𝑢+ and V∗ = 𝑢−V−/𝑢+. When 0 > 𝑢− >𝑢+, 𝑢−V− > 𝑢+V+,
𝑈0 (𝜉) = {{{{{{{{{

(𝑢−, V−) , 𝜉 < 𝜎1,(𝑢−, V∗) , 𝜎1 < 𝜉 < 𝜎2,(𝑢+, V+) , 𝜉 > 𝜎2,
(62)

𝜎1 = 𝑢−, 𝜎2 = 0, and V∗ = 𝑢+V+/𝑢−. It can be seen that 𝑈0(𝜉)
coincides with the Riemann solution for (3) with the same
initial data.

For the case 𝑢− ⩾ 0 ⩾ 𝑢+, it has been shown that two
shocks will coincide at 𝜉 = 0 as 𝜖 → 0+. Furthermore, for the
component 𝑢𝜖(𝜉), it has been proven that

lim
𝜖→0+

𝑢𝜖 (𝜉) = {{{{{{{{{
𝑢−, 𝜉 < 0,0, 𝜉 = 0,𝑢+, 𝜉 > 0.

(63)
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For the component V𝜖(𝜉), we have proven that the intermedi-
ate state V𝜖∗ becomes infinity as 𝜖 → 0+. Next let us study in
more detail the limit behaviors of V𝜖(𝜉).
Lemma 14. One has

lim
𝜖→0+

(𝜎𝜖2 − 𝜎𝜖1) V𝜖∗ = 𝑢−V− − 𝑢+V+. (64)

Proof. With (49)–(51), it follows that

lim
𝜖→0+

(𝜎𝜖2 − 𝜎𝜖1) V𝜖∗ = lim
𝜖→0+

12 ⋅ ((𝑢+ − 𝑢−) V𝜖∗
+ (√𝑢2+ + 4𝜖V𝜖∗ + √𝑢2− + 4𝜖V𝜖∗) V𝜖∗) = lim

𝜖→0+

12
⋅ ((𝑢−V− − 𝑢+V+) + V+√𝑢2+ + 4𝜖V𝜖∗
+ V−√𝑢2− + 4𝜖V𝜖∗) = 𝑢−V− − 𝑢+V+.

(65)

The proof is finished.

Take𝜙(𝜉) ∈ 𝐶∞0 (−∞, +∞) such that𝜙(𝜉) ≡ 𝜙(0) for 𝜉 in a
neighborhoodΩ of 𝜉 = 0 (𝜙 is called a sloping test function).
Assume when 𝜖 < 𝑀0 it holds that 𝜎𝜖1 ∈ Ω and 𝜎𝜖2 ∈ Ω. It is
well known that solution (48) satisfies the weak formula

−∫+∞
−∞

V𝜖 (𝑢𝜖 − 𝜉) 𝜙󸀠𝑑𝜉 + ∫+∞
−∞

V𝜖𝜙𝑑𝜉 = 0. (66)

Since

∫+∞
−∞

V𝜖 (𝑢𝜖 − 𝜉) 𝜙󸀠𝑑𝜉
= (∫𝜎𝜖1
−∞
+∫+∞
𝜎𝜖
2

) V𝜖 (𝑢𝜖 − 𝜉) 𝜙󸀠𝑑𝜉, (67)

we have

lim
𝜖→0+

∫+∞
−∞

V𝜖 (𝑢𝜖 − 𝜉) 𝜙󸀠𝑑𝜉
= lim
𝜖→0+

∫𝜎𝜖1
−∞

V− (𝑢− − 𝜉) 𝜙󸀠𝑑𝜉
+ lim
𝜖→0+

∫+∞
𝜎𝜖
2

V+ (𝑢+ − 𝜉) 𝜙󸀠𝑑𝜉
= (𝑢−V− − 𝑢+V+) 𝜙 (0) + ∫+∞

−∞
𝐻(𝜉) 𝜙 𝑑𝜉,

(68)

where

𝐻(𝜉) = {{{
V−, 𝜉 < 0,
V+, 𝜉 > 0. (69)

Returning to (66), we get

lim
𝜖→0+

∫+∞
−∞
(V𝜖 − 𝐻 (𝜉)) 𝜙 𝑑𝜉 = (𝑢−V+ − 𝑢+V−) 𝜙 (0) (70)

for all sloping test functions 𝜙(𝜉) ∈ 𝐶∞0 (−∞, +∞).

For an arbitrary 𝜑(𝜉) ∈ 𝐶∞0 (−∞, +∞), we take a sloping
function 𝜙(𝜉) such that 𝜙(0) = 𝜑(0) and

max
𝜉∈(−∞,+∞)

󵄨󵄨󵄨󵄨𝜙 − 𝜑󵄨󵄨󵄨󵄨 < 𝜇. (71)

We have

lim
𝜖→0+

∫+∞
−∞
(V𝜖 − 𝐻 (𝜉)) 𝜑 𝑑𝜉

= lim
𝜖→0+

∫+∞
−∞
(V𝜖 − 𝐻 (𝜉)) 𝜙 𝑑𝜉

+ lim
𝜖→0+

∫+∞
−∞
(V𝜖 − 𝐻 (𝜉)) (𝜑 − 𝜙) 𝑑𝜉.

(72)

For the first limit on the right side, it follows that

lim
𝜖→0+

∫+∞
−∞
(V𝜖 − 𝐻 (𝜉)) 𝜙 𝑑𝜉 = (𝑢−V− − 𝑢+V+) 𝜙 (0)

= (𝑢−V− − 𝑢+V+) 𝜑 (0) . (73)

For the second limit on the right side, it follows that

∫+∞
−∞
(V𝜖 − 𝐻 (𝜉)) (𝜑 − 𝜙) 𝑑𝜉

= ∫𝜎𝜖2
𝜎𝜖
1

(V𝜖 − 𝐻 (𝜉)) (𝜑 − 𝜙) 𝑑𝜉
= ∫𝜎𝜖2
𝜎𝜖
1

V𝜖 (𝜑 − 𝜙) 𝑑𝜉 + ∫𝜎𝜖2
𝜎𝜖
1

𝐻(𝜉) (𝜑 − 𝜙) 𝑑𝜉,
(74)

which converges to 0 by sending 𝜇 → 0 and recalling
Lemma 14. Thus we have that

lim
𝜖→0+

∫+∞
−∞
(V𝜖 − 𝐻 (𝜉)) 𝜑 𝑑𝜉 = (𝑢−V+ − 𝑢+V−) 𝜑 (0) (75)

for all test functions 𝜑(𝜉) ∈ 𝐶∞0 (−∞, +∞).
Let 𝜓(𝑥, 𝑡) ∈ 𝐶∞0 ((−∞, +∞) × [0, +∞)) be a smooth test

function, and let 𝜓̃(𝜉, 𝑡) fl 𝜓(𝜉𝑡, 𝑡). Then it follows that

lim
𝜖→0+

∫+∞
0
∫+∞
−∞

V𝜖 (𝑥𝑡 )𝜓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
= lim
𝜖→0+

∫+∞
0
∫+∞
−∞

V𝜖 (𝜉) 𝜓 (𝜉𝑡, 𝑡) 𝑑 (𝜉𝑡) 𝑑𝑡
= lim
𝜖→0+

∫+∞
0
𝑡 (∫+∞
−∞

V𝜖 (𝜉) 𝜓̃ (𝜉, 𝑡) 𝑑𝜉) 𝑑𝑡
(76)

and from (75)

lim
𝜖→0+

∫+∞
−∞

V𝜖 (𝜉) 𝜓̃ (𝜉, 𝑡) 𝑑𝜉
= ∫+∞
−∞
𝐻(𝜉) 𝜓̃ (𝜉, 𝑡) 𝑑𝜉 + (𝑢−V− − 𝑢+V+) 𝜓̃ (0, 𝑡)

= 𝑡−1 ∫+∞
−∞
𝐻(𝑥)𝜓 (𝑥, 𝑡) 𝑑𝑥

+ (𝑢−V− − 𝑢+V+) 𝜓 (0, 𝑡) .
(77)
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Combining the two relations above yields

lim
𝜖→0+

∫+∞
0
∫+∞
−∞

V𝜖 (𝑥𝑡 )𝜓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
= ∫+∞
0
∫+∞
−∞
𝐻(𝑥)𝜓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫+∞
0
(𝑢−V− − 𝑢+V+) 𝑡𝜓 (0, 𝑡) 𝑑𝑡.

(78)

The last term, by the definition,

∫+∞
0
(𝑢−V− − 𝑢+V+) 𝑡𝜓 (0, 𝑡) 𝑑𝑡

= ⟨𝑤 (𝑡) 𝛿𝑥=0, 𝜓 (𝑥, 𝑡)⟩
(79)

with

𝑤 (𝑡) = (𝑢−V− − 𝑢+V+) 𝑡. (80)

Thus we have the following result.

Theorem 15. Let 𝑢− ⩾ 0 ⩾ 𝑢+, and (𝑢𝜖(𝑥, 𝑡), V𝜖(𝑥, 𝑡)) is the
two-shock solution of (1) and (2). Then (𝑢𝜖(𝑥, 𝑡), V𝜖(𝑥, 𝑡)) con-
verges in the sense of distributions. Denote the limit function by𝑈0(𝑥, 𝑡); then

𝑈0 (𝑥, 𝑡) =
{{{{{{{{{{{

(𝑢−, V−) , 𝑥 < 0,
(0, 𝑤 (𝑡) 𝛿 (𝑥)) , 𝑥 = 0,
(𝑢+, V+) , 𝑥 > 0,

(81)

where 𝑤(𝑡) = (𝑢−V− − 𝑢+V+)𝑡, which is just the delta-shock
Riemann solution of (3).

5. Limits of Solutions of (1) and (2) for𝑢+ ⩾ 0 ⩾ 𝑢−
In this section, we study the limits of solutions of (1) and (2) as𝜖 → 0+ for the case 𝑢+ ⩾ 0 ⩾ 𝑢− and show the phenomenon
of cavitation and the formation of vacuum states in the limit.

Lemma 16. If 𝑢+ ⩾ 0 ⩾ 𝑢−, then there exists 𝜖1 > 0 such that(𝑢+, V+) ∈ ←󳨀𝑅 󳨀→𝑅(𝑢−, V−) for any 𝜖 < 𝜖1.

Proof. If V+ = V−, 𝜖1may be taken as any real positive number.
If V+ > V−, 𝜖1 may be taken as the value of 𝜖 satisfying
√√𝑢2+ + 4𝜖V+ + 𝑢+ (√𝑢2+ + 4𝜖V+ − 2𝑢+)
= √√𝑢2− + 4𝜖V− + 𝑢− (√𝑢2− + 4𝜖V− − 2𝑢−) ,

𝑢+ > 𝑢−.
(82)

If V+ < V−, 𝜖1 may be taken as the value of 𝜖 satisfying
√√𝑢2+ + 4𝜖V+ − 𝑢+ (√𝑢2+ + 4𝜖V+ + 2𝑢+)
= √√𝑢2− + 4𝜖V− − 𝑢− (√𝑢2− + 4𝜖V− + 2𝑢−) ,

𝑢+ > 𝑢−.
(83)

The proof is complete.

Let 𝜖− = (3𝑢2−)/(4V−) and 𝜖+ = (3𝑢2+)/(4V+), which mean√𝑢2− + 4𝜖−V− + 2𝑢− = 0 and √𝑢2+ + 4𝜖+V+ − 2𝑢+ = 0. Denote𝜖2 = min{𝜖−, 𝜖+}.
When 𝜖1 > 𝜖 > 𝜖2, the Riemann solution for (1) and

(2) contains two rarefaction waves with a nonvacuum inter-
mediate state. This implies that, for a larger 𝜖, no vacuum
occurs in the solution.

However, when 𝜖 decreases so that 𝜖 ⩽ 𝜖1, the Riemann
solution becomes two rarefaction waves with a vacuum
intermediate state as follows:𝑈𝜖 (𝜉) = (𝑢𝜖, V𝜖) (𝜉)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(𝑢−, V−) , −∞ < 𝜉 ⩽ 𝜆1 (𝑢−, V−) ,←󳨀𝑅, 𝜆1 (𝑢−, V−) ⩽ 𝜉 ⩽ 𝜆1 (𝑢𝜖∗1, 0) ,
(𝑢𝜖∗1, 0) , 𝜆1 (𝑢𝜖∗1, 0) ⩽ 𝜉 < 0,
(𝑢𝜖∗2, 0) , 0 < 𝜉 ⩽ 𝜆2 (𝑢𝜖∗2, 0) ,󳨀→𝑅, 𝜆2 (𝑢𝜖∗2, 0) ⩽ 𝜉 ⩽ 𝜆2 (𝑢+, V+) ,
(𝑢+, V+) , 𝜆2 (𝑢+, V+) ⩽ 𝜉 < +∞,

(84)

where

←󳨀𝑅 : {{{{{{{{{{{
𝜉 = 𝜆𝜖1 (𝑢𝜖, V𝜖) = 𝑢𝜖 − √(𝑢𝜖)2 + 4𝜖V𝜖2 ,
√√(𝑢𝜖)2 + 4𝜖V𝜖 − 𝑢𝜖 (√(𝑢𝜖)2 + 4𝜖V𝜖 + 2𝑢𝜖) = √√𝑢2− + 4𝜖V− − 𝑢− (√𝑢2− + 4𝜖V− + 2𝑢−)

(85)
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with V− ⩾ V𝜖 ⩾ 0, 0 > 𝑢𝜖∗1 ⩾ 𝑢𝜖 ⩾ 𝑢− and

󳨀→𝑅 : {{{{{{{{{
𝜉 = 𝜆𝜖2 (𝑢𝜖, V𝜖) = 𝑢 + √(𝑢𝜖)2 + 4𝜖V𝜖2 ,
√√(𝑢𝜖)2 + 4𝜖V𝜖 + 𝑢𝜖 (√(𝑢𝜖)2 + 4𝜖V𝜖 − 2𝑢𝜖) = √√𝑢2+ + 4𝜖V+ + 𝑢+ (√𝑢2+ + 4𝜖V+ − 2𝑢+)

(86)

with V+ ⩾ V𝜖 ⩾ 0, 𝑢+ ⩾ 𝑢𝜖 ⩾ 𝑢𝜖∗2 > 0. The intermediate states(𝑢𝜖∗1, 0) and (𝑢𝜖∗2, 0) satisfy
𝑢𝜖∗1√−2𝑢𝜖∗1
= √√𝑢2− + 4𝜖V− − 𝑢− (√𝑢2− + 4𝜖V− + 2𝑢−) ,

− 𝑢𝜖∗2√2𝑢𝜖∗2
= √√𝑢2+ + 4𝜖V+ + 𝑢+ (√𝑢2+ + 4𝜖V+ − 2𝑢+) .

(87)

When 𝜖 → 0+, from (87), we have

lim
𝜖→0+

𝑢𝜖∗1 = 𝑢−,
lim
𝜖→0+

𝑢𝜖∗2 = 𝑢+; (88)

then it follows that

lim
𝜖→0+

𝜆𝜖1 (𝑢−, V−) = lim
𝜖→0+

𝜆𝜖1 (𝑢𝜖∗1, 0) = 𝑢−,
lim
𝜖→0+

𝜆𝜖2 (𝑢+, V+) = lim
𝜖→0+

𝜆𝜖2 (𝑢𝜖∗2, 0) = 𝑢+. (89)

In summary, as 𝜖 → 0+, the limit function 𝑈0(𝜉) = (𝑢, V)(𝜉)
of 𝑈𝜖(𝜉) is

𝑈0 (𝜉) =
{{{{{{{{{{{{{{{

(𝑢−, V−) , −∞ < 𝜉 ⩽ 𝑢−,(𝑢−, 0) , 𝑢− ⩽ 𝜉 < 0,(𝑢+, 0) , 0 < 𝜉 ⩽ 𝑢+,(𝑢+, V+) , 𝑢+ ⩽ 𝜉 < +∞,
(90)

which is just a solution of (3) and (2) containing a vacuum
state that fills up the region formed by the two contact
discontinuities 𝜉 = 𝑢±.

In Sections 4 and 5, we have proven that when 𝑢− >𝑢+, 𝑢−V− > 𝑢+V+ or 𝑢+ ⩾ 0 ⩾ 𝑢−, the limits of solutions
of the Riemann problem for (1) just are the solutions of the
Riemann problem for (3) with the same initial data.The same
conclusions are true for the rest of the cases, and we omit the
discussions.

6. Numerical Simulations

To understand the formation processes of delta-shocks and
vacuum states in the Riemann solutions of (1) and (2) as the

flux 𝜖V vanishes, we present some representative numerical
results. To discretize the system, we employ the Nessyahu-
Tadmor scheme [28] with 500 cells and CFL = 0.475.

To simulate the formation process of delta-shocks, we
take the initial data as follows:

(𝑢, V) (𝑥, 𝑡 = 0) = {{{
(1, 1.6) , 𝑥 < 0,(−1, 1) , 𝑥 > 0. (91)

The numerical simulations for different choices of 𝜖 are
presented in Figures 1–4.

One can observe clearly from these numerical results that,
when 𝜖 decreases, the location of the two shocks becomes
closer and closer, and the density of the intermediate state
increases dramatically, while the velocity is closer to a step
function. The numerical simulations are in complete agree-
ment with the theoretical analysis in Section 4.

To simulate the formation process of vacuum states, we
take the initial data as follows:

(𝑢, V) (𝑥, 𝑡 = 0) = {{{
(−0.8, 1.2) , 𝑥 < 0,(0.5, 1) , 𝑥 > 0. (92)

The numerical simulations for different choices of 𝜖 are
presented in Figures 5–8.

One can see that when 𝜖 = 0.6, the vacuum does not
appear; when 𝜖 = 0.1, the vacuum appears; when 𝜖 decreases
to zero, the two rarefaction waves become two contact dis-
continuities. The numerical simulations are also in complete
agreement with the theoretical analysis in Section 5.

7. Conclusions and Discussions

In the paper [2], Toth and Valko proposed the model of
conservation laws

V𝑡 + (𝑢V)𝑥 = 0,𝑢𝑡 + (𝛾𝑢2 + 𝜖V)𝑥 = 0, (93)

where 𝛾 and 𝜖 > 0 are constants. It can describe a deposition/
domain growth mechanism. When the term 𝜖V vanishes,
system (93) becomes

V𝑡 + (𝑢V)𝑥 = 0,𝑢𝑡 + (𝛾𝑢2)𝑥 = 0. (94)

This is a typical model admitting delta-shocks.



Abstract and Applied Analysis 11

−1.5

−1

−0.5

0

0.5

1

1.5

u

−1 −0.5 0 0.5 1 1.5−1.5

x

−1 −0.5 0 0.5 1 1.5−1.5

x

0.5

1

1.5

2

2.5

3

3.5

4

4.5

v

Figure 1: Velocity and density for 𝜖 = 0.2 at 𝑡 = 0.4.
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Figure 2: Velocity and density for 𝜖 = 0.08 at 𝑡 = 0.4.
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Figure 3: Velocity and density for 𝜖 = 0.006 at 𝑡 = 0.4.
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Figure 4: Velocity and density for 𝜖 = 0.0001 at 𝑡 = 0.4.
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Figure 5: Velocity and density for 𝜖 = 0.6 at 𝑡 = 0.3.
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Figure 7: Velocity and density for 𝜖 = 0.03 at 𝑡 = 0.3.
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Figure 8: Velocity and density for 𝜖 = 0.001 at 𝑡 = 0.3.
In this paper, we consider (93) for the case 𝛾 = 0, that is,

model (1), which arose in the context of the true self-repelling
motion constructed by Toth and Werner [1]. Firstly, we solve
the Riemann problem, which is very useful for the under-
standing of equations because all properties, such as shocks
and rarefaction waves, appear as characteristics in the solu-
tion. By the analysis method in phase plane, we obtain five
kinds of structures of solutions containing shock(s) and/or
rarefaction wave(s). Secondly, we consider the flux-function
limits of solutions of system (1). We prove that the Riemann
solutions of system (1) just converge to the Riemann solutions
of the limit system (3). We especially identify and analyze the
formation of delta-shocks and vacuum states in the limit.

For (93), the parameter 𝛾 is of crucial importance:
different values of 𝛾 lead to completely different behaviors.
One can carry out the investigation similar to that in this
paper for some other cases, such as 𝛾 = 1 (Leroux equation)
and 𝛾 = 1/2 (shallow water equation).
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