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We consider convergence acceleration of the modified Fourier expansions by rational trigonometric corrections which lead to
modified-trigonometric-rational approximations. The rational corrections contain some unknown parameters and determination
of their optimal values for improved pointwise convergence is the main goal of this paper. The goal was accomplished by deriving
the exact constants of the asymptotic errors of the approximations with further elimination of the corresponding main terms by
appropriate selection of those parameters. Numerical experiments outline the convergence improvement of the optimal rational
approximations compared to the expansions by the modified Fourier basis.

1. Introduction

Themodified Fourier basis

H = {cos𝜋𝑛𝑥 : 𝑛 ∈ Z+} ∪ {sin𝜋(𝑛 − 12) 𝑥 : 𝑛 ∈ N} ,
𝑥 ∈ [−1, 1]

(1)

was originally proposed by Krein [1] and thoroughly investi-
gated in a series of papers [2–10].

Let𝑀𝑁(𝑓, 𝑥) be the truncated modified Fourier series

𝑀𝑁 (𝑓, 𝑥)
= 12𝑓𝑐0 +

𝑁∑
𝑛=1

[𝑓𝑐𝑛 cos𝜋𝑛𝑥 + 𝑓𝑠𝑛 sin𝜋(𝑛 − 12) 𝑥] ,
(2)

where

𝑓𝑐𝑛 = ∫1
−1

𝑓 (𝑥) cos𝜋𝑛𝑥 𝑑𝑥,
𝑓𝑠𝑛 = ∫1

−1
𝑓 (𝑥) sin𝜋(𝑛 − 12) 𝑥 𝑑𝑥.

(3)

Obviously, for even functions on [−1, 1], expansions by the
modified Fourier basis coincide with the expansions by the
classical Fourier basis

Hclass = {cos𝜋𝑛𝑥 : 𝑛 ∈ Z+} ∪ {sin𝜋𝑛𝑥 : 𝑛 ∈ N} ,
𝑥 ∈ [−1, 1] . (4)

Moreover, themodified Fourier basis can be derived from the
other classical basisH∗ on [0, 1]

H
∗ = {cos𝜋𝑛𝑥 : 𝑛 ∈ Z+} , 𝑥 ∈ [0, 1] (5)

by means of a change of variable.
The first results concerning the convergence of the expan-

sions by the modified Fourier basis appeared in the works
[2, 8–10]. We present two theorems for further comparisons.

Theorem 1 (see [10]). Assume 𝑓 ∈ 𝐶2[−1, 1] and 𝑓󸀠󸀠 ∈𝐵𝑉[−1, 1]. If |𝑥| < 1, then
𝑓 (𝑥) −𝑀𝑁 (𝑓, 𝑥) = 𝑂 (𝑁−2) , 𝑁 󳨀→ ∞. (6)

Otherwise,

𝑓 (±1) −𝑀𝑁 (𝑓, ±1) = 𝑂 (𝑁−1) , 𝑁 󳨀→ ∞. (7)
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2 Abstract and Applied Analysis

Under some additional requirements, the convergence
rate is faster.

Theorem 2 (see [2, 10]). Assume 𝑓 ∈ 𝐶2𝑞+2(−1, 1), 𝑓(2𝑞+2) ∈𝐵𝑉[−1, 1], 𝑞 ≥ 1, and 𝑓 obeys the first 𝑞 derivative conditions:
𝑓(2𝑟+1) (±1) = 0, 𝑟 = 0, . . . , 𝑞 − 1. (8)

If |𝑥| < 1, then
𝑓 (𝑥) −𝑀𝑁 (𝑓, 𝑥) = 𝑂 (𝑁−2𝑞−2) , 𝑁 󳨀→ ∞. (9)

Otherwise,

𝑓 (±1) −𝑀𝑁 (𝑓, ±1) = 𝑂 (𝑁−2𝑞−1) , 𝑁 󳨀→ ∞. (10)

Overall, we see better convergence rates compared to the
classical Fourier expansions [11]. This can be explained by
faster decay of coefficients 𝑓𝑠𝑛 :

𝑓𝑠𝑛 = 𝑂 (𝑛−2) , 𝑛 󳨀→ ∞, (11)

compared to the classical ones when 𝑓 is smooth enough
but nonperiodic on [−1, 1]. Estimate (11) can be explained
by a nonperiodicity of the basis functions sin𝜋(𝑛 − 1/2)𝑥 on[−1, 1].

Convergence acceleration of the modified Fourier expan-
sions by means of rational corrections was considered in
[6]. Here, we continue those investigations. More specifically,
consider a finite sequence of real numbers 𝜃 = {𝜃𝑘}𝑝𝑘=1, 𝑝 ≥ 1
and, by Δ𝑘𝑛(𝜃, 𝑓), 𝑓 = {𝑓𝑛} denote the following generalized
finite differences:

Δ0𝑛 (𝜃, 𝑓) = 𝑓𝑛,
Δ𝑘𝑛 (𝜃, 𝑓) = Δ𝑘−1𝑛 (𝜃, 𝑓) + 𝜃𝑘Δ𝑘−1𝑛−1 (𝜃, 𝑓) , 𝑘 ≥ 1. (12)

By Δ𝑘𝑛(𝑓), we denote the classical finite differences which
correspond to generalized differences Δ𝑘𝑛(𝜃, 𝑓) with 𝜃 ≡ 1. It
is easy to verify that

Δ𝑘𝑛 (𝑓) =
𝑘∑
ℓ=0

(𝑘ℓ)𝑓𝑛−ℓ. (13)

Let

𝑅𝑁 (𝑓, 𝑥) = 𝑓 (𝑥) −𝑀𝑁 (𝑓, 𝑥)
= 𝑅𝑐𝑁 (𝑓, 𝑥) + 𝑅𝑠𝑁 (𝑓, 𝑥) , (14)

where

𝑅𝑐𝑁 (𝑓, 𝑥) =
∞∑
𝑛=𝑁+1

𝑓𝑐𝑛 cos𝜋𝑛𝑥,

𝑅𝑠𝑁 (𝑓, 𝑥) =
∞∑
𝑛=𝑁+1

𝑓𝑠𝑛 sin𝜋(𝑛 − 12) 𝑥.
(15)

Consider two sequences of real numbers 𝜃𝑐 = {𝜃𝑐𝑘}𝑝𝑘=1 and𝜃𝑠 = {𝜃𝑠𝑘}𝑝𝑘=1. Let 𝑓𝑠 = {𝑓𝑠𝑛}∞𝑛=1 and 𝑓𝑐 = {𝑓𝑐𝑛}∞𝑛=0. Let 𝜇𝑗(𝑘, 𝜃)
be defined by the following identities:

𝑘∏
𝑗=1

(1 + 𝜃𝑗𝑥) = 𝑘∑
𝑗=0

𝜇𝑗 (𝑘, 𝜃) 𝑥𝑗, 𝑘 = 1, . . . , 𝑝. (16)

By means of sequential Abel transformations (see details
in [6]), we derive the following expansions of errors (15):

𝑅𝑐𝑁 (𝑓, 𝑥) = − 𝑝∑
𝑘=1

𝜃𝑐𝑘Δ𝑘−1𝑁 (𝜃𝑐, 𝑓𝑐)
∏𝑘𝑟=1 (1 + 2𝜃𝑐𝑟 cos𝜋𝑥 + (𝜃𝑐𝑟)2)

⋅ 𝑘∑
𝑗=0

𝜇𝑗 (𝑘, 𝜃𝑐) cos𝜋 (𝑁 + 1 − 𝑗) 𝑥 + 𝑅𝑐𝑁,𝑝 (𝑓, 𝜃𝑐, 𝑥) ,

𝑅𝑠𝑁 (𝑓, 𝑥) = − 𝑝∑
𝑘=1

𝜃𝑠𝑘Δ𝑘−1𝑁 (𝜃𝑠, 𝑓𝑠)
∏𝑘𝑟=1 (1 + 2𝜃𝑠𝑟 cos𝜋𝑥 + (𝜃𝑠𝑟)2)

⋅ 𝑘∑
𝑗=0

𝜇𝑗 (𝑘, 𝜃𝑠) sin𝜋(𝑁 + 12 − 𝑗) 𝑥
+ 𝑅𝑠𝑁,𝑝 (𝑓, 𝜃𝑠, 𝑥) ,

(17)

where
𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥)

= 1
2∏𝑝
𝑘=1

(1 + 𝜃𝑘𝑒𝑖𝜋𝑥)
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑐) 𝑒𝑖𝜋𝑛𝑥

+ 1
2∏𝑝
𝑘=1

(1 + 𝜃𝑘𝑒−𝑖𝜋𝑥)
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑐) 𝑒−𝑖𝜋𝑛𝑥,
(18)

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, 𝑥)
= 𝑒−𝑖𝜋𝑥/2

2𝑖∏𝑝
𝑘=1

(1 + 𝜃𝑘𝑒𝑖𝜋𝑥)
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑠) 𝑒𝑖𝜋𝑛𝑥

− 𝑒𝑖𝜋𝑥/2
2𝑖∏𝑝
𝑘=1

(1 + 𝜃𝑘𝑒−𝑖𝜋𝑥)
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑠) 𝑒−𝑖𝜋𝑛𝑥.
(19)

These expansions lead to the followingmodified-trigonomet-
ric-rational (MTR-) approximations:

𝑀𝑁,𝑝 (𝑓, 𝜃c, 𝜃𝑠, 𝑥) = 𝑀𝑁 (𝑓, 𝑥)
− 𝑝∑
𝑘=1

𝜃𝑐𝑘Δ𝑘−1𝑁 (𝜃𝑐, 𝑓𝑐)
∏𝑘𝑟=1 (1 + 2𝜃𝑐𝑟 cos𝜋𝑥 + (𝜃𝑐𝑟)2)

𝑘∑
𝑗=0

𝜇𝑗 (𝑘, 𝜃𝑐)
⋅ cos𝜋 (𝑁 + 1 − 𝑗) 𝑥
− 𝑝∑
𝑘=1

𝜃𝑠𝑘Δ𝑘−1𝑁 (𝜃𝑠, 𝑓𝑠)
∏𝑘𝑟=1 (1 + 2𝜃𝑠𝑟 cos𝜋𝑥 + (𝜃𝑠𝑟)2)

𝑘∑
𝑗=0

𝜇𝑗 (𝑘, 𝜃𝑠)

⋅ sin𝜋(𝑁 + 12 − 𝑗) 𝑥,

(20)
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with the error

𝑅𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥) = 𝑓 (𝑥) −𝑀𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥)
= 𝑅𝑐𝑁,𝑝 (𝑓, 𝜃𝑐, 𝑥) + 𝑅𝑠𝑁,𝑝 (𝑓, 𝜃𝑠, 𝑥) . (21)

A crucial step for realization of the rational approxima-
tions is determination of parameters 𝜃𝑐 and 𝜃𝑠. Different
approaches are known for solution of this problem (see [12–
19]). In general, appropriate determination of these parame-
ters leads to rational approximations with improved accuracy
compared to the classical ones in case of smooth 𝑓. However,
the rational approximations are essentially nonlinear in the
sense that

𝑀𝑁,𝑝 (𝑓 + 𝑔, 𝜃𝑐, 𝜃𝑠, 𝑥)
̸= 𝑀𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥) + 𝑀𝑁,𝑝 (𝑔, 𝜃𝑐, 𝜃𝑠, 𝑥) (22)

as for each approximation we need to determine its own 𝜃𝑐
and 𝜃𝑠 vectors.

In [6], those parameters were determined from the fol-
lowing systems of equations:

Δ𝑝𝑛 (𝜃𝑐, 𝑓𝑐) = 0, 𝑛 = 𝑁,𝑁 − 1, . . . , 𝑁 − 𝑝 + 1,
Δ𝑝𝑛 (𝜃𝑠, 𝑓𝑠) = 0, 𝑛 = 𝑁,𝑁 − 1, . . . , 𝑁 − 𝑝 + 1, (23)

which led to the Fourier-Pade type approximations [12] with
better convergence for smooth functions (see [6]) compared
to the expansions by the modified Fourier basis. It is rather
complex approach as parameters 𝜃𝑐 and 𝜃𝑠 depend on𝑁 and
systems (23) must be solved for each𝑁.

In this paper, assuming that 𝑓 is smooth on [−1, 1], we
consider simpler alternative approach, where 𝜃𝑠 and 𝜃𝑐 are
determined as follows [14, 16, 19]:

𝜃𝑐𝑘 = 1 − 𝜏𝑐𝑘𝑁,
𝜃𝑠𝑘 = 1 − 𝜏𝑠𝑘𝑁,

𝜏𝑐𝑘 ̸= 0, 𝜏𝑠𝑘 ̸= 0, 𝑘 = 1, . . . , 𝑝,
(24)

with 𝜏𝑐 = {𝜏𝑐1, . . . , 𝜏𝑐𝑝} and 𝜏𝑠 = {𝜏𝑠1, . . . , 𝜏𝑠𝑝} independent
of 𝑁. Actually, in this approach, we take into consideration
only the first two terms of the asymptotic expansions of 𝜃𝑘 =𝜃𝑘(𝑁) in terms of 1/𝑁. Although parameters 𝜃𝑐 and 𝜃𝑠 in (24)
depend on𝑁, we need only to determine 𝜏𝑐 and 𝜏𝑠 which are
independent of𝑁. Hence, this approach is less complex than
the modified Fourier-Pade approximations.

The main results of this paper are exact constants of the
main terms of asymptotic errors and optimal parameters for
improved pointwise convergence of rational approximations.
First, we derive the exact estimates for the main terms of
asymptotic errors without specifying parameters 𝜏𝑐 and 𝜏𝑠.
Second, we determine the optimal values of parameters 𝜏𝑐
and 𝜏𝑠 which vanish the main terms and lead to approxima-
tions with substantially better pointwise convergence rates.
We found that optimal values of parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘,

𝑘 = 1, . . . , 𝑝, are the roots of some polynomials depending on𝑝 and 𝑞, where 𝑞 indicates the number of zero derivatives in
(8). Moreover, the choice of optimal parameters depends on
the parity of 𝑝 and also on the location of 𝑥, whether |𝑥| < 1
or 𝑥 = ±1.

For example, when 𝑝 is odd and |𝑥| < 1, the roots of the
generalized Laguerre polynomial 𝐿(2𝑞+1)𝑝 (𝑥) (see Appendix A)
could be used for 𝜏𝑐 and 𝜏𝑠. In this case, the convergence rate
of the MTR-approximations is 𝑂(𝑁−2𝑞−𝑝−[(𝑝+1)/2]−2) as 𝑁 →∞. It means better convergence compared to the expansions
by the modified Fourier basis with improvement by factor𝑂(𝑁𝑝+[(𝑝+1)/2]). When 𝑝 is odd and 𝑥 = ±1, the roots of the
generalized Laguerre polynomial 𝐿(2𝑞)𝑝 (𝑥) could be used. In
this case, the convergence rate is 𝑂(𝑁−2𝑞−[(𝑝+1)/2]−1) with the
improvement by factor 𝑂(𝑁[(𝑝+1)/2]). The problem that we
encountered is impossibility to get simultaneous optimality
on |𝑥| < 1 and at 𝑥 = ±1. One must decide whether to
use parameters that provide the minimal error on [−1, 1],
but with worse accuracy on |𝑥| < 1, or work with optimal
parameters on |𝑥| < 1 with worse accuracy at 𝑥 = ±1. We
expose similar observations for even values of 𝑝.

It is important that the values of parameters 𝜏𝑐 and 𝜏𝑠
depend only on 𝑝 and 𝑞 and are independent of 𝑓. It means
that if functions𝑓, 𝑔, and𝑓+𝑔 have enough smoothness and
obey the same derivative conditions, the optimal approach
leads to linear rational approximations in the sense that

𝑀𝑁,𝑝 (𝑓 + 𝑔, 𝜃𝑐, 𝜃𝑠, 𝑥)
= 𝑀𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥) + 𝑀𝑁,𝑝 (𝑔, 𝜃𝑐, 𝜃𝑠, 𝑥) (25)

with the same parameters 𝜃𝑐 and 𝜃𝑠 for all included functions.
The paper is organized as follows. Section 2 presents

some preliminary lemmas. Section 3 explores the pointwise
convergence of the MTR-approximations away from the
endpoints when |𝑥| < 1. Section 4 considers the pointwise
convergence of the MTR-approximations when 𝑥 = ±1. In
these sections, we show also the results of numerical exper-
iments which confirm and explain the theoretical findings.
Section 5 presents some concluding remarks. Appendix A
recalls some results concerning the Laguerre polynomials and
Appendix B proves some combinatorial identities that we
used in the proofs of lemmas and theorems.

2. Preliminaries

Throughout the paper, we assume that parameters 𝜃𝑘, 𝑘 =1, . . . , 𝑝 are defined by (see (24))

𝜃𝑘 = 1 − 𝜏𝑘𝑁, 𝜏𝑘 ̸= 0, 𝑘 = 1, . . . , 𝑝. (26)

Let 𝜏 = {𝜏1, . . . , 𝜏𝑝} and let coefficients 𝛾𝑘(𝜏) be defined by the
following identity:

𝑝∏
𝑘=1

(1 + 𝜏𝑘𝑥) =
𝑝∑
𝑘=0

𝛾𝑘 (𝜏) 𝑥𝑘. (27)
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For 𝑓 ∈ 𝐶2𝑞+1[−1, 1], 𝑞 ≥ 0, we put
𝐴2𝑘+1 (𝑓) = (𝑓(2𝑘+1) (1) − 𝑓(2𝑘+1) (−1)) (−1)𝑘 ,

𝑘 = 0, . . . , 𝑞,
𝐵2𝑘+1 (𝑓) = (𝑓(2𝑘+1) (1) + 𝑓(2𝑘+1) (−1)) (−1)𝑘 ,

𝑘 = 0, . . . , 𝑞.
(28)

The following estimates can be simply obtained by means
of integration by parts of the integrals in (3).

Lemma 3. Assume 𝑓 ∈ 𝐶2𝑚+1[−1, 1], 𝑚 ≥ 0, and 𝑓(2𝑚+1) ∈𝐵𝑉[−1, 1].Then, the following asymptotic expansions are valid:

𝑓𝑐𝑛 = (−1)𝑛 𝑚∑
𝑘=0

𝐴2𝑘+1 (𝑓)(𝜋𝑛)2𝑘+2 + 𝑜 (𝑛−2𝑚−2) , 𝑛 󳨀→ ∞,

𝑓𝑠𝑛 = (−1)𝑛+1 𝑚∑
𝑘=0

𝐵2𝑘+1 (𝑓)(𝜋 (𝑛 − 1/2))2𝑘+2 + 𝑜 (𝑛−2𝑚−2) ,
𝑛 󳨀→ ∞.

(29)

Lemma 4. Assume 𝑓 ∈ 𝐶2𝑚+2[−1, 1], 𝑚 ≥ 0, and 𝑓(2𝑚+2) ∈𝐵𝑉[−1, 1].Then, the following asymptotic expansions are valid:

𝑓𝑐𝑛 = (−1)𝑛 𝑚∑
𝑘=0

𝐴2𝑘+1 (𝑓)(𝜋𝑛)2𝑘+2 + 𝑜 (𝑛−2𝑚−3) , 𝑛 󳨀→ ∞,

𝑓𝑠𝑛 = (−1)𝑛+1 𝑚∑
𝑘=0

𝐵2𝑘+1 (𝑓)(𝜋 (𝑛 − 1/2))2𝑘+2 + 𝑜 (𝑛−2𝑚−3) ,
𝑛 󳨀→ ∞.

(30)

Next lemma unveils the asymptotic expansions ofΔ𝑤(Δ̂𝑝(𝜃, 𝑓𝑐)) and Δ𝑤(Δ̂𝑝(𝜃, 𝑓𝑠)), where
Δ̂𝑝 (𝜃, 𝑓) = {Δ𝑝𝑛 (𝜃, 𝑓)}𝑛 . (31)

Lemma 5. Assume 𝑓 ∈ 𝐶2𝑞+𝑝+𝑟+1[−1, 1], 𝑓(2𝑞+𝑝+𝑟+1) ∈𝐵𝑉[−1, 1], 𝑞 ≥ 0, 𝑟 ≥ 0, 𝑝 ≥ 1, and
𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (32)

Let 𝜃𝑘, 𝑘 = 1, . . . , 𝑝, be defined by (26). Then, the following
estimates hold for 𝑛 > 𝑁 as𝑁 → ∞:

Δ𝑤𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑛 𝑝∑
𝑘=0

𝛾𝑘 (𝜏)𝑁𝑘
⋅ 2𝑞+𝑟∑
𝑡=2𝑞+𝑤

(𝑡 + 𝑝 − 𝑘 + 1)!
𝑛𝑡+𝑝−𝑘+2

[(𝑡−𝑤)/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!
⋅ 𝛽𝑘,𝑠,𝑡 (𝑤) + 𝑜 (𝑁−𝑝)

𝑛2𝑞+𝑟+2 ,

(33)

Δ𝑤𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑠)) = (−1)𝑛+1 𝑝∑
𝑘=0

𝛾𝑘 (𝜏)𝑁𝑘
⋅ 2𝑞+𝑟∑
𝑡=2𝑞+𝑤

(𝑡 + 𝑝 − 𝑘 + 1)!
𝑛𝑡+𝑝−𝑘+2

[(𝑡−𝑤)/2]∑
𝑠=𝑞

𝐵2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!
⋅ 𝛽𝑘,𝑠,𝑡 (𝑤) + 𝑜 (𝑁−𝑝)

𝑛2𝑞+𝑟+2 ,

(34)

where

𝛽𝑘,𝑠,𝑡 (𝑤) = 𝑡−2𝑠∑
ℓ=𝑤

𝑘𝑡−2𝑠−ℓ 𝛼𝑤+𝑝−𝑘,ℓ+𝑝−𝑘(𝑡 − 2𝑠 − ℓ)! (𝑝 − 𝑘 + ℓ)! , (35)

𝛽𝑘,𝑠,𝑡 (𝑤)
= 𝑡−2𝑠∑
ℓ=𝑤

(𝑘 + 12)
𝑡−2𝑠−ℓ 𝛼𝑤+𝑝−𝑘,ℓ+𝑝−𝑘(𝑡 − 2𝑠 − ℓ)! (𝑝 − 𝑘 + ℓ)! ,

(36)

with

𝛼𝑘,𝑗 = 𝑘∑
𝑠=0

(𝑘𝑠) (−1)𝑠 𝑠𝑗, 𝑗 ≥ 0. (37)

Proof. In view of (12) and (26), we have

Δ𝑝𝑛 (𝜃, 𝑓𝑐) =
𝑝∑
𝑘=0

(−1)𝑘 𝛾𝑘 (𝜏)𝑁𝑘 Δ𝑝−𝑘
𝑛−𝑘

(𝑓𝑐) . (38)

Taking into account the fact that Δ𝑤𝑛(Δ̂𝑝−𝑘(𝑓𝑐)) = Δ𝑤+𝑝−𝑘𝑛 (𝑓𝑐)
and using (13), we get

Δ𝑤𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐))
= 𝑝∑
𝑘=0

(−1)𝑘 𝛾𝑘 (𝜏)𝑁𝑘
𝑤+𝑝−𝑘∑
𝑗=0

(𝑤 + 𝑝 − 𝑘
𝑗 )𝑓𝑐𝑛−(𝑘+𝑗).

(39)

Application of Lemma 3, when 𝑝 + 𝑟 is even, and Lemma 4,
when 𝑝 + 𝑟 is odd, leads to the following asymptotic
expansion (ℎ = 𝑝 − 𝑘 + 𝑟):

Δ𝑤𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑛 𝑝∑
𝑘=0

𝛾𝑘 (𝜏)𝑁𝑘
⋅ 𝑤+𝑝−𝑘∑
𝑗=0

(−1)𝑗 (𝑤 + 𝑝 − 𝑘
𝑗 )

⋅ 𝑞+[ℎ/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)(𝜋𝑛)2𝑠+2
⋅ 1
(1 − (𝑗 + 𝑘) /𝑛)2𝑠+2 +

𝑜 (𝑁−𝑝)
𝑛2𝑞+𝑟+2 .

(40)
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Then,

Δ𝑤𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑛 𝑝∑
𝑘=0

𝛾𝑘 (𝜏)𝑁𝑘
⋅ 𝑤+𝑝−𝑘∑
𝑗=0

(−1)𝑗 (𝑤 + 𝑝 − 𝑘
𝑗 )

⋅ 𝑞+[ℎ/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)(𝜋𝑛)2𝑠+2
∞∑
𝑡=2𝑠+1

( 𝑡
2𝑠 + 1)

⋅ (𝑘 + 𝑗)𝑡−2𝑠−1
𝑛𝑡−2𝑠−1 + 𝑜 (𝑁−𝑝)

𝑛2𝑞+𝑟+2 .

(41)

Finally,

Δ𝑤𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑛 𝑝∑
𝑘=0

𝛾𝑘 (𝜏)𝑁𝑘
2𝑞+ℎ∑
𝑡=2𝑞

1𝑛𝑡+2

⋅ [𝑡/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2
⋅ ( 𝑡 + 1

𝑡 − 2𝑠)
𝑡−2𝑠∑
ℓ=0

(𝑡 − 2𝑠
ℓ )

⋅ 𝑘𝑡−2𝑠−ℓ𝛼𝑤+𝑝−𝑘,ℓ + 𝑜 (𝑁−𝑝)
𝑛2𝑞+𝑟+2 .

(42)

It remains to notice that 𝛼𝑤+𝑝−𝑘,ℓ = 0 for 0 ≤ ℓ < 𝑤+𝑝−𝑘
(see [20]). Hence, 𝑡 − 2𝑠 ≥ 𝑤+𝑝− 𝑘, and 𝑠 ≤ [(𝑡 −𝑤)/2].
3. Pointwise Convergence Away
from the Endpoints

In this section, we explore the pointwise convergence of
the MTR-approximations away from the endpoints. Next
theorem reveals the asymptotic behavior of the MTR-
approximations for |𝑥| < 1 without specifying the selection
of parameters 𝜏𝑐 and 𝜏𝑠.
Theorem 6. Assume 𝑓 ∈ 𝐶2𝑞+𝑝+2[−1, 1], 𝑓(2𝑞+𝑝+2) ∈ 𝐵𝑉[−1,1], 𝑞 ≥ 0, 𝑝 ≥ 1, and

𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (43)

Let 𝜃𝑘, 𝑘 = 1, . . . , 𝑝, be defined by (26). Then, the following
estimates hold for |𝑥| < 1 as𝑁 → ∞:

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐴2𝑞+1 (𝑓)
⋅ (−1)𝑁+𝑝+1𝑁2𝑞+𝑝+22𝑝+1𝜋2𝑞+2 (2𝑞 + 1)!
⋅ cos (𝜋𝑥/2) (2𝑁 − 𝑝 + 1)

cos𝑝+1 (𝜋𝑥/2) ℎ𝑝,2𝑞+1 (𝜏)
+ 𝑜 (𝑁−2𝑞−𝑝−2) ,

(44)

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐵2𝑞+1 (𝑓)
⋅ (−1)𝑁+𝑝𝑁2𝑞+𝑝+22𝑝+1𝜋2𝑞+2 (2𝑞 + 1)!
⋅ sin (𝜋𝑥/2) (2𝑁 − 𝑝)

cos𝑝+1 (𝜋𝑥/2) ℎ𝑝,2𝑞+1 (𝜏) + 𝑜 (𝑁−2𝑞−𝑝−2) ,
(45)

where

ℎ𝑝,𝑚 (𝜏) =
𝑝∑
𝑘=0

(−1)𝑘 𝛾𝑘 (𝜏) (𝑚 + 𝑝 − 𝑘)!. (46)

Proof. We prove only estimate (44). Estimate (45) can be
handled similarly.

Taking into account the fact that 𝜃𝑘 → 1 as𝑁 → ∞, we
estimate only the sums on the right-hand side of (18). By the
Abel transformation, we get

∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑐) 𝑒±𝑖𝜋𝑛𝑥

= − 𝑒±𝑖𝜋(𝑁+1)𝑥(1 + 𝑒±𝑖𝜋𝑥)Δ𝑝𝑁 (𝜃, 𝑓𝑐)
− 𝑒±𝑖𝜋(𝑁+1)𝑥
(1 + 𝑒±𝑖𝜋𝑥)2Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐))

+ 1
(1 + 𝑒±𝑖𝜋𝑥)2

∞∑
𝑛=𝑁+1

Δ2𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) 𝑒±𝑖𝜋𝑛𝑥.

(47)

Lemma 5 estimates sequences Δ𝑝𝑁(𝜃, 𝑓𝑐), Δ1𝑁(Δ̂𝑝(𝜃, 𝑓𝑐)), andΔ2𝑛(Δ̂𝑝(𝜃, 𝑓𝑐)) as 𝑁 → ∞ and 𝑛 ≥ 𝑁 + 1. It shows that, for𝑟 = 1 and 𝑤 = 2, we have
Δ2𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = 𝑜 (𝑁−𝑝)

𝑛2𝑞+3 , (48)

and the third term in the right-hand side of (47) is𝑜(𝑁−𝑝−2𝑞−2). Then, with 𝑟 = 1 and 𝑤 = 1, we have
Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = 𝑂 (𝑁−𝑝−2𝑞−3) , (49)

and the second term is 𝑂(𝑁−𝑝−2𝑞−3). Finally, using the exact
estimate for Δ𝑝𝑁(𝜃, 𝑓𝑐), we derive

Δ𝑝𝑁 (𝜃, 𝑓𝑐) = 𝐴2𝑞+1 (𝑓) (−1)𝑁𝑁𝑝+2𝑞+2𝜋2𝑞+2
⋅ 𝑝∑
𝑘=0

𝛾𝑘 (𝜏) (2𝑞 + 𝑝 − 𝑘 + 1
2𝑞 + 1 )𝛼𝑝−𝑘,𝑝−𝑘

+ 𝑂 (𝑁−2𝑞−𝑝−3) ,
(50)

which completes the proof as

𝛼𝑝−𝑘,𝑝−𝑘 = (−1)𝑝−𝑘 (𝑝 − 𝑘)!. (51)
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Figure 1: The graph of |𝑅𝑁(𝑓, 𝑥)| on [−0.7, 0.7] for 𝑁 = 64 while
approximating (53) by the modified Fourier expansion (2).

Note that Theorem 6 is valid also for 𝑝 = 0 which
corresponds to the modified Fourier expansions (compare
withTheorems 1 and 2). In that case, the exact constants of the
main terms in (44) and (45) coincide with similar estimate in
[3] (Theorem 2.22, page 29).

Theorem 6 shows that

𝑅𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥) = 𝑅𝑐𝑁,𝑝 (𝑓, 𝜃𝑐, 𝑥) + 𝑅𝑠𝑁,𝑝 (𝑓, 𝜃𝑠, 𝑥)
= 𝑂 (𝑁−2𝑞−𝑝−2) (52)

if parameters 𝜃𝑐 and 𝜃𝑠 are defined by (24). We see improve-
ment in convergence rate by factor 𝑂(𝑁𝑝) and this result is
obtained without specifying parameters 𝜏𝑐 and 𝜏𝑠.

Let us compare the modified Fourier expansions and
MTR-approximations for a specific smooth function. Con-
sider the following one:

𝑓 (𝑥) = (1 − 𝑥2)2 sin (𝑥 − 1) (53)

for which

𝑓 (1) = 𝑓 (−1) = 0,
𝑓󸀠 (1) = 𝑓󸀠 (−1) = 0,
𝑓󸀠󸀠 (1) = 0,

𝑓󸀠󸀠 (−1) = −8 sin (2) ,
𝑓󸀠󸀠󸀠 (1) = 24,

𝑓󸀠󸀠󸀠 (−1) = 24 cos (2) + 24 sin (2) .

(54)

Hence, this function obeys first 𝑞 = 1 derivative conditions
(8).

Figures 1 and 2 show the behaviors of |𝑅𝑁| (𝑝 = 0) and|𝑅𝑁,𝑝| (𝑝 = 1, 2, 3, 4), respectively, on interval [−0.7, 0.7] for𝑁 = 64 while approximating (53). We used 𝜏𝑐𝑘 = 𝜏𝑠𝑘 = 𝑘,𝑘 = 1, . . . , 𝑝 in the rational approximations.
According to the results of Theorem 6, the bigger the

value of 𝑝 is, the higher the accuracy of the corresponding
approximations is. We observe it empirically. We see that

max[−0.7,0.7]|𝑅𝑁,𝑝| is 3 ⋅ 10−8 for 𝑝 = 0, is 1.6 ⋅ 10−9 for 𝑝 = 1,
is 9 ⋅ 10−11 for 𝑝 = 2, is 6.6 ⋅ 10−12 for 𝑝 = 3, and is 5.7 ⋅ 10−13
for 𝑝 = 4.

Can we improve the accuracy of the rational approxi-
mations by appropriate selection of parameters 𝜏𝑠 and 𝜏𝑐?
Further, in this section, we give positive answer to this
question and show how the optimal values can be chosen.

Estimates of Theorem 6 show that improvement can be
achieved if parameters are chosen such that 𝜏𝑠 = 𝜏𝑐 = 𝜏 and

ℎ𝑝,2𝑞+1 (𝜏) = 0. (55)

By looking into the definition of ℎ𝑝,2𝑞+1(𝜏), we observe that
condition (55) can be achieved, for example, if

𝛾𝑘 (𝜏) = (𝑝𝑘)
(2𝑞 + 1 + 𝑝)!

(2𝑞 + 1 + 𝑝 − 𝑘)!𝑄𝑟 (𝑘) , (56)

where 𝑄𝑟(𝑘) is a polynomial of order 𝑟 ≤ 𝑝 − 1
𝑄𝑟 (𝑘) = 𝑟∑

𝑗=0

𝑐𝑗𝑘𝑗, 𝑐0 = 1, (57)

with unknown coefficients 𝑐𝑗, 𝑗 = 1, . . . , 𝑟. Then, condition
(55) follows from the well-known identity

𝑝∑
𝑘=0

(−1)𝑘 (𝑝𝑘)𝑘𝑗 = 0, 𝑗 < 𝑝. (58)

Further, we determine the values of 𝑐𝑗, 𝑗 = 1, . . . , 𝑟, for
improved convergence of the rational approximations.

Next result is an immediate consequence of those obser-
vations and estimates of Theorem 6.

Theorem 7. Let 𝑓 ∈ 𝐶2𝑞+𝑝+2[−1, 1], 𝑓(2𝑞+𝑝+2) ∈ 𝐵𝑉[−1, 1],𝑞 ≥ 0, 𝑝 ≥ 1, and
𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (59)

Assume the polynomial
𝑝∑
𝑘=0

(𝑝𝑘)
𝑄𝑟 (𝑝 − 𝑘)
(2𝑞 + 1 + 𝑘)! (−1)𝑘 𝑥𝑘 (60)

has only real-valued and nonzero roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝,
and let

𝜃𝑐𝑘 = 𝜃𝑠𝑘 = 1 − 𝑧𝑘𝑁, 𝑘 = 1, . . . , 𝑝. (61)

Then, the following estimate holds for |𝑥| < 1:
𝑅𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥) = 𝑜 (𝑁−2𝑞−𝑝−2) , 𝑁 󳨀→ ∞. (62)

Theorem 7 is valid only if, for given 𝑝 and 𝑞, polynomial
(60) has only real-valued and nonzero roots. Further, we
clarify this statement by showing those cases when it is true.

By imposing extra smoothness on the underlying func-
tions, we derive more precise estimate of (62).

First, we need estimates for Δ𝑤𝑁(Δ̂𝑝(𝜃, 𝑓𝑐)) and Δ𝑤𝑁(Δ̂𝑝(𝜃,𝑓𝑠)).
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Figure 2: The graphs of |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥)| on [−0.7, 0.7] for 𝑁 = 64 and different 𝑝 while approximating (53) by the MTR-approximations
with 𝜏𝑐𝑘 = 𝜏𝑠𝑘 = 𝑘, 𝑘 = 1, . . . , 𝑝.

Lemma 8. Assume 𝑓 ∈ 𝐶2𝑞+𝑝+[(𝑝+1)/2]+2[−1, 1],𝑓(2𝑞+𝑝+[(𝑝+1)/2]+2) ∈ 𝐵𝑉[−1, 1], 𝑞 ≥ 0, 𝑝 ≥ 1, and
𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (63)

Assume polynomial (60) has only real-valued and nonzero
roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝, and 𝜃𝑘 is defined by (26) with𝜏𝑘 = 𝑧𝑘. Let 𝑤 ≤ 𝑝, when 𝑤 and 𝑝 have the same parity, and𝑤 ≤ 𝑝 + 1, otherwise. Then, the following estimates hold as𝑁 → ∞:

Δ𝑤𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑁𝑁𝑝
𝑟∑
𝑗=0

𝑐𝑗
2𝑞+[(𝑝+1)/2]+1∑
𝑡=2𝑞+[(𝑝+𝑤−𝑗+1)/2]

1𝑁𝑡+2

⋅ [(𝑡−𝑤)/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝜎𝑠,𝑡,𝑗 (𝑤)
+ 𝑜 (𝑁−2𝑞−𝑝−[(𝑝+1)/2]−3) ,

(64)

Δ𝑤𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑠)) = (−1)𝑁+1𝑁𝑝
𝑟∑
𝑗=0

𝑐𝑗

⋅ 2𝑞+[(𝑝+1)/2]+1∑
𝑡=2𝑞+[(𝑝+𝑤−𝑗+1)/2]

1𝑁𝑡+2

⋅ [(𝑡−𝑤)/2]∑
𝑠=𝑞

𝐵2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)! 𝜎̃𝑠,𝑡,𝑗 (𝑤)

+ 𝑜 (𝑁−2𝑞−𝑝−[(𝑝+1)/2]−3) ,
(65)

where

𝜎𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝
+ 1)! 𝑝∑
𝑘=0

(𝑝𝑘)𝛽𝑘,𝑠,𝑡 (𝑤) (𝑝 − 𝑘 + 𝑡 + 1)!
(2𝑞 + 𝑝 + 1 − 𝑘)!𝑘𝑗,

𝜎̃𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝
+ 1)! 𝑝∑
𝑘=0

(𝑝𝑘)𝛽𝑘,𝑠,𝑡 (𝑤) (𝑝 − 𝑘 + 𝑡 + 1)!
(2𝑞 + 𝑝 + 1 − 𝑘)!𝑘𝑗,

(66)

with 𝛽 and 𝛽 defined in Lemma 5.

Proof. We prove only (64). By taking 𝑛 = 𝑁 in (33) and using
(56), we get

Δ𝑤𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑁𝑁𝑝
𝑟∑
𝑗=0

𝑐𝑗
2𝑞+[(𝑝+1)/2]+1∑
𝑡=2𝑞+𝑤

1𝑁𝑡+2
⋅ [(𝑡−𝑤)/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝜎𝑠,𝑡,𝑗 (𝑤)
+ 𝑜 (𝑁−2𝑞−𝑝−[(𝑝+1)/2]−3) .

(67)

This completes the proof in view of (B.15) and (B.16).
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Further, inTheorems 9 and 10, we show that the pointwise
convergence rate of the rational approximations depends on
the asymptotic Δ0𝑁(Δ̂𝑝(𝜃, 𝑓𝑐)) and Δ0𝑁(Δ̂𝑝(𝜃, 𝑓𝑠)). From the
other side, Lemma 8 reveals that the convergence rates of
those sequences depend on the value of (as 𝑤 = 0)

[𝑝 − 𝑗 + 12 ] . (68)

When 𝑝 is odd, for the highest power of 1/𝑁, parameter 𝑗
can be only 𝑗 = 0. It means that 𝑄𝑟(𝑘) ≡ 1. When 𝑝 is even,
parameter 𝑗 can be 𝑗 ≤ 1 which means that 𝑄𝑟(𝑘) = 1 + 𝑐1𝑘.
We determine parameter 𝑐1 later.

Next theorem unveils the convergence rate of the MTR-
approximations for odd values of 𝑝, when𝑄𝑟(𝑘) = 𝑄0(𝑘) ≡ 1.
Note that, in this case, the roots of polynomial (60) coincide
with the roots of generalized Laguerre polynomial 𝐿(2𝑞+1)𝑝 (𝑥)
(see Appendix A).

Theorem 9. Let parameter 𝑝 ≥ 1 be odd, 𝑓 ∈𝐶2𝑞+𝑝+(𝑝+1)/2+2[−1, 1], 𝑞 ≥ 0, 𝑓(2𝑞+𝑝+(𝑝+1)/2+2) ∈ 𝐵𝑉[−1, 1],
and

𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (69)

Let 𝜃𝑘, 𝑘 = 1, . . . , 𝑝, be defined by (26), where 𝜏𝑘 are the roots
of the generalized Laguerre polynomial 𝐿(2𝑞+1)𝑝 (𝑥). Then, the
following estimates hold for |𝑥| < 1:
𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐴2𝑞+1 (𝑓)

⋅ (−1)𝑁+1𝑁2𝑞+𝑝+(𝑝+1)/2+2𝜋2𝑞+22𝑝+1 (
cos (𝜋𝑥/2) (2𝑁 − 𝑝 + 1)

cos𝑝+1 (𝜋𝑥/2)
⋅ 𝜎𝑞,2𝑞+(𝑝+1)/2,0 (0) + cos (𝜋𝑥/2) (2𝑁 − 𝑝)

2cos𝑝+2 (𝜋𝑥/2)
⋅ 𝜎𝑞,2𝑞+(𝑝+1)/2,0 (1)) + 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−2) ,

𝑁 󳨀→ ∞,
𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐵2𝑞+1 (𝑓)

⋅ (−1)𝑁𝑁2𝑞+𝑝+(𝑝+1)/2+2𝜋2𝑞+22𝑝+1 (
sin (𝜋𝑥/2) (2𝑁 − 𝑝)

cos𝑝+1 (𝜋𝑥/2)
⋅ 𝜎̃𝑞,2𝑞+(𝑝+1)/2,0 (0) + sin (𝜋𝑥/2) (2𝑁 − 𝑝 − 1)

2cos𝑝+2 (𝜋𝑥/2)
⋅ 𝜎̃𝑞,2𝑞+(𝑝+1)/2,0 (1)) + 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−2) ,

𝑁 󳨀→ ∞,

(70)

where 𝜎 and 𝜎̃ are defined in Lemma 8.

Proof. We use (18) to estimate 𝑅𝑐𝑁,𝑝(𝑓, 𝜃, 𝑥). The error𝑅𝑠𝑁,𝑝(𝑓, 𝜃, 𝑥) can be estimated similarly.
Taking into account the fact that 𝜃𝑘 → 1 as 𝑁 → ∞,

we estimate only the sums on the right-hand side of (18).

An application of the Abel transformation to the sums of𝑅𝑐𝑁,𝑝(𝑓, 𝜃, 𝑥) leads to the following expansion of the error:
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑐) 𝑒±𝑖𝜋𝑛𝑥 = − 𝑒±𝑖𝜋(𝑁+1)𝑥(1 + 𝑒±𝑖𝜋𝑥)Δ𝑝𝑁 (𝜃, 𝑓𝑐)
− 𝑒±𝑖𝜋(𝑁+1)𝑥
(1 + 𝑒±𝑖𝜋𝑥)2Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐))

− 𝑒±𝑖𝜋(𝑁+1)𝑥(𝑝+1)/2+1∑
𝑤=2

Δ𝑤𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐))
(1 + 𝑒±𝑖𝜋𝑥)𝑤+1

+ 1
(1 + 𝑒±𝑖𝜋𝑥)(𝑝+1)/2+2

⋅ ∞∑
𝑛=𝑁+1

Δ(𝑝+1)/2+2𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) 𝑒±𝑖𝜋𝑛𝑥.

(71)

According to Lemma 5, we have

Δ(𝑝+1)/2+2𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = 𝑜 (𝑁−𝑝)
𝑛2𝑞+(𝑝+1)/2+3 ,

𝑁 󳨀→ ∞, 𝑛 ≥ 𝑁 + 1,
(72)

and hence the last term on the right-hand side of (71) is𝑜(𝑁−2𝑞−𝑝−(𝑝+1)/2−2) as 𝑁 → ∞. It follows from Lemma 8
that the third term in (71) is 𝑂(𝑁−2𝑞−𝑝−(𝑝+1)/2−3) as𝑁 → ∞.
Therefore,

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥)
= −( 𝑒𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒𝑖𝜋𝑥)𝑝+1 +
𝑒−𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒−𝑖𝜋𝑥)𝑝+1)
⋅ Δ𝑝𝑁 (𝜃, 𝑓𝑐)
− ( 𝑒𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒𝑖𝜋𝑥)𝑝+2 +
𝑒−𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒−𝑖𝜋𝑥)𝑝+2)
⋅ Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) .

(73)

By Lemma 8, we have

Δ𝑝𝑁 (𝜃, 𝑓𝑐) = (−1)𝑁𝑁𝑝
⋅ 2𝑞+(𝑝+1)/2+1∑
𝑡=2𝑞+(𝑝+1)/2

1𝑁𝑡+2
[𝑡/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 𝜎𝑠,𝑡,0 (0)

+ 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−3) = (−1)𝑁
(𝜋𝑁)2𝑞+2𝑁𝑝+(𝑝+1)/2

⋅ 𝑞+[(𝑝+1)/4]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠 𝜎𝑠,2𝑞+(𝑝+1)/2,0 (0)
+ 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−2) ,

Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑁𝑁𝑝
2𝑞+(𝑝+1)/2+1∑
𝑡=2𝑞+(𝑝+1)/2

1𝑁𝑡+2
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⋅ [(𝑡−1)/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 𝜎𝑠,𝑡,0 (1) + 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−3)

= (−1)𝑁
(𝜋𝑁)2𝑞+2𝑁𝑝+(𝑝+1)/2

⋅ 𝑞+[(𝑝−1)/4]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠 𝜎𝑠,2𝑞+(𝑝+1)/2,0 (1)
+ 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−2) .

(74)

Taking into account the fact that (see (B.16))

𝜎𝑠,2𝑞+(𝑝+1)/2,0 (0) = 𝜎𝑠,2𝑞+(𝑝+1)/2,0 (1) = 0, 𝑠 > 𝑞, (75)

we conclude that 𝜎𝑠,2𝑞+(𝑝+1)/2,0(0) and 𝜎𝑠,2𝑞+(𝑝+1)/2,0(1) are
nonzero only for 𝑠 = 𝑞which leads to the following estimates:

Δ𝑝𝑁 (𝜃, 𝑓𝑐)
= 𝐴2𝑞+1 (𝑓) (−1)𝑁

(𝜋𝑁)2𝑞+2𝑁𝑝+(𝑝+1)/2 𝜎𝑞,2𝑞+(𝑝+1)/2,0 (0)
+ 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−2) ,

Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐))
= 𝐴2𝑞+1 (𝑓) (−1)𝑁

(𝜋𝑁)2𝑞+2𝑁𝑝+(𝑝+1)/2 𝜎𝑞,2𝑞+(𝑝+1)/2,0 (1)
+ 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−2) .

(76)

From here, we get

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐴2𝑞+1 (𝑓)
⋅ (−1)𝑁+1𝜋2𝑞+2𝑁2𝑞+𝑝+𝑝/2+2 (𝜎𝑞,2𝑞+(𝑝+1)/2,0 (0)

⋅ Re[ 𝑒𝑖𝜋(𝑁+1)𝑥
(1 + 𝑒𝑖𝜋𝑥)𝑝+1] + 𝜎𝑞,2𝑞+(𝑝+1)/2,0 (1)

⋅ Re[ 𝑒𝑖𝜋(𝑁+1)𝑥
(1 + 𝑒𝑖𝜋𝑥)𝑝+2]) + 𝑜 (𝑁−2𝑞−𝑝−(𝑝+1)/2−2) ,

(77)

which completes the proof.

Figure 3 shows the result of approximation of (53) by the
MTR-approximations with optimal parameters 𝜏𝑐𝑘 = 𝜏𝑠𝑘, 𝑘 =
1, . . . , 𝑝 as the roots of 𝐿(2𝑞+1)𝑝 (𝑥). We see better accuracy on[−0.7, 0.7] compared to nonoptimal parameters as in Figure 2.
For 𝑝 = 1, the improvement is almost 25 times, and for 𝑝 = 3,
the improvement is almost 240 times.

Next theorem deals with even values of 𝑝. As we men-
tioned above, the best convergence rate is possible if 𝑄𝑟(𝑘) =𝑄1(𝑘) = 1 + 𝑐1𝑘 and 𝜏𝑘, 𝑘 = 1, . . . , 𝑝, are the roots of (60).
We need to assume that polynomial (60) has only real-valued
and nonzero roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝, for fixed 𝑝 and 𝑞. In
two cases, we can prove that it is true. When 𝑐1 = 0, the roots
of polynomial (60) coincide with the roots of the generalized
Laguerre polynomial 𝐿(2𝑞+1)𝑝 (𝑥) (see Appendix A). When𝑐1 = −1/(2𝑞 + 1 + 𝑝), the roots coincide with the ones
of 𝐿(2𝑞)𝑝 (𝑥).

We saw from our experiments (which we cannot prove
theoretically) that polynomial (60) has only real-valued and
nonzero roots also for other values of parameter 𝑐1. However,
based on our experiments, we observed that the rational
approximations have almost similar accuracy for different
values of 𝑐1 while approximating smooth functions on |𝑥| < 1.
Theorem 10. Let parameter 𝑝 ≥ 2 be even, 𝑓 ∈𝐶2𝑞+𝑝+𝑝/2+2[−1, 1], 𝑞 ≥ 0, 𝑓(2𝑞+𝑝+𝑝/2+2) ∈ 𝐵𝑉[−1, 1], and

𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (78)

Assume the polynomial

𝑝∑
𝑘=0

(𝑝𝑘)
1 + 𝑐1 (𝑝 − 𝑘)
(2𝑞 + 1 + 𝑘)! (−1)𝑘 𝑥𝑘 (79)

has only real-valued and nonzero roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝,
and let 𝜃𝑘 be defined by (26) with 𝜏𝑘 = 𝑧𝑘. Then, the following
estimates hold for |𝑥| < 1:

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐴2𝑞+1 (𝑓) (−1)𝑁+1𝑁2𝑞+𝑝+𝑝/2+2𝜋2𝑞+22𝑝+1 (
cos (𝜋𝑥/2) (2𝑁 − 𝑝 + 1)

cos𝑝+1 (𝜋𝑥/2) (𝜎𝑞,2𝑞+𝑝/2,0 (0) + 𝜎𝑞,2𝑞+𝑝/2,1 (0) 𝑐1)
+ cos (𝜋𝑥/2) (2𝑁 − 𝑝) 𝜎𝑞,2𝑞+𝑝/2,1 (1)2cos𝑝+2 (𝜋𝑥/2) 𝑐1) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) , 𝑁 󳨀→ ∞,

(80)

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐵2𝑞+1 (𝑓) (−1)𝑁𝑁2𝑞+𝑝+𝑝/2+2𝜋2𝑞+22𝑝+1 (
sin (𝜋𝑥/2) (2𝑁 − 𝑝)

cos𝑝+1 (𝜋𝑥/2) (𝜎̃𝑞,2𝑞+𝑝/2,0 (0) + 𝜎̃𝑞,2𝑞+𝑝/2,1 (0) 𝑐1)
+ sin (𝜋𝑥/2) (2𝑁 − 𝑝 − 1) 𝜎̃𝑞,2𝑞+𝑝/2,1 (1)2cos𝑝+2 (𝜋𝑥/2) 𝑐1) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) , 𝑁 󳨀→ ∞,

(81)

where 𝜎 and 𝜎̃ are defined in Lemma 8.
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Figure 3: The graphs of |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥)| on interval [−0.7, 0.7] for𝑁 = 64 while approximating (53) by MTR-approximations. Parameters
𝜏𝑐𝑘 and 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝, are the roots of 𝐿(2𝑞+1)𝑝 (𝑥) which are optimal for odd 𝑝 on |𝑥| < 1 (see Theorem 9).

Proof. Weprove only (80) and need only to estimate the sums
on the right-hand side of (18). Similar to (71), we apply the
Abel transformation and get the following expansion of the
error:
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑐) 𝑒±𝑖𝜋𝑛𝑥

= − 𝑒±𝑖𝜋(𝑁+1)𝑥(1 + 𝑒±𝑖𝜋𝑥)Δ𝑝𝑁 (𝜃, 𝑓𝑐)
− 𝑒±𝑖𝜋(𝑁+1)𝑥
(1 + 𝑒±𝑖𝜋𝑥)2Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐))

− 𝑒±𝑖𝜋(𝑁+1)𝑥𝑝/2+1∑
𝑤=2

Δ𝑤𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐))
(1 + 𝑒±𝑖𝜋𝑥)𝑤+1

+ 1
(1 + 𝑒±𝑖𝜋𝑥)𝑝/2+2

∞∑
𝑛=𝑁+1

Δ𝑝/2+2𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) 𝑒±𝑖𝜋𝑛𝑥.

(82)

Taking into account Lemma 5, we obtain

Δ𝑝/2+2𝑛 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = 𝑜 (𝑁−𝑝)
𝑛2𝑞+𝑝/2+3 ,

𝑁 󳨀→ ∞, 𝑛 ≥ 𝑁 + 1.
(83)

And the last term on the right-hand side of (82) is𝑜(𝑁−2𝑞−𝑝−𝑝/2−2) as 𝑁 → ∞. According to Lemma 8, the

third term in the right-hand side of (82) is 𝑂(𝑁−2𝑞−𝑝−𝑝/2−3)
as𝑁 → ∞. Therefore,

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥)
= −( 𝑒𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒𝑖𝜋𝑥)𝑝+1 +
𝑒−𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒−𝑖𝜋𝑥)𝑝+1)
⋅ Δ𝑝𝑁 (𝜃, 𝑓𝑐)
− ( 𝑒𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒𝑖𝜋𝑥)𝑝+2 +
𝑒−𝑖𝜋(𝑁+1)𝑥

2 (1 + 𝑒−𝑖𝜋𝑥)𝑝+2)
⋅ Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) .

(84)

According to Lemma 8, we get

Δ𝑝𝑁 (𝜃, 𝑓𝑐) = (−1)𝑁𝑁𝑝
1∑
𝑗=0

𝑐𝑗
2𝑞+𝑝/2+1∑
𝑡=2𝑞+𝑝/2

1𝑁𝑡+2

⋅ [𝑡/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 𝜎𝑠,𝑡,𝑗 (0) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−3)

= (−1)𝑁
(𝜋𝑁)2𝑞+2𝑁𝑝+𝑝/2

1∑
𝑗=0

𝑐𝑗
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⋅ 𝑞+[𝑝/4]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠 𝜎𝑠,2𝑞+𝑝/2,𝑗 (0)
+ 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) ,

Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = (−1)𝑁𝑁𝑝
1∑
𝑗=0

𝑐𝑗
2𝑞+𝑝/2+1∑

𝑡=2𝑞+[(𝑝+2−𝑗)/2]

1𝑁𝑡+2

⋅ [(𝑡−1)/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 𝜎𝑠,𝑡,𝑗 (1) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−3)

= (−1)𝑁 𝑐1(𝜋𝑁)2𝑞+2𝑁𝑝+𝑝/2
⋅ 𝑞+[(𝑝−2)/4]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠 𝜎𝑠,2𝑞+𝑝/2,1 (1)
+ 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) .

(85)

According to (B.16), we have

𝜎𝑠,2𝑞+(𝑝+1)/2,𝑗 (0) = 𝜎𝑠,2𝑞+(𝑝+1)/2,𝑗 (0) = 0, 𝑠 > 𝑞,
𝜎𝑠,2𝑞+(𝑝+1)/2,1 (1) = 0, 𝑠 > 𝑞. (86)

Hence, 𝜎𝑠,2𝑞+(𝑝+1)/2,𝑗(0), 𝑗 = 0, 1 and 𝜎𝑠,2𝑞+(𝑝+1)/2,1(1) are
nonzero only for 𝑠 = 𝑞, which leads to the following estimates:

Δ𝑝𝑁 (𝜃, 𝑓𝑐) = 𝐴2𝑞+1 (𝑓)
⋅ (−1)𝑁
(𝜋𝑁)2𝑞+2𝑁𝑝+𝑝/2 (𝜎𝑞,2𝑞+𝑝/2,0 (0)

+ 𝜎𝑞,2𝑞+𝑝/2,1 (0) 𝑐1) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) ,
Δ1𝑁 (Δ̂𝑝 (𝜃, 𝑓𝑐)) = 𝐴2𝑞+1 (𝑓) (−1)𝑁 𝑐1(𝜋𝑁)2𝑞+2𝑁𝑝+𝑝/2

⋅ 𝜎𝑞,2𝑞+𝑝/2,1 (1) + 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) .

(87)

Finally, from (84), we get

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, 𝑥) = 𝐴2𝑞+1 (𝑓)
⋅ (−1)𝑁+1𝜋2𝑞+2𝑁2𝑞+𝑝+𝑝/2+2 ((𝜎𝑞,2𝑞+𝑝/2,0 (0)

+ 𝜎𝑞,2𝑞+𝑝/2,1 (0) 𝑐1)Re[ 𝑒𝑖𝜋(𝑁+1)𝑥
(1 + 𝑒𝑖𝜋𝑥)𝑝+1]

+ 𝜎𝑞,2𝑞+𝑝/2,1 (1)Re[ 𝑒𝑖𝜋(𝑁+1)𝑥
(1 + 𝑒𝑖𝜋𝑥)𝑝+2] 𝑐1)

+ 𝑜 (𝑁−2𝑞−𝑝−𝑝/2−2) ,

(88)

which completes the proof.

Theorems 9 and 10 conclude that by appropriate deter-
mination of parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝, we get
extra improvement of the convergence rate of the MTR-
approximations by factor 𝑂(𝑁[(𝑝+1)/2]) compared to Theo-
rem 6. Final improvement compared to the modified expan-
sion is by factor 𝑂(𝑁𝑝+[(𝑝+1)/2]).

Let us return to MTR-approximations of (53). Figure 4
shows the results of approximation of (53) by the MTR-
approximations with even 𝑝. Parameters 𝜏𝑐𝑘 = 𝜏𝑠𝑘, 𝑘 =
1, . . . , 𝑝 are selected as the roots of 𝐿(2𝑞+1)𝑝 (𝑥). Compared with
Figure 2, we see better accuracy on |𝑥| < 1. For 𝑝 = 2,
the improvement is almost 27 times, and for 𝑝 = 4, the
improvement is almost 200 times.

Figure 5 shows similar results with parameters 𝜏𝑐𝑘 = 𝜏𝑠𝑘,𝑘 = 1, . . . , 𝑝, as the roots of 𝐿(2𝑞)𝑝 (𝑥). In the next section, we
will prove that those parameters provide improved accuracy
also at 𝑥 = ±1 for some 𝑝 and 𝑞. We see that both choices of
parameters provide similar results on |𝑥| < 1.
4. Pointwise Convergence at the Endpoints

In this section, we explore the pointwise convergence of the
MTR-approximations at the endpoints 𝑥 = ±1. Next theorem
explores the convergence of the rational approximations
without determining parameters 𝜏𝑐 and 𝜏𝑠.
Theorem 11. Assume 𝑓 ∈ 𝐶2𝑞+𝑝+1[−1, 1], 𝑓(2𝑞+𝑝+1) ∈ 𝐵𝑉[−1,1], 𝑞 ≥ 0, 𝑝 ≥ 1, and

𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (89)

Let 𝜃𝑘, 𝑘 = 1, . . . , 𝑝 be defined by (26). Then, the following
estimates hold:

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, ±1)
= 𝐴2𝑞+1 (𝑓)𝑁2𝑞+1 (−1)𝑝(2𝑞 + 1)!𝜋2𝑞+2𝛾𝑝 (𝜏)ℎ𝑝,2𝑞 (𝜏)

+ 𝑜 (𝑁−2𝑞−1) , 𝑁 󳨀→ ∞,
𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, ±1)

= ±𝐵2𝑞+1 (𝑓)𝑁2𝑞+1 (−1)𝑝(2𝑞 + 1)!𝜋2𝑞+2𝛾𝑝 (𝜏)ℎ𝑝,2𝑞 (𝜏)
+ 𝑜 (𝑁−2𝑞−1) , 𝑁 󳨀→ ∞,

(90)

where ℎ𝑝,𝑚(𝜏) is defined by (46).
Proof. In view of (18) and (19), we write

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, ±1) = 𝑁𝑝𝛾𝑝 (𝜏)
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑐) (−1)𝑛 , (91)

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, ±1) = ∓ 𝑁𝑝𝛾𝑝 (𝜏)
∞∑
𝑛=𝑁+1

Δ𝑝𝑛 (𝜃, 𝑓𝑠) (−1)𝑛 . (92)
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Figure 4:The graphs of |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥)| on interval [−0.7, 0.7] for𝑁 = 64 while approximating (53). Parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝, are
the roots of 𝐿(2𝑞+1)𝑝 (𝑥).
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the roots of 𝐿(2𝑞)𝑝 (𝑥).
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Now, the proof immediately follows from the estimates
of Lemma 5 by taking 𝑤 = 0, 𝑟 = 0 and by recalling that𝛼𝑝−𝑘,𝑝−𝑘 = (−1)𝑝−𝑘(𝑝 − 𝑘)!.

Note that this theorem is valid also for 𝑝 = 0 which
corresponds to the expansions by the modified Fourier basis
(compare withTheorems 1 and 2).

Exact constants of the main terms in (90), for 𝑝 = 0, can
be found also in [10] (Theorem 3.2). We see that, in general,
rational corrections do not increase the convergence rates
of modified Fourier expansions at the endpoints 𝑥 = ±1
without specifying appropriately parameters 𝜏𝑐 and 𝜏𝑠. Both
approaches have the same convergence rates 𝑂(𝑁−2𝑞−1).

Moreover, as Figure 6 shows, without reasonable selection
of the parameters, modified Fourier expansions have better
accuracy compared to “nonoptimal” rational approximations
at 𝑥 = ±1.

Is it possible to improve the accuracy by appropriate
selection of parameters 𝜏𝑐 and 𝜏𝑠? The answer is positive
and the solution is in the estimates of Theorem 11. Like the
previous section, we put

𝛾𝑘 (𝜏) = (𝑝𝑘)
(2𝑞 + 𝑝)!

(2𝑞 + 𝑝 − 𝑘)!𝑃𝑟 (𝑘) , (93)

where

𝑃𝑟 (𝑘) = 𝑟∑
𝑗=0

𝑑𝑗𝑘𝑗, 𝑑0 = 1. (94)

Now, the property ℎ𝑝,2𝑞(𝜏) = 0 follows from the identity
𝑝∑
𝑘=0

(−1)𝑘 (𝑝𝑘)𝑘𝑗 = 0, 𝑗 < 𝑝. (95)

Next theorem is the result of these observations and
Theorem 11.

Theorem 12. Let𝑓 ∈ 𝐶2𝑞+𝑝+1[−1, 1], 𝑞 ≥ 0,𝑝 ≥ 1,𝑓(2𝑞+𝑝+1) ∈𝐵𝑉[−1, 1], and
𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (96)

Assume the polynomial
𝑝∑
𝑘=0

(𝑝𝑘)
𝑃𝑟 (𝑝 − 𝑘)
(2𝑞 + 𝑘)! (−1)𝑘 𝑥𝑘 (97)

has only real-valued and nonzero roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝,
and let

𝜃𝑐𝑘 = 𝜃𝑠𝑘 = 1 − 𝑧𝑘𝑁, 𝑘 = 1, . . . , 𝑝. (98)

Then,

𝑅𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, ±1) = 𝑜 (𝑁−2𝑞−1) , 𝑁 󳨀→ ∞. (99)

Note that Theorem 12 is valid only for those parameters𝑝 and 𝑞 when polynomial (97) has only real-valued and
nonzero roots. Further, we clarify this property with more
details.

Our next goal is derivation of the exact convergence rate
of (99).

Lemma 13. Assume𝑓 ∈ 𝐶2𝑞+𝑝+[(𝑝+1)/2]+1[−1, 1], 𝑞 ≥ 0,𝑝 ≥ 1,𝑓(2𝑞+𝑝+[(𝑝+1)/2]+1) ∈ 𝐵𝑉[−1, 1], and
𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (100)

Assume the polynomial

𝑝∑
𝑘=0

(𝑝𝑘)
𝑃𝑟 (𝑝 − 𝑘)
(2𝑞 + 𝑘)! (−1)𝑘 𝑥𝑘 (101)

has only real-valued and nonzero roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝,
and let 𝜃𝑘 be defined by (26) with 𝜏𝑘 = 𝑧𝑘. Then, the following
asymptotic expansions hold:

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, ±1) = 1𝛾𝑝 (𝜏)
𝑟∑
𝑗=0

𝑑𝑗
2𝑞+[(𝑝+1)/2]∑
𝑡=2𝑞+[(𝑝+1−𝑗)/2]

1𝑁𝑡+1

⋅ (𝑡−2𝑞∑
ℓ=0

𝑏ℓ (−1)ℓℓ!
[(𝑡−ℓ)/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝛿𝑞,𝑡−ℓ,𝑗 (ℓ)

− [𝑡/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝛿𝑠,𝑡,𝑗 (1))
+ 𝑜 (𝑁−2𝑞−[(𝑝+1)/2]−1) , 𝑁 󳨀→ ∞,

(102)

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, ±1) = ± 1𝛾𝑝 (𝜏)
𝑟∑
𝑗=0

𝑑𝑗
2𝑞+[(𝑝+1)/2]∑
𝑡=2𝑞+[(𝑝+1−𝑗)/2]

1𝑁𝑡+1

⋅ (𝑡−2𝑞∑
ℓ=0

𝑏ℓ (−1)ℓℓ!
[(𝑡−ℓ)/2]∑
𝑠=𝑞

𝐵2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝛿𝑞,𝑡−ℓ,𝑗 (ℓ)

− [𝑡/2]∑
𝑠=𝑞

𝐵2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝛿𝑠,𝑡,𝑗 (1))
+ 𝑜 (𝑁−2𝑞−[(𝑝+1)/2]−1) , 𝑁 󳨀→ ∞,

(103)

where 𝑏ℓ is the ℓth Bernoulli number and

𝛿𝑠,𝑡,𝑗 (𝑤)
= (2𝑞 + 𝑝)! 𝑝∑

𝑘=0

(𝑝𝑘)𝛽𝑘,𝑠,𝑡 (0) (𝑝 − 𝑘 + 𝑡 + 𝑤)!
(2𝑞 + 𝑝 − 𝑘)! 𝑘𝑗, (104)

𝛿𝑠,𝑡,𝑗 (𝑤)
= (2𝑞 + 𝑝)! 𝑝∑

𝑘=0

(𝑝𝑘)𝛽𝑘,𝑠,𝑡 (0) (𝑝 − 𝑘 + 𝑡 + 𝑤)!
(2𝑞 + 𝑝 − 𝑘)! 𝑘𝑗, (105)

with 𝛽 and 𝛽 defined in Lemma 5.
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Figure 6: The graphs of |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, 𝑥)| for 𝑝 = 0, 1, 2, 3 and 𝑁 = 64 while approximating (53) at the points 𝑥 = ±1. In rational
approximations, we took 𝜏𝑐𝑘 = 𝜏𝑠𝑘 = 𝑘, 𝑘 = 1, . . . , 𝑝.

Proof. We prove only (102). In view of Lemma 5 (with𝑤 = 0)
and (91), we write

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, ±1) = 𝑁𝑝𝛾𝑝 (𝜏)
𝑝∑
𝑘=0

𝛾𝑘 (𝜏)𝑁𝑘
⋅ 2𝑞+[(𝑝+1)/2]∑
𝑡=2𝑞

(𝑝 − 𝑘 + 𝑡 + 1)!

⋅ [𝑡/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝛽𝑘,𝑠,𝑡 (0)

⋅ ∞∑
𝑛=𝑁+1

1𝑛𝑝−𝑘+𝑡+2
+ 𝑜 (𝑁−2𝑞−[(𝑝+1)/2]−1) .

(106)

We estimate the infinite sum on the right-hand side of (106)
by the Euler-Maclaurin formula (see [21]). We have

∞∑
𝑛=𝑁

1𝑛𝑝−𝑘+𝑡+2 = 1𝑝 − 𝑘 + 𝑡 + 1
⋅ 2𝑞+[(𝑝+1)/2]−𝑡∑
𝑤=0

(𝑝 − 𝑘 + 𝑡 + 𝑤
𝑤 ) 𝑏𝑤 (−1)𝑤𝑁𝑝−𝑘+𝑡+𝑤+1

+ 𝑂 (𝑁−2𝑞−𝑝+𝑘−[(𝑝+1)/2]−2) ,

(107)

where 𝑏𝑤 is the 𝑤th Bernoulli number. Then,

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, ±1) = 1𝛾𝑝 (𝜏)
𝑟∑
𝑗=0

𝑑𝑗
2𝑞+[(𝑝+1)/2]∑
𝑡=2𝑞

1𝑁𝑡+1

⋅ 𝑡−2𝑞∑
ℓ=0

𝑏ℓ (−1)ℓℓ!

⋅ [(𝑡−ℓ)/2]∑
𝑠=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝛿𝑠,𝑡−ℓ,𝑗 (ℓ)
− 1𝛾𝑝 (𝜏)

𝑟∑
𝑗=0

𝑑𝑗
2𝑞+[(𝑝+1)/2]−1∑
𝑡=2𝑞

1𝑁𝑡+2
⋅ [𝑡/2]∑
𝑟=𝑞

𝐴2𝑠+1 (𝑓)𝜋2𝑠+2 (2𝑠 + 1)!𝛿𝑠,𝑡,𝑗 (1)
+ 𝑜 (𝑁−2𝑞−[(𝑝+1)/2]−1) ,

(108)

which completes the proof in view of (B.2) and (B.3) (see
Appendix B).

By repeating the observations of previous section, it is
possible to deduce that, for getting the maximal convergence
rate for odd values of 𝑝, the polynomial𝑄𝑟(𝑘) can be at most
degree 0 polynomial, 𝑄𝑟(𝑘) = 𝑄0(𝑘) ≡ 1. For even values of𝑝, 𝑄𝑟(𝑘) = 𝑄1(𝑘) = 1 + 𝑑1𝑘. In the first case, parameters 𝜏𝑘
are the roots of 𝐿(2𝑞)𝑝 (𝑥). In the second case, if 𝑑1 = 0, we get
the roots of 𝐿(2𝑞)𝑝 (𝑥) and if 𝑑1 = −1/(2𝑞 + 𝑝), we get the roots
of 𝐿(2𝑞−1)𝑝 (𝑥).The next two theorems immediately follow from
Lemma 13 and identity (B.12) and, we omit the proofs.

Theorem 14. Let parameter 𝑝 ≥ 1 be odd, 𝑓 ∈𝐶2𝑞+𝑝+(𝑝+1)/2+2[−1, 1], 𝑞 ≥ 0, 𝑓(2𝑞+𝑝+(𝑝+1)/2+2) ∈ 𝐵𝑉[−1, 1],
and

𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (109)

Let 𝜃𝑘, 𝑘 = 1, . . . , 𝑝, be defined by (26), where 𝜏𝑘, 𝑘 = 1, . . . , 𝑝,
are the roots of the generalized Laguerre polynomial 𝐿(2𝑞)𝑝 (𝑥).
Then, the following estimates hold as𝑁 → ∞:

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, ±1) = 1𝑁2𝑞+(𝑝+1)/2+1
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Figure 7: The values of −log10(max |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, ±1)|) while
approximating (53) for different 𝑁 and 𝑝. Parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘,𝑘 = 1, . . . , 𝑝, are the roots of the generalized Laguerre polynomial𝐿(2𝑞)𝑝 (𝑥).

⋅ 𝐴2𝑞+1 (𝑓)𝛾𝑝 (𝜏) 𝜋2𝑞+2 (2𝑞 + 1)! (𝛿𝑞,2𝑞+(𝑝+1)/2,0 (0)
− 12𝛿𝑞,2𝑞+(𝑝−1)/2,0 (1)) + 𝑜 (𝑁−2𝑞−(𝑝+1)/2−1) ,

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, ±1) = ± 1𝑁2𝑞+(𝑝+1)/2+1
⋅ 𝐵2𝑞+1 (𝑓)𝛾𝑝 (𝜏) 𝜋2𝑞+2 (2𝑞 + 1)! (𝛿𝑞,2𝑞+(𝑝+1)/2,0 (0)
− 12𝛿𝑞,2𝑞+(𝑝−1)/2,0 (1)) + 𝑜 (𝑁−2𝑞−(𝑝+1)/2−1) ,

(110)

where 𝛿 and 𝛿 are defined in Lemma 13.

Figure 7 shows the result of approximation of (53) by the
rational approximationswith optimal values of parameters 𝜏𝑘,𝑘 = 1, . . . , 𝑝, as in Theorem 14. We see that, by increasing 𝑝
(𝑝 is odd), we increase the accuracy of approximations at the
points 𝑥 = ±1. Note that 𝑝 = 0 corresponds to the classical
expansion by the modified basis and we see that, in contrary
to Figure 6, the optimal choice of parameters do have big
positive impact on the accuracy.

Comparison ofTheorems 9 and 14 reveals the problem of
the optimal rational approximationswhich is in the difference
of optimal values of parameters 𝜏𝑘 for |𝑥| < 1 and 𝑥 = ±1.
On |𝑥| < 1 and 𝑥 = ±1, the optimal values are the roots
of 𝐿(2𝑞+1)𝑝 (𝑥) and 𝐿(2𝑞)𝑝 (𝑥), respectively. The choice of 𝐿(2𝑞)𝑝 (𝑥)
will result in better accuracy on overall [−1, 1] by the uniform
norm, but on |𝑥| < 1 the rate of convergence will be worse by
factor 𝑂(𝑁).

Next theorem explores even values of 𝑝.

Theorem 15. Let parameter 𝑝 ≥ 2 be even, 𝑓 ∈𝐶2𝑞+𝑝+𝑝/2+2[−1, 1], 𝑞 ≥ 0, 𝑓(2𝑞+𝑝+𝑝/2+2) ∈ 𝐵𝑉[−1, 1], and
𝑓(2𝑘+1) (±1) = 0, 𝑘 = 0, . . . , 𝑞 − 1. (111)

Assume the polynomial
𝑝∑
𝑘=0

(𝑝𝑘)
1 + 𝑑1 (𝑝 − 𝑘)

(2𝑞 + 𝑘)! (−1)𝑘 𝑥𝑘 (112)

has only real-valued and nonzero roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝,
and let 𝜃𝑘 be defined by (26) with 𝜏𝑘 = 𝑧𝑘. Then, the following
asymptotic expansions hold:

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃, ±1)
= 1𝑁2𝑞+𝑝/2+1

𝐴2𝑞+1 (𝑓)𝛾𝑝 (𝜏) 𝜋2𝑞+2 (2𝑞 + 1)!Φ𝑞,𝑝 (𝑑1)
+ 𝑜 (𝑁−2𝑞−𝑝/2−1) , 𝑁 󳨀→ ∞,

(113)

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃, ±1)
= ± 1𝑁2𝑞+[(𝑝+1)/2]+1

𝐵2𝑞+1 (𝑓)𝛾𝑝 (𝜏) 𝜋2𝑞+2 (2𝑞 + 1)! Φ̃𝑞,𝑝 (𝑑1)
+ 𝑜 (𝑁−2𝑞−𝑝/2−1) , 𝑁 󳨀→ ∞,

(114)

where

Φ𝑞,𝑝 (𝑑1)
= 𝛿𝑞,2𝑞+𝑝/2,0 (0) − 𝛿𝑞,2𝑞+𝑝/2−1,0 (1)

+ 𝑑1 (𝛿𝑞,2𝑞+𝑝/2,1 (0) − 12𝛿𝑞,2𝑞+𝑝/2−1,1 (1)) ,
Φ̃𝑞,𝑝 (𝑑1)

= 𝛿𝑞,2𝑞+𝑝/2,0 (0) − 𝛿𝑞,2𝑞+𝑝/2−1,0 (1)
+ 𝑑1 (𝛿𝑞,2𝑞+𝑝/2,1 (0) − 12𝛿𝑞,2𝑞+𝑝/2−1,1 (1)) ,

(115)

with 𝛿 and 𝛿 defined in Lemma 13.

Estimates (113) and (114) are valid if polynomial (112) has
only real-valued and nonzero roots. As we mentioned above,
in two particular cases when 𝑑1 = 0 and 𝑑1 = −1/(2𝑞 + 𝑝),
the roots of the polynomial coincide with the roots of 𝐿(2𝑞)𝑝 (𝑥)
and 𝐿(2𝑞−1)𝑝 (𝑥), respectively. Both Laguerre polynomials have
only real-valued and positive roots andTheorem 15 is valid in
both cases.The choice of polynomial 𝐿(2𝑞)𝑝 (𝑥) is reasonable as
it will provide optimal rational approximation both on |𝑥| < 1
(see Theorem 10) and at 𝑥 = ±1 for some 𝑝 and 𝑞.

Figure 8 shows the result of application of the rational
approximations to function (53) with optimal values of
parameters 𝜏𝑘, 𝑘 = 1, . . . , 𝑝, as the roots of 𝐿(2𝑞)𝑝 (𝑥).

Now, we show that, for some 𝑝 and 𝑞, estimates (113) and
(114) can be improvedwith appropriate selection of parameter
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Figure 8: The values of −log10(max |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, ±1)|) while
approximating (53) for different 𝑁 and 𝑝. Parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘,𝑘 = 1, . . . , 𝑝, are the roots of the generalized Laguerre polynomial𝐿(2𝑞)𝑝 (𝑥).

𝑑1. Assume that, for given 𝑝 and 𝑞, it is possible to vanishΦ𝑞,𝑝(𝑑1) by appropriate selection of 𝑑1 in (113). Then, we
derive

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, ±1) = 𝑜 (𝑁−2𝑞−𝑝/2−1) , (116)

or

𝑅𝑐𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, ±1) = 𝑂 (𝑁−2𝑞−𝑝/2−2) (117)

in case of smoother functions. Similarly, if Φ̃𝑞,𝑝(𝑑1) = 0 by
appropriate selection of parameter 𝑑1, then,

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, ±1) = 𝑜 (𝑁−2𝑞−𝑝/2−1) , (118)

or

𝑅𝑠𝑁,𝑝 (𝑓, 𝜃𝑐, 𝜃𝑠, ±1) = 𝑂 (𝑁−2𝑞−𝑝/2−2) (119)

in case of smoother functions.
The problem is that we cannot vanish both Φ𝑞,𝑝(𝑑1)

and Φ̃𝑞,𝑝(𝑑1) simultaneously by the same 𝑑1. Hence, we
decompose a function into even and odd parts and perform
separate optimizations in terms of parameter 𝑑1. In order to
choose parameter 𝑑1 appropriately, we need to have

𝛿𝑞,2𝑞+𝑝/2,1 (0) − 12𝛿𝑞,2𝑞+𝑝/2−1,1 (1) ̸= 0, (120)

𝛿𝑞,2𝑞+𝑝/2,1 (0) − 12𝛿𝑞,2𝑞+𝑝/2−1,1 (1) ̸= 0 (121)

for even and odd functions, respectively.
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Figure 9: The values of −log10(max |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, ±1)|) for 𝑝 = 4
and different 𝑁 while approximating (53). In “nonoptimal” case,
parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝, are the roots of 𝐿(2𝑞)𝑝 (𝑥). In
“optimal” case, the parameters are chosen from Tables 1 and 2 for𝑝 = 4 and 𝑞 = 1.

Then, we put

𝑑1 = 𝑑even𝑝 (𝑞)
= −𝛿𝑞,2𝑞+𝑝/2,0 (0) + 𝛿𝑞,2𝑞+𝑝/2−1,0 (1)𝛿𝑞,2𝑞+𝑝/2,1 (0) − (1/2) 𝛿𝑞,2𝑞+𝑝/2−1,1 (1) ,

𝑑1 = 𝑑odd𝑝 (𝑞)
= −𝛿𝑞,2𝑞+𝑝/2,0 (0) + 𝛿𝑞,2𝑞+𝑝/2−1,0 (1)

𝛿𝑞,2𝑞+𝑝/2,1 (0) − (1/2) 𝛿𝑞,2𝑞+𝑝/2−1,1 (1) .

(122)

Finally, we put 𝑑even𝑝 (𝑞) and 𝑑odd𝑝 (𝑞) into (112) and if that
polynomials have only real-valued and nonzero roots, the
optimization process will succeed. Tables 1 and 2 show that,
except some special cases, we can optimize estimates of
Theorem 15.

Figures 9 and 10 show the errors at 𝑥 = ±1while approxi-
mating (53) with rational approximations, where parameters𝜏𝑐𝑘 and 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝, are selected according to Tables 1 and 2
for even and odd parts of the function, respectively.We called
this approach “optimal” in the figures. For comparison, we
showed also the result of approximations with parameters 𝜏𝑐𝑘
and 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝, as the roots of 𝐿(2𝑞)𝑝 (𝑥) (see Figure 8 and
Theorem 15). We called the latest “nonoptimal” in the figures.
We see the impact of optimizations on the accuracy of the
rational approximations at 𝑥 = ±1.

Throughout the paper, we systematically required that
approximated function𝑓obeys first derivative conditions (8).
Without those conditions, the convergence rate will remain
slow. This is due to function jumps in certain derivatives
at the endpoints 𝑥 = ±1. If these jumps are known, the
convergence acceleration can be achieved by well-known
polynomial subtraction approach. For the classical Fourier
series this approach has a very long history (see [3, 22–28]).
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Table 1: The values of 𝑑even
𝑝 (𝑞) and the roots of (112) for 𝑝 = 2, 4, 6 and 0 ≤ 𝑞 ≤ 6.

𝑞 0 1 2 3 4 5 6
𝑑even
2 (𝑞) −1 1 1/3 1/5 1/7 1/9 1/11𝜏1 −1.41 2.71 4.26 5.89 7.57 9.28 11.01𝜏2 1.41 13.29 11.74 13.31 15.29 17.39 19.53

𝑑even
4 (𝑞) −3/14 −3/2 3/10 3/22 3/34 3/46 3/58𝜏1 0.12 −27.44 2.61 3.81 5.10 6.45 7.85𝜏2 1.09 1.57 5.86 7.50 9.23 10.99 12.78𝜏3 3.46 4.44 10.85 12.72 14.76 16.86 18.98𝜏4 7.91 9.43 22.28 21.43 23.15 25.36 27.71

𝑑even
6 (𝑞) −1/11 −1/5 1 1/7 1/13 1/19 1/25𝜏1 0.18 −0.74 1.96 2.90 3.95 5.07 6.25𝜏2 1.00 1.34 4.28 5.57 6.98 8.46 9.98𝜏3 2.60 3.41 7.51 9.04 10.76 12.54 14.35𝜏4 5.15 6.45 11.99 13.62 15.55 17.59 19.67𝜏5 8.96 10.74 18.54 19.91 21.87 24.08 26.38𝜏6 14.84 17.18 75.72 31.25 31.35 33.32 35.69

Table 2: The values of 𝑑odd
𝑝 (𝑞) and the roots of (112) for 𝑝 = 2, 4, 6 and 0 ≤ 𝑞 ≤ 4.

𝑞 0 1 2 3 4 5 6
𝑑odd
2 (𝑞) − − 1/2 1/4 1/6 1/8 1/10𝜏1 − − 4.417 6 7.653 9.347 11.07𝜏2 − − 13.58 14 15.68 17.65 19.73

𝑑odd
4 (𝑞) −3/20 −3/8 3/4 3/16 3/28 3/40 3/52𝜏1 0.23 −1.95 2.70 3.87 5.14 6.48 7.87𝜏2 1.35 1.83 6.09 7.63 9.31 11.05 12.83𝜏3 3.77 4.96 11.41 13.01 14.93 16.98 19.07𝜏4 8.249 10.16 35.80 22.99 23.76 25.69 27.92

𝑑odd
6 (𝑞) −1/14 −1/8 −1/2 1/4 1/10 1/16 1/22𝜏1 0.20 0.53 −16.59 2.94 3.98 5.09 6.27𝜏2 1.06 1.80 2.07 5.67 7.04 8.50 10.01𝜏3 2.71 3.88 4.52 9.23 10.86 12.60 14.40𝜏4 5.29 6.92 7.93 13.95 15.73 17.70 19.74𝜏5 9.14 11.23 12.62 20.58 22.21 24.28 26.52𝜏6 15.04 17.65 19.45 37.63 32.58 33.82 35.98

Formodified expansions this approach is explored in [3, 5, 7].
More specifically, we write 𝑓 (see [3]) in the terms of its
Lanczos representation:

𝑓 = (𝑓 − 𝑔𝑘) + 𝑔𝑘, (123)

where functions (polynomials) 𝑔𝑘 are chosen as such to
satisfy the conditions:

𝑓(2𝑟+1) (±1) = 𝑔(2𝑟+1)𝑘 (±1) , 𝑟 = 0, . . . , 𝑘 − 1. (124)

Since 𝑓 − 𝑔𝑘 obeys the first 𝑘 derivative conditions, the new
approximation

𝑀𝑘𝑁 (𝑓, 𝑥) = 𝑀𝑁 (𝑓 − 𝑔𝑘, 𝑥) + 𝑔𝑘 (125)

will converge with the same rate as if 𝑓 obeyed those
conditions. This is the polynomial subtraction technique

known also as Krylov-Lanczos approach. If the jumps of 𝑓
are unknown, their values can be approximated by solution
of the corresponding system of linear equations (see [22]).

The same approach can be applied also for the MTR-
approximations and in that case all theorems of this paper
will remain valid without the requirements of the derivatives
at the endpoints 𝑥 = ±1.
5. Conclusion

In this paper, we investigated the convergence of the MTR-
approximations 𝑀𝑁,𝑝 with parameters 𝜃𝑐 and 𝜃𝑠 defined
by (24). The main goal of the paper was to show that
by appropriate selection of parameters 𝜏𝑐 and 𝜏𝑠 it was
possible to improve substantially the pointwise convergence
of the approximations. We accomplished the main goal
by calculating the exact constants of the main terms of
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Figure 10: The values of −log10(max |𝑅𝑁,𝑝(𝑓, 𝜃𝑐, 𝜃𝑠, ±1)|) for 𝑝 = 6
and different 𝑁 while approximating (53). In “nonoptimal” case,
parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝, are the roots of 𝐿(2𝑞)𝑝 (𝑥). In
“optimal” case, the parameters are chosen from Tables 1 and 2 for𝑝 = 6 and 𝑞 = 1.

asymptotic errors and by eliminating those constants through
appropriate selection of the approximation parameters. We
showed that the optimization depends whether |𝑥| < 1 or𝑥 = ±1 and also whether parameter 𝑝 is odd or even.

Theorem 6 provides general estimate on |𝑥| < 1 proving
that, without optimal selection of parameters 𝜏𝑐𝑘 and 𝜏𝑠𝑘,𝑘 = 1, . . . , 𝑝, the rational approximations have convergence
rate 𝑂(𝑁−2𝑞−𝑝−2) as 𝑁 → ∞ if an approximated function
has enough smoothness and obeys the first 𝑞 derivative
conditions (see (8)). Compared with the modified Fourier
expansions (see Theorems 1 and 2 or the same theorem with𝑝 = 0), the improvement is by factor 𝑂(𝑁𝑝) as𝑁 → ∞.

Theorem 9 gave the optimal choice for parameters 𝜏𝑘
when |𝑥| < 1 and 𝑝 was odd. If 𝜏𝑐𝑘 = 𝜏𝑠𝑘, 𝑘 = 1, . . . , 𝑝,
were the roots of the generalized Laguerre polynomial𝐿(2𝑞+1)𝑝 (𝑥) then the rational approximations had conver-
gence rate 𝑂(𝑁−2𝑞−𝑝−[(𝑝+1)/2]−2) with improvement by factor𝑂(𝑁[(𝑝+1)/2]) compared to nonoptimal choice of parameters
(Theorem 6).The improvement was by factor𝑂(𝑁[(𝑝+1)/2]+𝑝)
compared to the expansions by the modified Fourier basis.

In case of even values of 𝑝 and |𝑥| < 1 (Theorem 10),
possible selection set of optimal parameters is wider. If for
given 𝑝 and 𝑞 the polynomial

𝑝∑
𝑘=0

(𝑝𝑘)
1 + 𝑐1 (𝑝 − 𝑘)
(2𝑞 + 1 + 𝑘)! (−1)𝑘 𝑥𝑘 (126)

has only nonzero and real-valued roots 𝑥 = 𝑧𝑘, 𝑘 = 1, . . . , 𝑝,
then, selection 𝜏𝑠𝑘 = 𝜏𝑐𝑘 = 𝑧𝑘 provides better convergence rate𝑂(𝑁−2𝑞−𝑝−[𝑝/2]−2) compared to the estimate ofTheorem6 and
improvement is by factor𝑂(𝑁[𝑝/2]). Improvement is by factor𝑂(𝑁[𝑝/2]+𝑝) compared to the expansions by the modified
Fourier basis. The problem is to find the values of 𝑐1 in (126)
for which it will have only real-valued and nonzero roots.
In two cases it is obvious. When 𝑐1 = 0, the roots of (126)

coincide with the roots of 𝐿(2𝑞+1)𝑝 (𝑥). When 𝑐1 = −1/(2𝑞+𝑝+
1), the roots coincide with the ones of 𝐿(2𝑞)𝑝 (𝑥). In both cases
all roots are positive.

Theorem 11 imparts the convergence rate 𝑂(𝑁−2𝑞−1) of
the rational approximations at 𝑥 = ±1 without optimal
selection of parameters. Comparison with Theorems 1 and 2
shows no improvement. Moreover, as our experiments show
(see Figure 6) rational approximations without reasonable
selection of parameters 𝜏𝑘 can perform worse at 𝑥 =±1 compared to the expansions by the modified Fourier
basis.

Theorem 14 found the optimal values of parameters for
odd 𝑝 for better convergence rate at 𝑥 = ±1. It proved
that the best accuracy could be achieved when parameters𝜏𝑠𝑘 = 𝜏𝑐𝑘 were the roots of the generalized Laguerre
polynomial 𝐿(2𝑞)𝑝 (𝑥). For that choice, the convergence rate
was 𝑂(𝑁−2𝑞−[(𝑝+1)/2]−1) and improvement was by factor𝑂(𝑁[(𝑝+1)/2]) compared to the modified Fourier expansions.

We see that when 𝑝 is odd, the optimal choices for |𝑥| < 1
and 𝑥 = ±1 are different. The choice of polynomial 𝐿(2𝑞)𝑝 (𝑥)
will provide the minimal uniform error on [−1, 1], but, for|𝑥| < 1, the convergence rate will be worse by factor 𝑂(𝑁)
compared to the optimal choice 𝐿(2𝑞+1)𝑝 (𝑥).

In case of even 𝑝, we obtained similar results.Theorem 15
outlines the set of optimal parameters. If for given 𝑝 and 𝑞 the
polynomial

𝑝∑
𝑘=0

(𝑝𝑘)
1 + 𝑑1 (𝑝 − 𝑘)

(2𝑞 + 𝑘)! (−1)𝑘 𝑥𝑘 (127)

has only real-valued and nonzero roots 𝑥 = 𝑧𝑘 for some𝑑1, then, selection 𝜏𝑐𝑘 = 𝜏𝑠𝑘 = 𝑧𝑘 will provide convergence
rate 𝑂(𝑁−2𝑞−[𝑝/2]−1) with improvement by factor 𝑂(𝑁[𝑝/2])
compared to themodified Fourier expansions.Theproblem is
the same as that for polynomial (126). Polynomial (127) must
have only real-valued and nonzero roots for the selected 𝑑1.
Fortunately, two such selections are known. When 𝑑1 = 0
or 𝑑1 = −1/(2𝑞 + 𝑝), the roots of (127) coincide with the
ones of 𝐿(2𝑞)𝑝 (𝑥) and 𝐿(2𝑞−1)𝑝 (𝑥), respectively. The choice of
𝐿(2𝑞)𝑝 (𝑥) is better as it will provide optimal approximations
for both |𝑥| < 1 and 𝑥 = ±1. However, estimates
of Theorem 15 allow determining parameter 𝑑1 for even
more better convergence rate. Tables 1 and 2 show some
values of 𝑑1 and parameters 𝜏𝑘 that will provide convergence
rate 𝑂(𝑁−2𝑞−[𝑝/2]−2) with improvement by factor 𝑂(𝑁). The
problem is that the latest choice is not optimal for |𝑥| <1. It will give worse accuracy compared to the optimal
selection for |𝑥| < 1. Convergence rate will degrade by
factor 𝑂(𝑁). As in case of odd 𝑝, a user of the algorithms
must decide which choice will be more appropriate to
select, the best approximation on overall [−1, 1] with worse
accuracy on |𝑥| < 1, or the best accuracy on the latest
one.
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Appendix

A. Laguerre Polynomials

The differential equation [29]

𝑥𝑦󸀠󸀠 + (1 − 𝑥) 𝑦󸀠 + 𝑝𝑦 = 0, 𝑥 ≥ 0 (A.1)

is known as Laguerre differential equation. If 𝑝 is a natural
number, the solution of (A.1) reduces to a polynomial.
When properly normalized, the polynomial is known as the
Laguerre polynomial 𝐿𝑝(𝑥). One of the normalizations is
given by the Rodrigues formula:

𝐿𝑝 (𝑥) = 𝑒𝑥𝑝! 𝑑𝑝𝑑𝑥𝑝 (𝑒−𝑥𝑥𝑝) . (A.2)

This choice leads to the following closed form for the
Laguerre polynomials:

𝐿𝑝 (𝑥) =
𝑝∑
𝑘=0

(𝑝𝑘)
(−1)𝑘𝑘! 𝑥𝑘. (A.3)

Generalized Laguerre polynomials 𝐿(𝛼)𝑝 (𝑥) are defined by
the following relation:

𝐿(𝛼)𝑝 (𝑥) = (−1)𝛼 𝑑𝛼𝑑𝑥𝛼 [𝐿𝑝+𝛼 (𝑥)] (A.4)

with the closed form

𝐿(𝛼)𝑝 (𝑥) = 𝑝∑
𝑘=0

(−1)𝑘 (𝑝 + 𝛼)!
𝑘! (𝑝 − 𝑘)! (𝛼 + 𝑘)!𝑥𝑘. (A.5)

The generalized Laguerre polynomials are orthogonal
over [0,∞) with the weight function 𝑥𝛼𝑒−𝑥

∫∞
0

𝑥𝛼𝑒−𝑥𝐿(𝛼)𝑛 (𝑥) 𝐿(𝛼)𝑚 (𝑥) 𝑑𝑥 = Γ (𝑛 + 𝛼 + 1)𝑛! 𝛿𝑛,𝑚, (A.6)

which leads to the property that 𝐿(𝛼)𝑝 (𝑥) has 𝑝 real-valued and
strictly positive simple roots.

B. Some Combinatorial Identities

In Section 2, we defined 𝛿𝑠,𝑡(𝑤) by the following equation (see
(104)):

𝛿𝑠,𝑡,𝑗 (𝑤)
= (2𝑞 + 𝑝)! 𝑝∑

𝑘=0

(𝑝𝑘)𝛽𝑘,𝑠,𝑡 (0) (𝑝 − 𝑘 + 𝑡 + 𝑤)!
(2𝑞 + 𝑝 − 𝑘)! 𝑘𝑗, (B.1)

where 𝛽𝑘,𝑠,𝑡 are defined by (35). We explore some properties
of 𝛿𝑠,𝑡,𝑗(𝑤).

First, we prove that

𝛿𝑠,𝑡,𝑗 (𝑤) = 0, (B.2)

when

2𝑞 ≤ 𝑡 ≤ 2𝑞 + [𝑝 + 1 − 𝑤 − 𝑗2 ] − 1,
𝑞 ≤ 𝑠 ≤ [ 𝑡2] .

(B.3)

We have

𝛿𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝)! 𝑝∑
𝑘=0

(𝑝𝑘)
(𝑝 − 𝑘 + 𝑡 + 𝑤)!
(2𝑞 + 𝑝 − 𝑘)!

𝑡−2𝑠∑
ℓ=0

𝑘𝑡+𝑗−2𝑠−ℓ(𝑡 − 2𝑠 − ℓ)! (𝑝 − 𝑘 + ℓ)!
𝑝−𝑘∑
𝑢=0

(−1)𝑢 𝑢𝑝−𝑘+ℓ (𝑝 − 𝑘
𝑢 ) . (B.4)

Then,

𝛿𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝)! (−1)𝑝 𝑝∑
𝑘=0

(−1)𝑘 (𝑝𝑘)
(𝑝 − 𝑘 + 𝑡 + 𝑤)!
(2𝑞 + 𝑝 − 𝑘)!

𝑡−2𝑠∑
𝑢=0

𝑘𝑡+𝑗−2𝑠−𝑢 (𝑝 − 𝑘)!
(𝑡 − 2𝑠 − 𝑢)! (𝑝 − 𝑘 + 𝑢)!𝑆 (𝑝 − 𝑘 + 𝑢, 𝑝 − 𝑘) , (B.5)

where 𝑆(𝑛, 𝑘) are the Stirling numbers of the second kind (see
[30]). Applying the well-known property [30] of the Stirling
numbers

𝑆 (𝑘 + 𝑚, 𝑘) = 𝑚∑
𝑡=0

(𝑘 + 𝑚
𝑚 + 𝑡) 𝑐𝑡 (𝑚) , 𝑚 ≥ 0, (B.6)

where 𝑐𝑡(𝑚) are the associated Stirling numbers of the second
kind, we can write

𝑆 (𝑝 − 𝑘 + 𝑢, 𝑝 − 𝑘) = 𝑢∑
𝑟=0

(𝑝 − 𝑘 + 𝑢
𝑢 + 𝑟 ) 𝑐𝑟 (𝑢) . (B.7)

Thus, for 𝛿𝑠,𝑡,𝑗(𝑤), we obtain

𝛿𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝)! (−1)𝑝 𝑡−2𝑠∑
𝑢=0

1(𝑡 − 2𝑠 − 𝑢)!
𝑢∑
𝑟=0

𝑐𝑟 (𝑢)(𝑢 + 𝑟)!
𝑝∑
𝑘=0

𝑘𝑡+𝑗−2𝑠−𝑢 (−1)𝑘 (𝑝𝑘)
(𝑝 − 𝑘 + 𝑡 + 𝑤)! (𝑝 − 𝑘)!
(2𝑞 + 𝑝 − 𝑘)! (𝑝 − 𝑘 − 𝑟)! . (B.8)
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It remains to notice that the expression

𝑘𝑡+𝑗−2𝑠−𝑢 (𝑝 − 𝑘 + 𝑡 + 𝑤)! (𝑝 − 𝑘)!
(2𝑞 + 𝑝 − 𝑘)! (𝑝 − 𝑘 − 𝑟)! (B.9)

is a (2𝑡 − 2𝑠 − 𝑢 + 𝑟 − 2𝑞 + 𝑗 +𝑤)-degree polynomial of 𝑘, and
hence we can write

𝑘𝑡−2𝑠−𝑢+𝑗 (𝑝 − 𝑘 + 𝑡 + 𝑤)! (𝑝 − 𝑘)!
(2𝑞 + 𝑝 − 𝑘)! (𝑝 − 𝑘 − 𝑟)!

= 2𝑡+𝑗+𝑤−2𝑠−𝑢+𝑟−2𝑞∑
𝑚=0

𝑑𝑚𝑘𝑚
(B.10)

with some coefficients 𝑑𝑚. Therefore,

𝛿𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝)! (−1)𝑝 𝑡−2𝑠∑
𝑢=0

1(𝑡 − 2𝑠 − 𝑢)!
𝑢∑
𝑟=0

𝑐𝑟 (𝑢)(𝑢 + 𝑟)!
2𝑡+𝑗+𝑤−2𝑠−𝑢+𝑟−2𝑞∑

𝑚=0

𝑑𝑚𝛼𝑚,𝑝, (B.11)

where 𝛼𝑚,𝑝 are defined by (37). It is easy to verify that 2𝑡 + 𝑗 +𝑤−2𝑠−𝑢+𝑟−2𝑞 < 𝑝, which completes the proof as 𝛼𝑚,𝑝 = 0
for𝑚 < 𝑝.

Second, in view of (B.11), we similarly prove that

𝛿𝑠,𝑡,𝑗 (𝑤) = 0,
𝑡 = 2𝑞 + [𝑝 + 1 − 𝑗 − 𝑤2 ] , 𝑞 < 𝑠 ≤ [ 𝑡2] .

(B.12)

In Section 3, we defined coefficients 𝜎𝑠,𝑡,𝑗(𝑤) as follows:
𝜎𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝

+ 1)! 𝑝∑
𝑘=0

(𝑝𝑘)𝛽𝑘,𝑠,𝑡 (𝑤) (𝑝 − 𝑘 + 𝑡 + 1)!
(2𝑞 + 𝑝 + 1 − 𝑘)!𝑘𝑗,

(B.13)

where 𝛽𝑘,𝑠,𝑡 are defined in Lemma 5. Similar to (B.11), we
derive that

𝜎𝑠,𝑡,𝑗 (𝑤) = (2𝑞 + 𝑝 + 1)! (−1)𝑝+𝑤 𝑡−2𝑠−𝑤∑
𝑢=0

1(𝑡 − 2𝑠 − 𝑤 − 𝑢)!
𝑢∑
𝑟=0

𝑐𝑟 (𝑢)(𝑢 + 𝑟)!
2𝑡−2𝑠−𝑢−𝑤+𝑟−2𝑞+𝑗∑

𝑚=0

𝑑𝑚𝛼𝑚,𝑝, (B.14)

and, here, we observe that

𝜎𝑠,𝑡,𝑗 (𝑤) = 0,
2𝑞 ≤ 𝑡 ≤ 2𝑞 + [𝑤 + 𝑝 − 𝑗 + 12 ] − 1, 𝑞 ≤ 𝑠 ≤ [𝑡 − 𝑤2 ] , (B.15)

𝜎𝑠,𝑡,𝑗 (𝑤) = 0,
𝑡 = 2𝑞 + [𝑤 + 𝑝 − 𝑗 + 12 ] , 𝑞 < 𝑠 ≤ [𝑡 − 𝑤2 ] . (B.16)
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Encyclopedia of Mathematics and its Applications, Cambridge
University Press, Cambridge, UK, 2nd edition, 1996.

[13] J. F. Geer, “Rational trigonometric approximations using
Fourier series partial sums,” Journal of Scientific Computing, vol.
10, no. 3, pp. 325–356, 1995.

[14] A. Nersessian and A. Poghosyan, “On a rational linear approx-
imation of Fourier series for smooth functions,” Journal of
Scientific Computing, vol. 26, no. 1, pp. 111–125, 2006.

[15] A. Poghosyan, “On a convergence of the Fourier-Pade approxi-
mation,”Armenian Journal of Mathematics, vol. 4, no. 2, pp. 49–
79, 2012.

[16] A. Poghosyan, “On some optimizations of trigonometric inter-
polation using Fourier discrete coefficients,” Armenian Journal
of Mathematics, vol. 4, no. 2, pp. 80–97, 2012.

[17] A. Poghosyan, “On a convergence of the Fourier-Pade interpo-
lation,” Armenian Journal of Mathematics, vol. 5, no. 1, pp. 1–25,
2013.

[18] A. Poghosyan, “On a fast convergence of the rational-
trigonometric-polynomial interpolation,” Advances in Numer-
ical Analysis, Art. ID 315748, 13 pages, 2013.

[19] A. Poghosyan, “On a convergence of the rational-trigono-
metric-polynomial approximations realized by the roots of
the Laguerre polynomials,” Natsionalnaya Akademiya Nauk
Armenii. Izvestiya. Matematika, vol. 48, no. 6, pp. 82–91, 2013.

[20] A. Poghosyan, “Asymptotic behavior of the Krylov-Lanczos
interpolation,” Analysis and Applications, vol. 7, no. 2, pp. 199–
211, 2009.

[21] V. Kac and P. Cheung, Quantum Calculus, Springer, New York,
NY, USA, 2001.

[22] A. Barkhudaryan, R. Barkhudaryan, and A. Poghosyan, “As-
ymptotic behavior of Eckhoff ’s method for Fourier series
convergence acceleration,” Analysis in Theory and Applications,
vol. 23, no. 3, pp. 228–242, 2007.

[23] K. S. Eckhoff, “Accurate and efficient reconstruction of discon-
tinuous functions from truncated series expansions,” Mathe-
matics of Computation, vol. 61, no. 204, pp. 745–763, 1993.

[24] K. S. Eckhoff, “Accurate reconstructions of functions of finite
regularity from truncated Fourier series expansions,” Mathe-
matics of Computation, vol. 64, no. 210, pp. 671–690, 1995.

[25] K. S. Eckhoff, “On a high order numerical method for functions
with singularities,”Mathematics of Computation, vol. 67, no. 223,
pp. 1063–1087, 1998.

[26] A. Krylov, On approximate calculations. Lectures delivered in
1906, Tipolitography of Birkenfeld, St. Petersburg, Russia, 1907.

[27] C. Lanczos, Discourse on Fourier series, vol. 76 of Classics
in Applied Mathematics, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2016.

[28] A. Poghosyan, “On an auto-correction phenomenon of the
Krylov-Gottlieb-Eckhoff method,” IMA Journal of Numerical
Analysis (IMAJNA), vol. 31, no. 2, pp. 512–527, 2011.

[29] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, And Mathematical Tables,
vol. 55 of National Bureau of Standards Applied Mathematics
Series, Superintendent of Documents, U.S. Government Print-
ing Office, Washington, DC, USA, 1964.

[30] J. Riordan,Combinatorial Identities,Wiley, NewYork, NY, USA,
1979.


