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The one-dimensional advection-diffusion-reaction equation is a mathematical model describing transport and diffusion problems
such as pollutants and suspended matter in a stream or canal. If the pollutant concentration at the discharge point is not uniform,
then numerical methods and data analysis techniques were introduced. In this research, a numerical simulation of the one-
dimensional water-quality model in a stream is proposed. The governing equation is advection-diffusion-reaction equation with
nonuniform boundary condition functions. The approximated pollutant concentrations are obtained by a Saulyev finite difference
technique. The boundary condition functions due to nonuniform pollutant concentrations at the discharge point are defined by
the quadratic interpolation technique. The approximated solutions to the model are verified by a comparison with the analytical
solution. The proposed numerical technique worked very well to give dependable and accurate solutions to these kinds of several

real-world applications.

1. Introduction

Water quality must be protected and maintained for sev-
eral uses, the principal ones being domestic water supply,
energy production, industry, agriculture, fish, and wildlife.
Mathematical modeling of the water pollution measurement
and control in the water area has been examined. In [1], a
simulation process showing that water pollution levels can be
reduced to an agreed standard at the lowest cost is proposed.

In [2], mathematical modeling of the transport salinity,
pollutants, and suspended matter in shallow water that
involves the numerical solution of an advection-diffusion
equation is proposed. A novel technique of finite difference
methods is proposed. In [3], the authors also proposed a
mathematical modeling of the transport salinity, pollutants,
and suspended matter in shallow water that involves the
numerical solution of an advection-diffusion equation in the
technique of flux-corrected scheme of finite difference meth-
ods. It is available for the solution of the depth-integrated

form of the advection-diffusion equation. In [4, 5], the
advection and diffusion terms are solved by two different
numerical methods.

In [6], the authors used a weighted discretization method
with the modified equivalent partial differential equation
for solving the one-dimensional advection-diffusion equa-
tion. In [7], the authors introduce the central difference
approximation that gives some negative concentration in
the neighboring cell due to a large advection flux. In [8],
the authors proposed a numerical dispersion by introduc-
ing an upstream interpolation method, namely, QUICK
(Quadratic Upstream Interpolation Convective Kinematics),
for one-dimensional unsteady flow. In [9], parabolic partial
differential equations with a nonstandard initial condition,
featured in the mathematical modeling of many phenomena,
are proposed. Saulyev’s explicit schemes are an economical
implement to use. These unconditionally explicit schemes
are very simple to program and compute. The new explicit
schemes developed are very efficient and they need less CPU


http://orcid.org/0000-0002-0945-7344
http://dx.doi.org/10.1155/2018/1926519

time than the implicit methods. The explicit finite difference
schemes are very easy to implement for similar higher-
dimensional problems. In [10], a user friendly and a flexible
solution algorithm are proposed for the numerical solution
of the one-dimensional advection-diffusion equation (ADE),
and an explicit spreadsheet simulation (ESS) technique is
used instead of a computer code. In the numeric solution
of ADE using finite differences, either a small value of the
Courant number such as 0.05-0.10 is used for oscillation-
free results or an artificial diffusion is used in order to reduce
oscillation. In order to provide for small Courant numbers,
it is necessary to choose a small time step and/or grid size;
however, this increases the computation time. While the
proposed ADEESS solution technique uses an unconditional
stable Saulyev scheme, it gives highly accurate results even
for the values of the Courant numbers as high as 2-3. By
varying only the values of the temporal weighted parameter
(0), namely, 0, 0.5, and 1, respectively, the problems are solved.
The model results for the value of @ = 0 appear to be in good
agreement with the analytical solutions.

In [11], a better finite difference scheme to solve
the dynamic one-dimensional advection-dispersion-reaction
equations (ADRE) is focused upon, and the effect of nonuni-
form water flows in a stream is considered. There are two
mathematical models used to simulate pollution due to
sewage effluent. The first model is a hydrodynamic model
for numerical techniques. The Crank-Nicolson method is
used to approximate the solution. The second model is an
advection-dispersion-reaction model; the explicit schemes
are introduced. The revised explicit schemes are modified
from two computation techniques of uniform flow stream
problems: forward time central space (FTCS) and Saulyev
schemes for the dispersion model. A comparison of both
schemes regarding the stability aspect is provided so as to
illustrate their applicability to the real-world problem.

The dispersion model provides the pollutant concen-
tration field. In [12], a modified MacCormack method is
subsequently employed in the dispersion model. The pro-
posed method is a simply remarkable alteration to the
MacCormack method so as to make it more accurate without
any significant loss of computational efficiency. The results
obtained indicate that the proposed modified MacCormack
scheme does improve the prediction accuracy compared to
the traditional MacCormack method. In [13], the authors
proposed a simple revision to the MacCormack and Saulyev
schemes that improves their accuracy for high Peclet number
problems, which are named the Saulyev and MacCormack
schemes, respectively, greatly improving the prediction accu-
racy over the original ones. They proposed a new scheme
that guarantees the positivity of the solutions for arbitrary
step sizes. In [14], they developed a numerical technique to
approximate the solution of an advection-diffusion-reaction
equation in one spatial dimension with constant velocity
and diffusion. In [15], the Preissmann four-point partial-
node implicit scheme is used to solve a one-dimensional
hydrodynamic and water-quality model. In [16], a nondi-
mensional form of a two-dimensional hydrodynamic model
with a generalized boundary condition and initial conditions
for describing the elevation of water wave in an open
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uniform reservoir is proposed. The separation of variables
method with mathematical induction is employed to find
an analytical solution to the model. In [17], the traditional
Crank-Nicolson method is also used in the hydrodynamic
model. At each step, the flow velocity fields calculated from
the hydrodynamic model are the inputs into the water-
quality model. A new fourth-order scheme and a Saulyev
scheme are simultaneously employed in the water-quality
model. In [18], the hydrodynamics model coupled with water
quality is established by MIKE21FM software to simulate the
current situation of Erhai Lake. The water quality is also
simulated by the two-dimensional hydrodynamics and water-
quality coupled model. The simple explicit schemes have the
advantages of simplicity in computing without losing more
accuracy and these schemes are precedent for several model
applications. To identify the best one of these simple schemes,
comparative studies of these are necessary.

The collected field data is not suitable to input into a
mathematical model. The data is varied by time. The time-
dependent distributions of discharged pollutant concentra-
tion and water flow velocity are required. It is complicated
work if we input them into computer implementation while
a given function has a simpler operation. The object of this
research is to propose an interpolation technique to all of the
collected field data such as water pollutant concentration at
the released polluted water point and the water flow velocity
along the considered water stream. The revision shows good
agreement solutions. The proposed technique is suitable to
be used in several real-world problems because it is easy to
program and because of the straightforwardness of the imple-
mentation. According to field water-quality data, the data will
be implemented to be a function of the boundary condition.
The Lagrange interpolation technique is used to synthesize
their boundary conditions as required. A simple advection-
diffusion-reaction numerical simulation is proposed using
the Saulyev scheme. The proposed numerical technique uses
an unconditionally stable method. A large or small time step
and/or grid size can be employed in the proposed techniques.
We apply the method to two problems with different data for
obtaining the right and left boundary conditions. The results
of the model show that the calculated results are reliable
approximations.

2. One-Dimensional Water-Quality Model

2.1. The Governing Equation. In this section, we consider
the parabolic equation. The mathematical model describing
the transport and diffusion processes is a one-dimensional
advection-diffusion-reaction equation (ADRE):

oc oc o%c
—+u—=D—-KC, O0<x<L 0<t<T. @
ot ox T Uox X

2.2. Initial and Boundary Conditions. The initial condition is

c(x,0)=f(x), 0<x<IL, 2)
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and boundary conditions are

c(0,t)=g(t), 0<t<T,

c(L,t)=h(t),

©)
0<t<T,

where x is the longitudinal distance along the stream, t
is time, T is the last time, and f(x), g(t), and h(t) are
interpolated functions, while c¢(x,t) is the concentration
averaged in depth at the point x and at time ¢, u(x, t) is the
water flow velocity in the xdirection for all x € [0, L] at time
t, D is the dispersion coefficient, and K is the mass decay rate.

3. Numerical Technique

3.1. An Explicit Finite Difference Technique. The solution
domain of the problem is covered by a mesh of grid lines.
The grid point (x;,t,) is defined by x; = iAx for alli =
0,1,2,...,Mandt, =nAtforalln = 0 1,2,...,N in which
M and N are positive integers, where x; and ¢, are parallel to
the space and time coordinate axes. The constant spatial and
temporal grid spacing are Ax = L/M and At = T/N.

Consider the following approximations of the derivative
in the advection-diffusion equation which incorporate time
weights 0 as follows [10]:

aC C‘n+1 _ CAn
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where 0 is the weighting factor. Substituting (4) into (1), we

get [10]
@[5 (5]
Pe
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©)
+ [l+g—2<g>+6<cr>+KAt]
2 Pe Pe
Cr Cr] ,
3l

forl<i<M-1land1 <n< N -1, where Cr = uAt/Ax is
Courant number and Pe = uAx/D is Peclet number.

Although (5) does not seem explicit, because ¢! and ¢
are on the left-hand side, a suitable use of the equatlon makes
it explicit.

n+1

Therefore, (5) can be written in the following form:

n+l 1

S T 1+Cr/2+06(Cr/Po)] {[Cr +0(%)]Cﬂl

[ Cr Cr n
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For the advection term, we apply the scheme of either u > 0
or u < 0. Thus, the scheme is restricted to single-direction
velocity fields, with ¢ being transported from left to right by
the flow, so the Saulyev scheme is the appropriate choice for
discretizing the advective term. In (6), the term at time level
n+ 1, ", has already been computed at spatial point i — 1
by marching in the direction of increasing i. This scheme
is an explicit finite difference method. In this case, only a
single value, ci"”, will be unknown. This scheme is known
as Saulyev’s formula and the main advantage of it is that it is
unconditionally stable and explicit [10].

3.2. Iterative Method for the Initial and Boundary Conditions

Interpolation

Theorem 1 (Weierstrass approximation theorem, [19]). Sup-
pose that f is defined and continuous on [a, b]. For each € > 0,
there exists a polynomial P(x), with the property that | f(x) —
P(x)| < ¢, for all x in [a, b].

The Taylor polynomials agree as closely as possible with a
given function at a specific point, but they concentrate their
accuracy near that point. A good interpolation polynomial
needs to provide a relatively accurate approximation over an
entire interval, and Taylor polynomials do not generally do
this. The Taylor polynomials are [19]

n g(k)
pw=Y LW

n
o D =Y ) - @)
k=0 k=0
For the Taylor polynomials, all the information used in the
approximation is concentrated at the single number x,, so
these polynomials will generally give inaccurate approxima-
tions as we move away from x. This limits Taylor polynomial
approximation to the situation in which approximations
are needed only at numbers close to x,. For ordinary
computational purposes, it is more efficient to use methods
that include information at various points. The primary
use of Taylor polynomials in numerical analysis is not for
approximation purposes, but for the derivation of numerical
techniques and error estimation.

Lagrange Interpolating Polynomials. The problem of deter-
mining a polynomial of degree one that passes through the
(x> ¥y) distinct points (x,, ¥,) and (x;, y;) is the same as
approximating a function f for which f(x,) = y, and



f(x,) = y, by means of a first-degree polynomial interpola-
tion, or agreeing with the values of f at the given points. Using
this polynomial for approximation within the interval given
by the endpoints is called polynomial interpolation. Define
the functions

X=X
Lo(x): 1’
Xo — X1 (8)
X — X
L, (x)= .
X — X,

The linear Lagrange interpolating polynomial through
(x> ¥o) and (xy, y;) is

P, (x) =Ly (x) f (xo) + L, (x) f (x)

X - X X = X, €

- I ) s TR (),
Note that
Ly (xo) =1,
Ly(x;) =0,
(10)
L, (xo) =0,
Li(x)=1

which implies that

P(xg) =1 f(x0) +0- f(x)) = f (%) = yor
P(x)=0-f(x)+1-f(x1)=f(x1) = »-

Then, P is the unique polynomial of degree at most one that
passes through (x,, y,) and (x;, y;). In this case, we first
construct, for each k = 0,1,...,n, a function L, ;(x) with
the property that L, ,(x;) = 0, wheni # kand L, ,(x;) = L.
To satisfy L, ;(x;) = 0 for each i # k, it is required that the
numerator of L, (x) contains the term (x—x,)(x—x;) - - - (x—
X)X = Xpyp) - (X = x,).

To satisfy L, (x;) = 1, the denominator of L, ;(x) must
be this same term but evaluated at x = x;. Thus,

L, (x)
(x=xp) (= x) (r = xp) o (x—x,) (12
(2 = x0) ==+ (x5 = xpe1) (o = X)) -+ (k= xn)'

Theorem 2 (see [19]). If xy,xy,...,%, are n + 1 distinct
numbers and f is a function whose values are given at these
numbers, then a unique polynomial P(x) of degree at most n
exists with f(x;) = P(x), foreachk =0,1,...,n.

This polynomial is given by

p (x) = f (xO) Ln,O (X) t--t f (xn) Ln,n (X)
n (13)
= Zf(xk)Ln,k (x),

k=0
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where, foreachk =0,1,...,n,

L,k (x)
_ (3 = x9) (3% = 21) -+ (% = x5ey) (3 = ) - (X = )

(o = ) (3¢ = 1) -+ (o0 = 2y) (3 = Xpeqr) - (o0 = X,) (14)
_ - (X—xi)

- i=0 (% — xi).
ik

We will write L, ;(x) simply as Li(x) when there is no
confusion as to its degree.

Theorem 3 (see [19]). Suppose xy,x,,...,x, are distinct
numbers in the interval [a,b] and f € C""a,b]. Then, for
each x in [a,b], a number &(x) (generally unknown) between

Xg»X15- - > X, and hence in (a, b), exists with
)
- (1)
(n+1)
LB (o) (1 3) (%),

where P(x) is the interpolating polynomial given in (13). The
error formula in (15) is an important theoretical result because
Lagrange polynomials are used extensively in numerical differ-
entiation and integration methods.

The error in applied mathematics is the difference
between a true value and an estimate, or the approximation
of that value. In numerical analysis, round-oft error is
exemplified by the difference between the true values of
the irrational number. The approximation error in some
data is the discrepancy between an exact value and some
approximation to it. An approximation error can occur
because the measurement of the data is not precise because
instruments and approximations are used instead of the real
data. In (14), it is implied that the error in linear interpolation
is | f(x) — P(x)l|, where f (x) is the interpolating polynomial.

Interpolating the nth Lagrange interpolation polynomial
can be described in a simpler form as L (x). It is difficult to
interpolate a river channel, because it has unknown functions
of initial conditions and boundary conditions. The interpola-
tion of field data uses (15) for interpolating (6). Use every 3
nodes x;, x;,. .., x, that are distinct numbers in the interval
[a, b] by an iterative explicit finite difference technique to find
the second Lagrange interpolation polynomial for f(x) =
P(x), where P(x) is the interpolating polynomial [19].

4. Numerical Experiments

Suppose that the measurement of pollutant concentration ¢
in a nonuniform flow stream is aligned with longitudinal
distance, 1.0 (km) total length and 1.0 (m) depth. There is a
plant which discharges wastewater into the stream and the
pollutant concentrations at the discharge point are ¢(0,t) =
g(t) (mg/L) and ¢(1,¢t) = h(t) (mg/L) at0 < x < 1forallt > 0
and c(x,0) = f(x) (mg/L) att = 0. The analytical solution to
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FIGURE 1: Comparison of analytical and interpolated left boundary
conditions c(0, t) (kg/m3) (Ax = 0.0500, At = 0.0100, Pe = 5.0).

the one-dimensional advection-diffusion equation at 0 < x <
1 is given as

c(x,t)
0.025 . (x + 0.5 — ) (16)
= X —_— .
1/0.000625 + 0.02¢ (0.00125 + 0.04t)

Prediction of field data at the boundary can be obtained
using a quadratic interpolated initial and boundary condition
(see (13)). The interpolation is used to interpolate the right
boundary condition, the left boundary condition, and the
initial condition:

c(0,) =g (1),

_ (17)
c(L,t)=h(t),

forallt € [0,1.0] and
c(x,0) = f(x) (18)

at x € [0, 1.0], where g(t),‘fz(t), and f(x) are interpolated
functions.

The approximation of pollutant concentrations ¢ is
obtained using a Saulyev finite difference technique (see (6))
with the interpolated initial-boundary condition functions
(see (17) and (18)). The calculated results are shown in Tables
1-3 and Figures 1-6.

5. Discussion

In this research, the approximation of the pollutant concen-
trations of a simple advection-diffusion reaction numerical
simulation using the Saulyev schemes is shown in Tables 1-3
and Figures 1-6. The numerical techniques are proposed for
three 0 values: 0, 0.5, and 1, respectively. The case of 0 = 0

x107*
2.5 T T T T T T T T T

1.5}

Pollutant concentration (Kg/ m?)

0 10 20 30 40 50 60 70 80 90 100

—— Analytical ¢(1, 1)
* Interpolation C(1, t)

FIGURE 2: Comparison of analytical and interpolated right boundary
conditions c(1,t) (kg/m"’) (Ax = 0.0500, At = 0.0100, Pe = 5.0).

0.18 T T T T T

0.16 |+

0.14 +

0.12 |

0.1}

0.08 |

0.06 +

0.04 +

Pollutant concentration (Kg/m3)

0.02 |

0 1 , ) ) ] il
0 10 20 30 40 50 60 70 80 90 100

—— Analytical ¢(0.5,t)
#*  Numerical C(0.5,1)

FIGURE 3: Comparison of analytical and approximated pollutant
concentrations ¢(0.5, t) (kg/m3) (Ax = 0.0500, At = 0.0100, Pe =
5.0).

gives a smooth solution compared to other values. Increasing
the mass decay rate affects the maximum concentration level.
The interpolation results must be crude mesh as field data.
The numerical results can be fine mesh or crude mesh. In
Table 1 and Figures 1-5, we can see that the maximum errors
of approximated pollutant concentration are reducing while
the Peclet numbers are decreased. The maximum error of
analytical and interpolation technique is shown in Table 2; the
right boundary condition is 3.1640 x 10~%, the left boundary
condition is 3.3258 x 10™%, and the initial condition is
2.836181 x 107°. Comparison of the analysis and interpo-
lation technique is shown in Figures 1-6. The proposed
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TaBLE 1: The maximum error of approximated pollutant concentration at x = 0.25, 0.50, and 0.75, for all ¢ € [0, 1].
At Ax Cr Pe Maximum error
x =0.25 x =0.50 x =0.75
0.0100 0.0500 0.2000 5.0000 1.97 x 1072 1.99 x 1072 0.63 x 1072
0.0100 0.0250 0.4000 2.5000 5.40 x 107 5.80 x 107 2.00 x 1073
0.0100 0.0125 0.8000 1.2500 6.63x 107* 7.35%x 107* 2.80 x 107*
0.18 T T T T T T T T T 0.18 T T T T T T
0.16 0.16 |+
"2 014} 2 014}
) )
o2t 012}
= =
£ S
g 01t g 01}
g g
S 0.08 + 2 0.08 |
3 3
< 0.06 | < 0.06 |
< <
E E
= 004} = 004 |
= o
0.02 0.02 +
0 0

0 10 20 30 40 50 60 70 80 90 100

—— Analytical ¢(0.5, )
*  Numerical C(0.5,t)

FIGURE 4: Comparison of analytical and approximated pollutant
concentrations ¢(0.5,t) (kg/m3) (Ax = 0.0250, At = 0.0100, Pe =
2.5).

TaBLE 2: The maximum error of interpolated boundary condition
functions to the analytical solution (see (16)). E(Tg) = max |g(t) -

§(t)| and E(T;,) = max |h(t) - h(t)|, forall 0 < t < 1.

t E(T,) E(T},)
[0.0,0.2] 3.16406 x 107 0.0000
[0.2,0.4] 4.4625%x 10710 0.0000
[0.4,0.6] 2.3796 x 107*° 3.8500 x 107'°
[0.6,0.8] 0.03314 x 1071 3.3258 x 10710
[0.8,1.0] 0.02461 x 1071 3.3258 x 10710

Maximum error

0.031640 x 107*°

0.033258 x 1071°

TABLE 3: The maximum error of interpolated initial condition
functions to the analytical solution (see (16)). E(Ty) = max| fx) -

f(x)|, forall 0 < x < 1.

x E(Ty)
[0.0,0.2] 0.0002836181 x 107'°
[0.2,0.4] 0.0000
[0.4,0.6] 0.0000
[0.6,0.8] 0.0000
[0.8,1.0] 0.0002836181 x 107'°

Maximum error 0.0002836181 x 107'°

numerical interpolation technique gives good agreement
results. The accuracy of the Lagrange interpolation technique

0 10 20 30 40 50 60 70 80 90 100

—— Analytical ¢(0.5,t)
%  Numerical C(0.5,t)

FIGURE 5: Comparison of analytical and approximated pollutant
concentrations ¢(0.5, t) (kg/m3) (Ax = 0.0125, At = 0.0100, Pe =
1.25).

Approximated pollutant
concentration C(x, t

FIGURE 6: The Saulyev finite difference solution with quadratic
interpolation c(x, t) (kg/m3) (Ax = 0.0500, At = 0.0100, Pe = 5.0).

is used to predict their initial and boundary conditions as
needed.

6. Conclusion

The proposed Saulyev finite difference scheme with the
quadratic interpolation to the initial-boundary conditions
technique is an unconditionally stable finite difference
method. A large or small time step and/or grid size can
be employed in the proposed techniques. The numerical
experiment shows that the calculated results are reasonable
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approximations. The revision shows good agreement solu-
tions. The proposed interpolation technique is suitable to
be used in the real-world problem because it is easy to
computer-code and because of the straightforwardness of the
computer implementation. According to the collected water-
quality data, functions that satisfy boundary conditions must
be implemented. The computed results are verified by the
numerical accuracy. The proposed technique gives reliable
solutions to these processes.
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