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For each 𝑥0 ∈ [0, 2𝜋) and 𝑘 ∈ N, we obtain some existence theorems of periodic solutions to the two-point boundary value
problem 𝑢󸀠󸀠(𝑥) + 𝑘2𝑢(𝑥 − 𝑥0) + 𝑔(𝑥, 𝑢(𝑥 − 𝑥0)) = ℎ(𝑥) in (0, 2𝜋) with 𝑢(0) − 𝑢(2𝜋) = 𝑢󸀠(0) − 𝑢󸀠(2𝜋) = 0 when 𝑔 : (0, 2𝜋) × R→ R
is a Caratheodory function which grows linearly in 𝑢 as |𝑢| → ∞, and ℎ ∈ 𝐿1(0, 2𝜋) may satisfy a generalized Landesman-
Lazer condition (1 + sign(𝛽)) ∫2𝜋

0
ℎ(𝑥)V(𝑥)𝑑𝑥 < ∫V(𝑥)>0 𝑔+𝛽(𝑥)|V(𝑥)|1−𝛽𝑑𝑥 + ∫V(𝑥)<0 𝑔−𝛽(𝑥)|V(𝑥)|1−𝛽𝑑𝑥 for all V ∈ 𝑁(𝐿)\{0}. Here𝑁(𝐿)

denotes the subspace of 𝐿1(0, 2𝜋) spanned by sin 𝑘𝑥 and cos 𝑘𝑥, −1 < 𝛽 ≤ 0, 𝑔+𝛽(𝑥) = liminf𝑢→∞(𝑔(𝑥, 𝑢)𝑢/|𝑢|1−𝛽), and 𝑔−𝛽(𝑥) =
liminf𝑢→−∞(𝑔(𝑥, 𝑢)𝑢/|𝑢|1−𝛽).

1. Introduction

Let𝑥0 ∈ [0, 2𝜋) and 𝑘 ∈ N be fixed.We consider the following
two-point boundary value problems:

𝑢󸀠󸀠 (𝑥) + 𝑘2𝑢 (𝑥 − 𝑥0) + 𝑔 (𝑥, 𝑢 (𝑥 − 𝑥0)) = ℎ (𝑥)
in (0, 2𝜋) ,

𝑢 (0) − 𝑢 (2𝜋) = 𝑢󸀠 (0) − 𝑢󸀠 (2𝜋) = 0,
(1)

𝑢󸀠󸀠 (𝑥) + 𝑘2𝑢 (𝑥) − 𝑔 (𝑥, 𝑢 (𝑥 − 𝑥0)) = −ℎ (𝑥)
in (0, 2𝜋) ,

𝑢 (0) − 𝑢 (2𝜋) = 𝑢󸀠 (0) − 𝑢󸀠 (2𝜋) = 0,
(2)

where ℎ ∈ 𝐿1(0, 2𝜋) is given and 𝑔 : (0, 2𝜋) × R → R is a
Caratheodory function; that is, 𝑔(𝑥, 𝑢) is continuous in 𝑢 ∈
R, for a.e. 𝑥 ∈ (0, 2𝜋), is measurable in 𝑥 ∈ (0, 2𝜋) for all
𝑢 ∈ R, and satisfies, for each 𝑟 > 0, the fact that there exists
an 𝑎𝑟 ∈ 𝐿1(0, 2𝜋) such that󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑢)󵄨󵄨󵄨󵄨 ≤ 𝑎𝑟 (𝑥) (3)
for a.e. 𝑥 ∈ (0, 2𝜋) and all |𝑢| ≤ 𝑟. Concerning the growth
condition of the nonlinear term 𝑔 to (1) and (2), we assume
that

(H) there exist constants −1 < 𝛽 ≤ 0, 𝑟0 > 0, and
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐿1(0, 2𝜋), 𝑎, 𝑏 ≥ 0 and 𝑎(𝑥) ≤ 2𝑘 + 1
for a.e. 𝑥 ∈ (0, 2𝜋) with strict inequality on a positive
measurable subset of (0, 2𝜋), such that for a.e. 𝑥 ∈
(0, 2𝜋) and all 𝑢 ≥ 𝑟0

𝑐 (𝑥) |𝑢|−𝛽 ≤ 𝑔 (𝑥, 𝑢) ≤ 𝑎 (𝑥) |𝑢| + 𝑏 (𝑥) ; (4)

and for a.e. 𝑥 ∈ (0, 2𝜋) and all 𝑢 ≤ −𝑟0
−𝑎 (𝑥) |𝑢| − 𝑏 (𝑥) ≤ 𝑔 (𝑥, 𝑢) ≤ 𝑑 (𝑥) |𝑢|−𝛽 ; (5)

(G) there exist constants −1 < 𝛽 ≤ 0, 𝑟0 > 0, and
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐿1(0, 2𝜋), 𝑎, 𝑏 ≥ 0 and 𝑎(𝑥) ≤ 2𝑘 − 1
for a.e. 𝑥 ∈ (0, 2𝜋) with strict inequality on a positive
measurable subset of (0, 2𝜋), such that for a.e. 𝑥 ∈
(0, 2𝜋) and all 𝑢 ≥ 𝑟0

𝑐 (𝑥) |𝑢|−𝛽 ≤ 𝑔 (𝑥, 𝑢) ≤ 𝑎 (𝑥) |𝑢| + 𝑏 (𝑥) ; (6)

and for a.e. 𝑥 ∈ (0, 2𝜋) and all 𝑢 ≤ −𝑟0
−𝑎 (𝑥) |𝑢| − 𝑏 (𝑥) ≤ 𝑔 (𝑥, 𝑢) ≤ 𝑑 (𝑥) |𝑢|−𝛽 ; (7)
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respectively, and a generalized Landesman-Lazer condition

0 < ∫
V(𝑥)>0

𝑔+𝛽 (𝑥) |V (𝑥)|1−𝛽 𝑑𝑥

+ ∫
V(𝑥)<0

𝑔−𝛽 (𝑥) |V (𝑥)|1−𝛽 𝑑𝑥,
(8)

for all V ∈ 𝑁(𝐿)\{0}, may be satisfied. Here 𝑁(𝐿) denotes
the subspace of 𝐿1(0, 2𝜋) spanned by sin 𝑘𝑥 and cos 𝑘𝑥,
𝛽 ∈ R, 𝑔+𝛽(𝑥) = lim inf𝑢→∞(𝑔(𝑥, 𝑢)𝑢/|𝑢|1−𝛽), and 𝑔−𝛽(𝑥) =
lim inf𝑢→−∞(𝑔(𝑥, 𝑢)𝑢/|𝑢|1−𝛽). Under assumptions and either
with or without the Landesman-Lazer condition

∫2𝜋
0
ℎ (𝑥) V (𝑥) 𝑑𝑥 < ∫

V(𝑥)>0
𝑔+0 |V (𝑥)| 𝑑𝑥

+ ∫
V(𝑥)<0

𝑔−0 |V (𝑥)| 𝑑𝑥
(9)

for all V ∈ 𝑁(𝐿)\{0}, the solvability of the problem (1) has
been extensively studied if the nonlinearity 𝑔(𝑥, 𝑢) has at
most linear growth in 𝑢 as |𝑢| → ∞ (see [1–13] for the case
𝑥0 = 0 and [14–16] for the general case) or grows superlinearly
in 𝑢 in one of directions 𝑢 → ∞ and 𝑢 → −∞ and may be
bounded in the other (see [8, 17] for the case 𝑥0 = 0 and [14]
for the general case when 𝑘 = 0). Based on the well-known
Leray-Schauder continuationmethod (see [18, 19]), we obtain
solvability theorems to (1) (resp., (2)) when 𝑔(𝑥, 𝑢) satisfies
(𝐻) (resp., (𝐺)) and either (8) with −1 < 𝛽 < 0 or (9) with
𝛽 = 0 is satisfied, which extends the results of [15] for the
nonresonance case, and has been established in [9] for the
case 𝑥0 = 0 and 𝑔(𝑥, 𝑢) grows sublinearly in 𝑢 as |𝑢| → ∞
with −1 < 𝛽 ≤ 1. Unfortunately, it is still unknown when
𝑘 ∈ N, 𝑔(𝑥, 𝑢) grows linearly in 𝑢 as |𝑢| → ∞ and the
assumption of (8) is replaced by

∫2𝜋
0
ℎ (𝑥) V (𝑥) 𝑑𝑥 = 0

< ∫
V(𝑥)>0

𝑔+𝛽 (𝑥) |V (𝑥)|1−𝛽 𝑑𝑥

+ ∫
V(𝑥)<0

𝑔−𝛽 (𝑥) |V (𝑥)|1−𝛽 𝑑𝑥

(10)

for all V ∈ 𝑁(𝐿)\{0} with 𝛽 > 0. In the following we
will make use of real Banach spaces 𝐿𝑝(0, 2𝜋), 𝐶[0, 2𝜋]
and Sobolev spaces 𝑊2,1(0, 2𝜋) and 𝐻1(0, 2𝜋). The norms
of 𝐿𝑝(0, 2𝜋), 𝐶[0, 2𝜋] and 𝐻1(0, 2𝜋) are denoted by
‖𝑢‖𝐿𝑝 , ‖𝑢‖𝐶 and ‖𝑢‖𝐻1 , respectively. By a solution of (1), we
mean a periodic function 𝑢 : R → R of period 2𝜋 which
belongs to 𝑊2,1(0, 2𝜋) and satisfies the differential equation
in (1) a.e. 𝑥 ∈ (0, 2𝜋).

2. Existence Theorems

For each V ∈ 𝑊2,1(0, 2𝜋) with V(0) − V(2𝜋) = V󸀠(0) − V󸀠(2𝜋) =
0 and 𝑘 ∈ N, we write V = ∑0≤𝑗≤𝑘 𝑃𝑗V, Ṽ = ∑𝑗>𝑘 𝑃𝑗V, and
V⊥ = ∑0≤𝑗 ̸=𝑘 𝑃𝑗V. Here 𝑃𝑗V denotes the projection of V on the

eigenspace of𝑑2/𝑑𝑥2 spanned by sin 𝑗𝑥 and cos 𝑗𝑥 for 𝑗 ∈ N∪
{0}. Just as an application of [11, Lemma 2] or [1, Lemma 2.2],
we can modify slightly the proof of [15, Lemma 1] to obtain
the next lemma.

Lemma 1. Let 𝑘 ∈ N ∪ {0} and Γ be a nonnegative 𝐿1(0, 2𝜋)-
function such that for a.e. 𝑥 ∈ (0, 2𝜋), Γ(𝑥) ≤ 2𝑘+1with strict
inequality on a positivemeasurable subset of (0, 2𝜋).Then there
exists a constant 𝐾1 > 0 such that

∫2𝜋
0
(𝑢 (𝑥 − 𝑥0) − 𝑢̃ (𝑥))
⋅ (𝑢󸀠󸀠 (𝑥) + 𝑘2𝑢 (𝑥 − 𝑥0) + 𝑝 (𝑥) 𝑢 (𝑥 − 𝑥0)) 𝑑𝑥
≥ 𝐾1 󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩

2

𝐻1

(11)

whenever 𝑝 ∈ 𝐿1(0, 2𝜋) with 0 ≤ 𝑝(𝑥) ≤ Γ(𝑥) for a.e. 𝑥 ∈
(0, 2𝜋) and 𝑢 ∈ 𝑊2,1(0, 2𝜋) is a periodic function of period 2𝜋
with 𝑢(0) − 𝑢(2𝜋) = 𝑢󸀠(0) − 𝑢󸀠(2𝜋) = 0.
Proof. Just as in [20, Lemma 1], we can modify slightly the
proof of [11, Lemma 2] or [1, Lemma 2.2] to obtain the fact
that there exists a constant𝐾1 > 0 such that

∫2𝜋
0
(𝑢̃󸀠 (𝑥))2 − (𝑘2 + 𝑝 (𝑥)) (𝑢̃ (𝑥))2 𝑑𝑥

+ ∫2𝜋
0
(𝑘2 + 𝑝 (𝑥)) (𝑢 (𝑥))2 − (𝑢󸀠 (𝑥))2 𝑑𝑥

≥ 2𝐾1 󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩
2

𝐻1

(12)

whenever 𝑝 ∈ 𝐿1(0, 2𝜋) with 0 ≤ 𝑝(𝑥) ≤ Γ(𝑥) for a.e.
𝑥 ∈ (0, 2𝜋) and 𝑢 ∈ 𝑊2,1(0, 2𝜋) with 𝑢(0) − 𝑢(2𝜋) = 𝑢󸀠(0) −
𝑢󸀠(2𝜋) = 0. Let us extend 𝑢(𝑥) and 𝑝(𝑥) 2𝜋 periodically in 𝑥
to all of R and then use the same notations for the periodic
extensions as for the original functions. In this case, we have
∫2𝜋
0
(𝑢̃󸀠(𝑥))2𝑑𝑥 = ∫2𝜋

0
(𝑢̃󸀠(𝑥 − 𝑥0))2𝑑𝑥 and

∫2𝜋
0
[𝑢󸀠󸀠 (𝑥) + (𝑘2 + 𝑝 (𝑥)) 𝑢 (𝑥 − 𝑥0)]

⋅ (𝑢 (𝑥 − 𝑥0) − 𝑢̃ (𝑥)) 𝑑𝑥 = ∫
2𝜋

0
(𝑢̃󸀠 (𝑥))2 𝑑𝑥

− ∫2𝜋
0
𝑢󸀠 (𝑥) 𝑢󸀠 (𝑥 − 𝑥0) 𝑑𝑥 + 1

2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ [(𝑢 (𝑥 − 𝑥0))2 − (𝑢̃ (𝑥))2 − (𝑢̃ (𝑥 − 𝑥0))2] 𝑑𝑥

+ 1
2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ [𝑢 (𝑥 − 𝑥0) + 𝑢̃ (𝑥 − 𝑥0) − 𝑢̃ (𝑥)]2 𝑑𝑥
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≥ ∫2𝜋
0
(𝑢̃󸀠 (𝑥))2 𝑑𝑥 − 1

2 ∫
2𝜋

0
(𝑢󸀠 (𝑥))2

+ (𝑢󸀠 (𝑥 − 𝑥0))2 𝑑𝑥 + 1
2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ [(𝑢 (𝑥 − 𝑥0))2 − (𝑢̃ (𝑥))2 − (𝑢̃ (𝑥 − 𝑥0))2] 𝑑𝑥

+ 1
2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ [𝑢 (𝑥 − 𝑥0) + 𝑢̃ (𝑥 − 𝑥0) − 𝑢̃ (𝑥)]2 𝑑𝑥 ≥ 1
2

⋅ ∫2𝜋
0
(𝑢̃󸀠 (𝑥))2

− (𝑘2 + 𝑝 (𝑥)) (𝑢̃ (𝑥))2 𝑑𝑥 + 1
2

⋅ ∫2𝜋
0
(𝑢̃󸀠 (𝑥 − 𝑥0))2 − (𝑘2 + 𝑝 (𝑥))

⋅ (𝑢̃ (𝑥 − 𝑥0))2 𝑑𝑥 + 1
2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ (𝑢 (𝑥 − 𝑥0))2 − (𝑢󸀠 (𝑥 − 𝑥0))2 𝑑𝑥 − 1
2

⋅ ∫2𝜋
0
(𝑢󸀠 (𝑥))2 𝑑𝑥 + 1

2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ [𝑢 (𝑥 − 𝑥0) + 𝑢̃ (𝑥 − 𝑥0) − 𝑢̃ (𝑥)]2 𝑑𝑥.
(13)

Since∫2𝜋
0
(𝑢(𝑥))2𝑑𝑥 = ∫2𝜋

0
(𝑢(𝑥−𝑥0))2𝑑𝑥, 𝑝(𝑥) ≥ 0 for a.e.𝑥 ∈

(0, 2𝜋), and ∫2𝜋
0

V(𝑥)𝑤(𝑥) = 0 for all V, 𝑤 ∈ 𝑊2,1(0, 2𝜋) with
V(0) − V(2𝜋) = V󸀠(0) − V󸀠(2𝜋) = 0 and𝑤(0) −𝑤(2𝜋) = 𝑤󸀠(0) −
𝑤󸀠(2𝜋) = 0, we have ∫2𝜋

0
(𝑢̃󸀠(𝑥))2 − (𝑘2 + 𝑝(𝑥))(𝑢̃(𝑥))2𝑑𝑥 ≥ 0

and

− 1
2 ∫
2𝜋

0
(𝑢󸀠 (𝑥))2 𝑑𝑥 + 1

2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ [𝑢 (𝑥 − 𝑥0) + 𝑢̃ (𝑥 − 𝑥0) − 𝑢̃ (𝑥)]2 𝑑𝑥 ≥ −12
⋅ ∫2𝜋
0
(𝑢󸀠 (𝑥))2 𝑑𝑥 + 1

2
⋅ ∫2𝜋
0
𝑘2 [𝑢 (𝑥 − 𝑥0) + 𝑢̃ (𝑥 − 𝑥0) − 𝑢̃ (𝑥)]2 𝑑𝑥

= 1
2 [−∫

2𝜋

0
(𝑢󸀠 (𝑥))2 𝑑𝑥

+ 𝑘2 ∫2𝜋
0
(𝑢 (𝑥 − 𝑥0))2 𝑑𝑥] + 1

2
⋅ 𝑘2 ∫2𝜋
0
[𝑢̃ (𝑥 − 𝑥0) − 𝑢̃ (𝑥)]2 𝑑𝑥 ≥ 0.

(14)

Combining (12) with (13), we have

∫2𝜋
0
(𝑢 (𝑥 − 𝑥0) − 𝑢̃ (𝑥))
⋅ (𝑢󸀠󸀠 (𝑥) + 𝑘2𝑢 (𝑥 − 𝑥0) + 𝑝 (𝑥) 𝑢 (𝑥 − 𝑥0)) 𝑑𝑥

≥ 1
2 ∫
2𝜋

0
(𝑢̃󸀠 (𝑥 − 𝑥0))2 − (𝑘2 + 𝑝 (𝑥))

⋅ (𝑢̃ (𝑥 − 𝑥0))2 𝑑𝑥 + 1
2 ∫
2𝜋

0
(𝑘2 + 𝑝 (𝑥))

⋅ (𝑢 (𝑥 − 𝑥0))2 − (𝑢󸀠 (𝑥 − 𝑥0))2 𝑑𝑥
≥ 𝐾1 󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩

2

𝐻1(𝑥0 ,𝑥0+2𝜋)
= 𝐾1 󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩

2

𝐻1
.

(15)

Lemma 2. Let 𝑘 ∈ N and Γ be a nonnegative 𝐿1(0, 2𝜋)-
function such that for a.e. 𝑥 ∈ (0, 2𝜋), Γ(𝑥) ≤ 2𝑘−1with strict
inequality on a positivemeasurable subset of (0, 2𝜋).Then there
exists a constant 𝐾2 > 0 such that

∫2𝜋
0
(𝑢 (𝑥 − 𝑥0) − ̃̃𝑢 (𝑥))
⋅ (𝑢󸀠󸀠 (𝑥) + 𝑘2𝑢 (𝑥) − 𝑝 (𝑥) 𝑢 (𝑥 − 𝑥0)) 𝑑𝑥
≥ 𝐾2 󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩

2

𝐻1

(16)

whenever 𝑝 ∈ 𝐿1(0, 2𝜋) with 0 ≤ 𝑝(𝑥) ≤ Γ(𝑥) for a.e. 𝑥 ∈
(0, 2𝜋) and 𝑢 ∈ 𝑊2,1(0, 2𝜋) is a periodic function of period 2𝜋
with 𝑢(0) − 𝑢(2𝜋) = 𝑢󸀠(0) − 𝑢󸀠(2𝜋) = 0. Here V = ∑0≤𝑗<𝑘 𝑃𝑗V
and ̃̃V = ∑𝑗≥𝑘 𝑃𝑗V for each V ∈ 𝑊2,1(0, 2𝜋) with V(0) − V(2𝜋) =
V󸀠(0) − V󸀠(2𝜋) = 0.
Theorem 3. Let 𝑘 ∈ N ∪ {0} and 𝑔 : (0, 2𝜋) × R → R
be a Caratheodory function satisfying (𝐻). Then for each ℎ ∈
𝐿1(0, 2𝜋) problem (1) has a solution 𝑢, provided that either (8)
with −1 < 𝛽 < 0 or (9) with 𝛽 = 0 holds.
Proof. Let 𝛼 ∈ R be fixed and 0 < 𝛼 < 2𝑘 + 1.We consider
the boundary value problems

𝑢󸀠󸀠 (𝑥) + 𝑘2𝑢 (𝑥 − 𝑥0) + (1 − 𝑡) 𝛼𝑢 (𝑥 − 𝑥0)
+ 𝑡𝑔 (𝑥, 𝑢 (𝑥 − 𝑥0)) = 𝑡ℎ (𝑥) in (0, 2𝜋) ,

𝑢 (0) − 𝑢 (2𝜋) = 𝑢󸀠 (0) − 𝑢󸀠 (2𝜋) = 0
(17)

for 0 ≤ 𝑡 ≤ 1, which becomes the original problem when
𝑡 = 1. Since 0 < 𝛼 < 2𝑘 + 1, we observe from Lemma 1
that (17) has only a trivial solution when 𝑡 = 0. To apply the
Leray-Schauder continuation method, it suffices to show that
solutions to (17) for 0 < 𝑡 < 1 have an a priori bound in
𝐻1(0, 2𝜋). To this end, let 𝜃 : R → R be a continuous function
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such that 0 ≤ 𝜃 ≤ 1, 𝜃(𝑢) = 0 for |𝑢| ≤ 𝑟0, and 𝜃(𝑢) = 1 for
|𝑢| ≥ 2𝑟0. We define 𝑒(𝑥) = max{𝑎𝑟0(𝑥), 𝑏(𝑥), |𝑐(𝑥)|, |𝑑(𝑥)|},

𝑔1 (𝑥, 𝑢)

= {{
{
min {𝑔 (𝑥, 𝑢) + 𝑒 (𝑥) |𝑢|−𝛽 , 𝑎 (𝑥) 𝑢} 𝜃 (𝑢) if 𝑢 ≥ 0
max {𝑔 (𝑥, 𝑢) − 𝑒 (𝑥) |𝑢|−𝛽 , 𝑎 (𝑥) 𝑢} 𝜃 (𝑢) if 𝑢 ≤ 0,

(18)

and 𝑔2(𝑥, 𝑢) = 𝑔(𝑥, 𝑢) − 𝑔1(𝑥, 𝑢).Then 𝑔1, 𝑔2 : (0, 2𝜋) × R →
R are Caratheodory functions, such that for a.e. 𝑥 ∈ (0, 2𝜋)
and 𝑢 ∈ R, 𝑢 ̸= 0

0 ≤ 𝑔1 (𝑥, 𝑢)
𝑢 ≤ 𝑎 (𝑥) , (19)

󵄨󵄨󵄨󵄨𝑔2 (𝑥, 𝑢)󵄨󵄨󵄨󵄨 ≤ 𝑒 (𝑥) |𝑢|−𝛽 + 𝑒 (𝑥) . (20)

If 𝑢 is a possible solution to (17) for some 0 < 𝑡 < 1, then
using (19), (20), and Lemma 1, we have

0 = ∫2𝜋
0
(𝑢 (𝑥) − 𝑢̃ (𝑥 − 𝑥0)) [𝑢󸀠󸀠 (𝑥) + 𝑘2𝑢 (𝑥 − 𝑥0)

+ (1 − 𝑡) 𝛼𝑢 (𝑥 − 𝑥0) + 𝑡𝑔1 (𝑥, 𝑢 (𝑥 − 𝑥0))
+ 𝑡𝑔2 (𝑥, 𝑢 (𝑥 − 𝑥0)) − 𝑡ℎ (𝑥)] 𝑑𝑥
≥ 𝐾1 󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩

2

𝐻1
− (‖𝑒‖𝐿1 ‖𝑢‖−𝛽𝐶 + ‖𝑒‖𝐿1 + ‖ℎ‖𝐿1) (‖𝑢‖𝐶

+ ‖𝑢̃‖𝐶) ≥ 𝐾1 󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩
2

𝐻1
− 𝐶1 (‖𝑢‖−𝛽𝐶 + 1) (‖𝑢‖𝐻1

+ ‖𝑢̃‖𝐻1) ,

(21)

which implies that

󵄩󵄩󵄩󵄩󵄩𝑢⊥󵄩󵄩󵄩󵄩󵄩
2

𝐻1
≤ 𝐶1
𝐾1 (‖𝑢‖

−𝛽

𝐶 + 1) (‖𝑢‖𝐻1 + ‖𝑢̃‖𝐻1)

≤ 𝐶2 (‖𝑢‖𝐻1 + ‖𝑢‖1−𝛽𝐻1 )
(22)

for some constants 𝐶1, 𝐶2 > 0 independent of 𝑢. It remains
to show that solutions to (17) for 0 < 𝑡 < 1 have an a priori
bound in𝐻1(0, 2𝜋). We argue by contradiction and suppose
that there exists a sequence {𝑢𝑛} of periodic functions with
period 2𝜋 and a corresponding sequence {𝑡𝑛} in (0, 1) such
that 𝑢𝑛 is a solution to (17) with 𝑡 = 𝑡𝑛 and ‖𝑢𝑛‖𝐻1 ≥ 𝑛 for
all 𝑛. Let V𝑛 = 𝑢𝑛/‖𝑢𝑛‖𝐻1 ; then ‖V𝑛‖𝐻1 = 1 for all 𝑛 ∈ N, and
by (22) we have ‖V⊥𝑛 ‖𝐻1 → 0 as 𝑛 → ∞. Since ‖V𝑛‖𝐻1 = 1
and ‖𝑃𝑘V𝑛‖𝐻1 ≤ ‖V𝑛‖𝐻1 + ‖V⊥𝑛 ‖𝐻1 for all 𝑛 ∈ N, we have a
bounded sequence {𝑃𝑘V𝑛} in𝐻1(0, 2𝜋). For simplicity, wemay
assume that V𝑛 converges to V in𝐻1(0, 2𝜋) for some V ∈ 𝑁(𝐿)
with ‖V‖𝐻1 = 1. In particular, V𝑛 → V in 𝐶[0, 2𝜋]. Clearly,
V(⋅ − 𝑥0) ∈ 𝑁(𝐿) and ‖V(⋅ − 𝑥0)‖𝐻1 = ‖V‖𝐻1 . It follows that𝑢𝑛(𝑥) → ∞ for each 𝑥 ∈ R with V(𝑥) > 0, and 𝑢𝑛(𝑥) →
−∞ for each 𝑥 ∈ R with V(𝑥) < 0. Since ∫2𝜋

0
𝑢󸀠󸀠𝑛 (𝑥)𝑃𝑘𝑢𝑛(𝑥 −

𝑥0)𝑑𝑥 + ∫2𝜋
0
𝑘2𝑢𝑛(𝑥)𝑃𝑘𝑢𝑛(𝑥 − 𝑥0)𝑑𝑥 = 0 and ‖𝑃𝑘𝑢𝑛(⋅)‖2𝐿2 =‖𝑃𝑘𝑢𝑛(⋅ − 𝑥0)‖2𝐿2 , we have

∫2𝜋
0
𝑢󸀠󸀠𝑛 (𝑥) 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) 𝑑𝑥 + ∫

2𝜋

0
𝑘2𝑢𝑛 (𝑥 − 𝑥0)

⋅ 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) 𝑑𝑥 = ∫
2𝜋

0
𝑢󸀠󸀠𝑛 (𝑥)

⋅ 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) 𝑑𝑥 + ∫
2𝜋

0
𝑘2𝑢𝑛 (𝑥)

⋅ 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) 𝑑𝑥
+ ∫2𝜋
0
𝑘2 [𝑢𝑛 (𝑥 − 𝑥0) − 𝑢𝑛 (𝑥)]

⋅ 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) 𝑑𝑥
= ∫2𝜋
0
𝑘2 [𝑢𝑛 (𝑥 − 𝑥0) − 𝑢𝑛 (𝑥)]

⋅ 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) 𝑑𝑥
= ∫2𝜋
0
𝑘2 [𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) − 𝑃𝑘𝑢𝑛 (𝑥)]

⋅ 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0) 𝑑𝑥 ≥ 0.

(23)

Multiplying each side of (17) by 𝑃𝑘V𝑛(𝑥 − 𝑥0), and then
integrating them over [0, 2𝜋] when 𝑢 = 𝑢𝑛 and 𝑡 = 𝑡𝑛, we
get

𝑡𝑛 ∫
2𝜋

0
𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 𝑑𝑥

≤ (1 − 𝑡𝑛) 𝛼∫
2𝜋

0
𝑢𝑛 (𝑥 − 𝑥0) 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 𝑑𝑥

+ 𝑡𝑛 ∫
2𝜋

0
𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 𝑑𝑥

≤ 𝑡𝑛 ∫
2𝜋

0
ℎ (𝑥) 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 𝑑𝑥.

(24)

By (19) and the assumption of −1 < 𝛽 ≤ 0, we have
𝑔1 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1

= 𝑔1 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0))
𝑢𝑛 (𝑥 − 𝑥0) 𝑢𝑛 (𝑥 − 𝑥0) 𝑃𝑘V𝑛 (𝑥 − 𝑥0)

⋅ 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 ≥
𝑔1 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0))

𝑢𝑛 (𝑥 − 𝑥0)
⋅ −12 [𝑢𝑛 (𝑥 − 𝑥0) − 𝑃𝑘𝑢𝑛 (𝑥 − 𝑥0)]2 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽−1𝐻1 ≥ −1

2
⋅ 𝑎 (𝑥) [𝑢⊥𝑛 (𝑥 − 𝑥0)]2 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽−1𝐻1

(25)

for a.e. 𝑥 ∈ (0, 2𝜋). Combining (22) with (25), we get that
𝑔1(𝑥, 𝑢𝑛(𝑥 − 𝑥0))𝑃𝑘V𝑛(𝑥 − 𝑥0)‖𝑢𝑛‖𝛽𝐻1 is bounded from below
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by an 𝐿1(0, 2𝜋)-function independent of 𝑛. By (20) and the
assumption of −1 < 𝛽 ≤ 0, we have

󵄨󵄨󵄨󵄨𝑔2 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1
≤ [𝑒 (𝑥) 󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨−𝛽 + 𝑒 (𝑥)] 󵄨󵄨󵄨󵄨𝑃𝑘V𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨
⋅ 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 ≤ [𝑒 (𝑥) 󵄨󵄨󵄨󵄨V𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨−𝛽 + 𝑒 (𝑥)]
⋅ 󵄨󵄨󵄨󵄨𝑃𝑘V𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨

(26)

for a.e. 𝑥 ∈ (0, 2𝜋), In particular, 𝑔2(𝑥, 𝑢𝑛(𝑥 −
𝑥0))𝑃𝑘V𝑛(𝑥 − 𝑥0)‖𝑢𝑛‖𝛽𝐻1 is bounded from below by an
𝐿1(0, 2𝜋)-function independent of 𝑛, which implies
that 𝑔(𝑥, 𝑢𝑛(𝑥 − 𝑥0))𝑃𝑘V𝑛(𝑥 − 𝑥0)‖𝑢𝑛‖𝛽𝐻1 is also so,
∫V(𝑥−𝑥0)=0 lim inf𝑛→∞𝑔(𝑥, 𝑢𝑛(𝑥 − 𝑥0))𝑃𝑘V𝑛(𝑥 − 𝑥0)‖𝑢𝑛‖𝛽𝐻1𝑑𝑥 =0, and

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1
= 𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑢𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨1−𝛽

⋅ 𝑃𝑘V𝑛 (𝑥 − 𝑥0) sgn (𝑢𝑛 (𝑥 − 𝑥0))󵄨󵄨󵄨󵄨V𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨𝛽

(27)

for all 𝑛 ∈ N with 𝑢𝑛(𝑥 − 𝑥0) ̸= 0. Here sign(𝑤) = 1 if 𝑤 > 0,
sign(𝑤) = 0 if 𝑤 = 0, and sign(𝑤) = −1 if 𝑤 < 0. Applying
Fatou’s lemma to the integral ∫2𝜋

0
𝑔(𝑥, 𝑢𝑛(𝑥 − 𝑥0))𝑃𝑘V𝑛(𝑥 −

𝑥0)‖𝑢𝑛‖𝛽𝐻1𝑑𝑥, we have

∫
V(𝑥−𝑥0)>0

𝑔+𝛽 (𝑥) 󵄨󵄨󵄨󵄨V (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨1−𝛽 𝑑𝑥 + ∫
V(𝑥−𝑥0)<0

𝑔−𝛽 (𝑥)

⋅ 󵄨󵄨󵄨󵄨V (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨1−𝛽 𝑑𝑥

= ∫
V(𝑥−𝑥0)>0

lim inf
𝑛→∞

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑢𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨1−𝛽

⋅ lim
𝑛→∞

𝑃𝑘V𝑛 (𝑥 − 𝑥0) sgn (𝑢𝑛 (𝑥 − 𝑥0))󵄨󵄨󵄨󵄨V𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨𝛽
𝑑𝑥

+ ∫
V(𝑥−𝑥0)<0

lim inf
𝑛→∞

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑢𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨1−𝛽

⋅ lim
𝑛→∞

𝑃𝑘V𝑛 (𝑥 − 𝑥0) sgn (𝑢𝑛 (𝑥 − 𝑥0))󵄨󵄨󵄨󵄨V𝑛 (𝑥 − 𝑥0)󵄨󵄨󵄨󵄨𝛽
𝑑𝑥

= ∫
V(𝑥−𝑥0)>0

lim inf
𝑛→∞

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0)

⋅ 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 𝑑𝑥
+ ∫

V(𝑥−𝑥0)<0
lim inf
𝑛→∞

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0)

⋅ 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 𝑑𝑥
= ∫

V(𝑥−𝑥0)>0
lim inf
𝑛→∞

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0)

⋅ 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 𝑑𝑥
+ ∫

V(𝑥−𝑥0)<0
lim inf
𝑛→∞

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0)

⋅ 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 𝑑𝑥 + ∫V(𝑥−𝑥0)=0 lim𝑛→∞𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0))

⋅ 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 𝑑𝑥
= ∫2𝜋
0

lim inf
𝑛→∞

𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0)) 𝑃𝑘V𝑛 (𝑥 − 𝑥0)

⋅ 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 𝑑𝑥 ≤ lim inf
𝑛→∞

∫2𝜋
0
𝑔 (𝑥, 𝑢𝑛 (𝑥 − 𝑥0))

⋅ 𝑃𝑘V𝑛 (𝑥 − 𝑥0) 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝛽𝐻1 𝑑𝑥 ≤ (1 + sign (𝛽))
⋅ ∫2𝜋
0
ℎ (𝑥) V (𝑥 − 𝑥0) 𝑑𝑥,

(28)

which is a contradiction when either (8) with −1 < 𝛽 < 0 or
(9) with 𝛽 = 0 is satisfied. Hence, the proof of this theorem is
complete.

By slightly modifying the proof of Theorem 3, we can
apply Lemma 2 to obtain an existence theorem to (2) when
condition (𝐻) is replaced by (𝐺) and either (8) with −1 < 𝛽 <
0 or (9) with 𝛽 = 0 is satisfied, which has been established in
[20] for the case 𝑥0 = 0 when (9) with 𝛽 = 0 is satisfied and
in [9] for the case 𝑥0 = 0 when (8) with 𝛽 = −1 is satisfied.
Theorem 4. Let 𝑘 ∈ N and 𝑔 : (0, 2𝜋) × R → R be
a Caratheodory function satisfying (𝐺). Then for each ℎ ∈
𝐿1(0, 2𝜋) problem (2) has a solution 𝑢, provided that either (8)
with −1 < 𝛽 < 0 or (9) with 𝛽 = 0 holds.
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