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Power series solutionmethodhas been traditionally used to solve ordinary and partial linear differential equations.However, despite
their usefulness the application of this method has been limited to this particular kind of equations. In this work we use themethod
of power series to solve nonlinear partial differential equations. The method is applied to solve three versions of nonlinear time-
dependent Burgers-type differential equations in order to demonstrate its scope and applicability.

1. Introduction

Power series solution (PSS) method is an old method that
has been limited to solve linear differential equations, both
ordinary differential equations (ODE) [1, 2] and partial differ-
ential equations (PDE) [3, 4]. Linear PDE have traditionally
been solved using the separation of variables method because
it permits obtaining a coupled system of ODE easier to
solve with the PSS method. Some examples of these are the
Legendre polynomials and the spherical harmonics used in
Laplace’s equations in spherical coordinates or in Bessel’s
equations in cylindrical coordinates [3, 4]. It is known that
in nonlinear PDE (NLPDE) this procedure is not possible.

In this work we compare the spectral method (SM) with
the PSS method solving three versions of nonlinear time-
dependent Burgers-type equations [5] because we know that
the SM is the more accurate numerical method. The SM
with collocation points (SMCP) is a numerical technique
applied to solve linear and nonlinear differential equations
with high accurate approximations to the solution [6]. This
has been used to solve PDE using polynomial interpolation
functionwith an orthogonal basis such as Fourier, Chebyshev,
or Legendre functions [7]. The SM has also been very

successful to solve any kind of DE problems, including inte-
gro-differential problems [8], with Newman boundary values
[9], and nonlinear PDE [10].

We use the symbolic computation package Matlab to
obtain the algebraic operations for the truncated series app-
roximation.This programhelps to do easier the tedious algeb-
raic operations.

2. Power Series Solution Method

We know that almost the totality of the NLPDE does not have
a solution with an analytic expression, that is, a solution in a
closed form of known functions. Our goal is to construct a
solution using a power series, taking advantage of the capacity
of power series to represent any function with algebraic series
developing the idea to construct an approximate solution
[11–17]. It also has the possibility to approximate a solution,
inclusive if an analytic form does not exist, in a similar
way like the Taylor’s series approximate the functions. The
existence of the PSS does not guarantee per se that the
represented function has an exact approximation in distant
points relative to the central value. However, considering
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that the PSS needs to satisfy the NLPDE, with initial values
condition (IVC) or with boundary values conditions (BVC),
therefore we can construct a well posed problem to obtain
an accurate solution, constrained with all these limiting
conditions [18]. Furthermore, the polynomial of the PSS is a
smoothed function and this can guarantee the existence of a
solution [18].

The PSS method represents a general solution with a
series of unknown coefficients. When the PSS polynomial is
substituted in the PDE we obtain a recurrence relation for
the expansion coefficients. These coefficients should be
expressed in function of the coefficients result from IVC or
BVC. In this way, we obtain a system of equations depending
on these initial value based coefficients. In order to obtain and
solve a consistent algebraic system of equations, we also need
the same number of coefficients and equations [11]. All these
conditions, in the beginning, provide a guarantee that the
PDE is a well posed problem; that is, existence, uniqueness,
and smoothness of the solution are well defined [18].

Finally, the PSS method is a proposal to find a semiana-
lytic solution as an asymptotic approximation (in space and
time) of a finite series with minimal error in the expansion
of terms of the series. From numerical analysis when a power
series ∑

𝑘
𝑎𝑘𝑥
𝑘 converges on an interval (−𝑐, 𝑐) to a function

𝑓, the radius of convergence is 𝑐. In our work, the radius of
convergence is defined by each interval where our error was
estimated as we see below.

3. Numerical Results

First, we consider the nonlinear time-dependent one-dimen-
sional generalized Burgers-Huxley equation [5]:

𝜕𝑈

𝜕𝑡
=
𝜕2𝑈

𝜕𝑥2
− ]𝑈𝛿

𝜕𝑈

𝜕𝑥
+ 𝜂𝑈 (1 − 𝑈𝛿) (𝑈𝛿 − 𝛾)

with (𝑥, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑡]
(1)

with the initial condition

𝑈 (𝑥, 𝑡 = 0) =
𝛾

2

+
𝛾

2
tanh[[

[

𝑥𝛾
−]𝛿 + 𝛿√]2 + 4𝜂 (1 + 𝛿)

4 (𝛿 + 1)

]
]

]

1/𝛿

,

(2)

where 𝛾, ], 𝜂, and 𝛿 are real parameters. With 𝛿 = 1, this
equation admits a travellingwave solution.Then𝑈(𝑥, 𝑡) reads

𝑈 (𝑥, 𝑡) = 𝜙 (𝑧) , (3)

with 𝑧 = 𝑘𝑥 − 𝑤𝑡, where 𝑘 and 𝑤 represent the wave number
and frequency of the travelling wave, respectively, working as
unknown variables. Introducing (3) in (1) we obtain

−𝑤
𝑑𝜙

𝑑𝑧
= 𝑘2
𝑑2𝜙

𝑑𝑧2
− 𝑘𝜂𝜙

𝑑𝜙

𝑑𝑧
+ 𝜂𝜙 (1 − 𝜙) (𝜙 − 𝛾) . (4)

The ansatz for (4) will be a PSS as

𝜙 (𝑧) =
∞

∑
𝑛=0

𝑎𝑛𝑧
𝑛. (5)

The respective derivatives and nonlinear terms in (4) result in

𝑑𝜙

𝑑𝑧
=
∞

∑
𝑘=0

(𝑘 + 1) 𝑎𝑘+1𝑧
𝑘,

𝑑2𝜙

𝑑𝑧2
=
∞

∑
𝑘=0

(𝑘 + 1) (𝑘 + 2) 𝑎𝑘+2𝑧
𝑘,

𝜙
𝑑𝜙

𝑑𝑧
=
∞

∑
𝑘=0

(
𝑘

∑
𝑖=0

𝑘𝑎𝑘𝑎𝑘+1−𝑖)𝑧
𝑘,

𝜙2 =
∞

∑
𝑘=0

(
𝑘

∑
𝑖=0

𝑎𝑘𝑎𝑘−𝑖)𝑧
𝑘,

𝜙3 =
∞

∑
𝑘=0

[
𝑘

∑
𝑚=0

(
𝑚

∑
𝑖=0

𝑎𝑚𝑎𝑚−𝑖)𝑎𝑘−𝑚] 𝑧
𝑘.

(6)

Substituting the series of (6) in (4), we obtain the recurrence
relation

𝑎𝑘+2 =
1

𝑘2 (𝑘 + 1) (𝑘 + 2)

⋅ [−𝑘]
𝑘

∑
𝑖=0

𝑘𝑎𝑘𝑎𝑘+1−𝑖 − 𝑤 (𝑘 + 1) 𝑎𝑘+1

− 𝜂 (𝛾 + 1)
𝑘

∑
𝑖=0

𝑎𝑘𝑎𝑘−𝑖 + 𝛾𝜂𝑎𝑘

+ 𝜂
𝑘

∑
𝑚=0

(
𝑚

∑
𝑖=0

𝑎𝑚𝑎𝑚−𝑖)𝑎𝑘−𝑚] .

(7)

Solving with Matlab until degree 𝑛 = 3 of PSS from (4), we
obtain the following values for the coefficients:

𝑎2 = − (𝑎1𝑤 + 𝑎
2

0
𝜂 − 𝑎3
0
𝜂 − 𝑎0𝜂𝛾 + 𝑎

2

0
𝜂𝛾

− 𝑎0𝑎1𝑘]) (2𝑘
2) ,

𝑎3 = (𝑎1𝑤
2 + 𝑎2
1
𝑘3𝛾 + 𝑎2

0
𝜂𝑤 − 𝑎3

0
𝜂𝑤

− 𝑎0𝜂𝛾𝑤 + 𝑎
2

0
𝑎1𝑘
2]2 − 2𝑎0𝑎1𝜂𝑘

2

+ 𝑎1𝜂𝛾𝑘
2 − 𝑎3
0
𝜂𝑘] + 𝑎4

0
𝜂𝑘] + 𝑎2

0
𝜂𝛾𝑤

+ 3𝑎2
0
𝑎1𝜂𝑘
2 − 2𝑎0𝑎1𝑘]𝑤 − 2𝑎0𝑎1𝜂𝛾𝑘

2

+𝑎2
0
𝜂𝛾] − 𝑎3

0
𝜂𝛾𝑘]) (6𝑘4)

...

(8)

We will use the initial conditions to obtain the unknown
coefficients (8). From the initial condition (2), we express
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𝑈(𝑥, 0) as a polynomial series applying Taylor’s theorem.
Then

𝑈 (𝑥, 0)

=
𝛾

2
+
𝛾

2
(𝑥𝛾

−] + √]2 + 8𝜂

8
−
1

3
(𝑥𝛾

−] + √]2 + 8𝜂

8
)

3

+
2

15
(𝑥𝛾

−] + √]2 + 8𝜂

8
)

5

− ⋅ ⋅ ⋅) .

(9)

Matching the coefficients of this polynomial with the coeffi-
cients (8) of our ansatz, we obtain the next values: 𝑎0 = 𝛾/2,
𝑎1 = 𝛾/2, 𝑎2 = 0, 𝑎3 = −𝛾/6, 𝑎4 = 0, 𝑎5 = 𝛾/15, 𝑎6 = 0,
𝑎7 = −17𝛾/630, and so forth.

With 𝑎2 and 𝑎3 values matched to their respective coef-
ficients in (8), we obtain an algebraic system of 2 equations
with two variables. Solving this one, we obtain the value of
the unknown variables 𝑘 and 𝑤:

𝑘 = 𝛾
−] + √]2 + 8𝜂

8
,

𝑤 =
𝜂𝛾

2
−
𝜂𝛾2

4
−
𝛾2]2

16
+
𝛾2]√]2 + 8𝜂

8
.

(10)

Then, the complete solution as PSS for the NLDE (1) reads

𝑈 (𝑥, 𝑡)

=
𝛾

2
+
𝛾

2
((𝑘𝑥 − 𝑤𝑡) −

1

3
(𝑘𝑥 − 𝑤𝑡)

3 +
2

15
(𝑘𝑥 − 𝑤𝑡)

5

−
17

315
(𝑘𝑥 − 𝑤𝑡)

7 + ⋅ ⋅ ⋅ ) .

(11)

As it usually does when an approximate solution with PSS
is obtained, a test of accuracy of the approximation must be
performed. In this way, we calculate the absolute difference
between exact and approximated solution defined as𝐸(𝑥, 𝑡) =
|𝑈(𝑥, 𝑡) − 𝑈(𝑥, 𝑡)|, where 𝑈 is the exact solution obtained
from [5], and 𝑈 is the calculated solution (11), at the point
(𝑥, 𝑡), until the power degree 𝑛 = 19, respectively. We
compute the error, with the parameters values 𝛾 = 0.001,
] = 1, and 𝜂 = 1, within the intervals 𝑥 = [−2000, 2000] and
𝑡 = [0, 1000]. This result is shown in Figure 1. This parameter
set was selected because it is the same one used in [5] to do
a comparison. The convergence of the power series, 𝜙(𝑧) =
∑
∞

𝑛=0
𝑎𝑛𝑧
𝑛, depends on 𝑧 and also the coefficient 𝑎𝑛, and then

it is possible to adjust these ones to solve theNLDEand to find
a solution that approximates its behavior to any distance and
time, at less in the interval where we calculate the solution.
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Figure 1: Absolute error of Burgers-Huxley equation, (1), with 𝛿 = 1,
𝛾 = 0.001, ] = 1, and 𝜂 = 1.
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Figure 2: Trajectories of the approximate solution of the Burgers-
Huxley equation, (1), with 𝛿 = 1, 𝛾 = 0.001, ] = 1, and 𝜂 = 1, for
𝑥 = 0.9.

We also compare the approximated solution with the
spatial part fixed in 𝑥 = 0.9, with different power degree
polynomial (𝑛 = 7, 11, 19), relative to the exact result.
This comparison is shown in Figure 2. From this figure we
note that the improvement is better when the power degree
increases. In a similar way, we solved (1) with 𝛿 = 2 and
𝛿 = 3. For 𝛿 = 2 and 𝛾 = ] = 𝜂 = 0.001 in the intervals
𝑥 = [−100, 100] and 𝑡 = [0, 1000] we calculate the error
shown in Figure 3. Finally, in Figure 4we showed the absolute
error of (1) for 𝛿 = 3 with 𝛾 = ] = 𝜂 = 0.001 in the intervals
𝑥 = [−300, 300] and 𝑡 = [0, 10000].
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Figure 3: Absolute error of Burgers-Huxley equation, (1), with 𝛿 = 2
and 𝛾 = ] = 𝜂 = 0.001.
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Figure 4: Absolute error of Burgers-Huxley equation, (1), with 𝛿 = 3
and 𝛾 = ] = 𝜂 = 0.001.

For our second example, let us consider the nonlinear
time-dependent one-dimensional Burgers-type equation [5]:

𝜕𝑈

𝜕𝑡
+ ]𝑈

𝜕𝑈

𝜕𝑥
− 𝜇
𝜕2𝑈

𝜕𝑥2
= 0 with (𝑥, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑡] ,

(12)

where 𝑐, ], and 𝜇 are real parameters, with the initial
condition 𝑈(𝑥, 𝑡 = 0) = 𝑐/] − (𝑐/]) tanh[(𝑐/2𝜇)𝑥]. As in the
first case, (12) admits a travelling wave solution. Performing
the transformation

𝑈 (𝑥, 𝑡) = 𝜙 (𝑧) , (13)

where 𝑧 = 𝑘𝑥−𝑤𝑡 and 𝑘 and𝑤 are unknown parameters, and
replacing (13) in (12) then

−𝑤
𝑑𝜙

𝑑𝑧
− 𝑘2𝜇

𝑑2𝜙

𝑑𝑧2
+ 𝑘]𝜙

𝑑𝜙

𝑑𝑧
= 0. (14)

We use the following PSS ansatz for (14):

𝜙 (𝑧) =
∞

∑
𝑛=0

𝑎𝑛𝑧
𝑛, (15)

then

𝑑𝜙

𝑑𝑧
=
∞

∑
𝑛=1

𝑛𝑎𝑛𝑧
𝑛−1,

𝑑2𝜙

𝑑𝑧2
=
∞

∑
𝑛=2

𝑛 (𝑛 − 1) 𝑎𝑛𝑧
𝑛−2,

𝜙
𝑑𝜙

𝑑𝑧
=
∞

∑
𝑛=0

(
𝑘

∑
𝑖=0

𝑛𝑎𝑛𝑎𝑛+1−𝑖)𝑧
𝑛;

(16)

or moving conveniently the sum index 𝑛 to 𝑘, then

𝑑𝜙

𝑑𝑧
=
∞

∑
𝑘=0

(𝑘 + 1) 𝑎𝑘+1𝑧
𝑘,

𝑑2𝜙

𝑑𝑧2
=
∞

∑
𝑘=0

(𝑘 + 1) (𝑘 + 2) 𝑎𝑘+2𝑧
𝑘,

𝜙
𝑑𝜙

𝑑𝑧
=
∞

∑
𝑘=0

(
𝑘

∑
𝑖=0

𝑘𝑎𝑘𝑎𝑘+1−𝑖)𝑧
𝑘.

(17)

Substituting the above series into (14), we have

𝑎𝑘+2 =
1

𝑘2𝜇 (𝑘 + 1) (𝑘 + 2)

⋅ [𝑘]
𝑘

∑
𝑖=0

𝑘𝑎𝑘𝑎𝑘+1−𝑖 − 𝑤 (𝑘 + 1) 𝑎𝑘+1] .

(18)

This recurrence relation is used in the PSS until the degree
𝑛 = 5. Using Matlab to solve the recurrence algebraic system,
we obtain

𝑎2 = − (𝑎1𝑤 − 𝑎0𝑎1𝑘]) (2𝑘
2𝜇) ,

𝑎3 =
(𝑎2
0
𝑎1𝑘
2]2 − 2𝑎0𝑎1𝑘]𝑤 + 𝜇𝑎

2

1
𝑘3] + 𝑎1𝑤

2)

(6𝑘4 ∗ 𝜇2)
,
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𝑎4 = − (−𝑎
3

0
𝑎1𝑘
3]3 + 3𝑎2

0
𝑎1𝑘
2]2𝑤

− 4𝜇𝑎0𝑎
2

1
𝑘4]2 − 3𝑎0𝑎1𝑘]𝑤

2

+ 4𝜇𝑎2
1
𝑘3]𝑤 + 𝑎1𝑤

3)

⋅ (24𝑘6𝜇3)
−1

,

𝑎5 = (𝑎
4

0
𝑎1𝑘4]
4 − 4𝑎3

0
𝑎1𝑘
3]3𝑤

+ 11𝑎2
0
𝑎2
1
𝑘5𝜇]3 + 6𝑎2

0
𝑎1𝑘
2]2𝑤2

− 22𝑎0𝑎
2

1
𝑘4𝜇]2𝑤 − 4𝑎0𝑎1𝑘]𝑤

3

+ 4𝑎3
1
𝑘6𝜇2]2 + 11𝑎2

1
𝑘3𝜇]𝑤2 + 𝑎1𝑤

4)

⋅ (120𝑘8𝜇4)
−1

,

... (19)
Expanding the initial condition of (12) as a polynomial
through the Taylor series,
𝑈 (𝑥, 0)

=
𝑐

]
−
𝑐

]
(
𝑐

2𝜇
𝑥 −
1

3
(
𝑐

2𝜇
𝑥)
3

+
2

15
(
𝑐

2𝜇
𝑥)
5

−
17

315
(
𝑐

2𝜇
𝑥)
7

+ ⋅ ⋅ ⋅ ) .

(20)

Matching the coefficients of (20) with the coefficients of
solution (19), we arrive to

𝑎0 =
𝑐

]
, 𝑎1 = −

𝑐

]
, 𝑎2 = 0,

𝑎3 =
𝑐

3]
, 𝑎4 = 0, 𝑎5 = −

2𝑐

15]
,

𝑎6 = 0, 𝑎7 =
17𝑐

315]
, and so forth.

(21)

The 𝑎2 and 𝑎3 matched values are used to get a system of
2 equations with 2 variables, 𝑤 and 𝑘. Solving this one, we
obtain the value of the unknown variables 𝑤 and 𝑘:

𝑤 =
𝑐2

2𝜇
, 𝑘 =

𝑐

2𝜇
, (22)

and the complete solution in (15) reads
𝑈 (𝑥, 𝑡)

=
𝑐

]
−
𝑐

]
((
𝑐

2𝜇
𝑥 −
𝑐2

2𝜇
𝑡) −

1

3
(
𝑐

2𝜇
𝑥 −
𝑐2

2𝜇
𝑡)

3

+
2

15
(
𝑐

2𝜇
𝑥 −
𝑐2

2𝜇
𝑡)

5

−
17

315
(
𝑐

2𝜇
𝑥 −
𝑐2

2𝜇
𝑡)

7

+ ⋅ ⋅ ⋅ ) .

(23)
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Figure 5: Absolute error of Burgers-type equation, (12), with ] = 10,
𝜇 = 0.1, and 𝑐 = 0.1.
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Figure 6: Trajectories of the approximate solution of the Burgers-
type equation, (12), with ] = 10, 𝜇 = 0.1, and 𝑐 = 0.1, for 𝑥 = 0.9.

As in the previous example, we calculate the error𝐸(𝑥, 𝑡)with
the parameters values ] = 10, 𝜇 = 0.1, and 𝑐 = 0.1 within the
intervals 𝑥 = [−1, 2] and 𝑡 = [0, 13] until the power degree
𝑛 = 19. This result is shown in Figure 5. In Figure 6 we make
the comparison for a fixed 𝑥 = 0.9 in the time interval 𝑡 =
[0, 30]with several power degree polynomials (𝑛 = 7, 11, 19).

For the third example, we consider the nonlinear time-
dependent one-dimensional generalized Burgers-Fisher-type
equation [5]:

𝜕𝑈

𝜕𝑡
=
𝜕2𝑈

𝜕𝑥2
− ]𝑈𝛿

𝜕𝑈

𝜕𝑥
+ 𝛾𝑈 (1 − 𝑈𝛿)

with (𝑥, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑡]

(24)
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with the initial condition

𝑈 (𝑥, 𝑡 = 0) =
1

2
−
1

2
tanh []

4
𝑥] , (25)

where ], 𝛾, and 𝛿 are real numbers.When 𝛿 = 1, this equation
admits a travelling wave solution

𝑈 (𝑥, 𝑡) = 𝜙 (𝑧) , (26)

with 𝑧 = 𝑘𝑥 − 𝑤𝑡. This one is replaced in (24)

−𝑤
𝑑𝜙

𝑑𝑧
= 𝑘2
𝑑2𝜙

𝑑𝑧2
− 𝑘]𝜙

𝑑𝜙

𝑑𝑧
+ 𝛾𝜙 (1 − 𝜙) , (27)

and we attempt a PSS

𝜙 (𝑧) =
∞

∑
𝑛=0

𝑎𝑛𝑧
𝑛, (28)

and so the terms of (27) can be written as

𝑑𝜙

𝑑𝑧
=
∞

∑
𝑘=0

(𝑘 + 1) 𝑎𝑘+1𝑧
𝑘,

𝑑2𝜙

𝑑𝑧2
=
∞

∑
𝑘=0

(𝑘 + 1) (𝑘 + 2) 𝑎𝑘+2𝑧
𝑘,

𝜙
𝑑𝜙

𝑑𝑧
=
∞

∑
𝑘=0

(
𝑘

∑
𝑖=0

𝑘𝑎𝑘𝑎𝑘+1−𝑖)𝑧
𝑘,

𝜙2 =
∞

∑
𝑘=0

(
𝑘

∑
𝑖=0

𝑎𝑘𝑎𝑘−𝑖)𝑧
𝑘.

(29)

Substituting (29) into (27), we obtain the recurrence relation

𝑎𝑘+2 =
1

𝑘2 (𝑘 + 1) (𝑘 + 2)

⋅ [𝑘]
𝑘

∑
𝑖=0

𝑘𝑎𝑘𝑎𝑘+1−𝑖

𝑘

∑
𝑖=0

𝑎𝑘𝑎𝑘−𝑖

− 𝑤 (𝑘 + 1) 𝑎𝑘+1 − 𝛾𝑎𝑘] .

(30)

This recurrence relation is solvedwithMatlab until the degree
𝑛 = 4 and the coefficients result

𝑎2 = − (𝑎0𝛾 + 𝑎1𝑤 − 𝑎
2

0
𝛾 − 𝑎0𝑎1𝑘]) (2𝑘

2) ,

𝑎3 = (𝛾𝑎
3

0
𝑘] + 𝑎2

0
𝑎1𝑘
2]2 − 𝛾𝑎2

0
𝑘] − 𝛾𝑎2

0
𝑤

+ 2𝛾𝑎0𝑎1𝑘
2 − 2𝑎0𝑎1𝑘]𝑤 + 𝛾𝑎0𝑤

+𝑎2
1
𝑘3] − 𝛾𝑎1𝑘

2 + 𝑎1𝑤
2) ⋅ (6𝑘4)

−1

,

𝑎4 = (𝑎
4

0
𝛾𝑘2]2 + 𝑎3

0
𝑎1𝑘
3]3 + 2𝑎3

0
𝛾2𝑘2

− 𝑎3
0
𝛾𝑘2]2 − 2𝑎3

0
𝛾𝑘]𝑤 + 7𝑎2

0
𝑎1𝛾𝑘
3]

− 3𝑎2
0
𝑎1𝑘
2]2𝑤 − 3𝑎2

0
𝛾2𝑘2 + 2𝑎2

0
𝛾𝑘]𝑤

+ 𝑎2
0
𝛾𝑤2 + 4𝑎0𝑎

2

1
𝑘4]2 − 5𝑎0𝑎1𝛾𝑘

3]

− 4𝑎0𝑎1𝛾𝑘
2𝑤 + 3𝑎0𝑎1𝑘]𝑤

2 + 𝑎0𝛾
2𝑘2

− 𝑎0𝛾𝑤
2 + 2𝑎12𝛾𝑘

4 − 4𝑎2
1
𝑘3]𝑤

+2𝑎1𝛾𝑘
2𝑤 − 𝑎1𝑤

3) (2𝑘6) ,

...

(31)

The initial condition (25) is expressed like a polynomial series
applying Taylor’s formula

𝑈 (𝑥, 0) =
1

2
−
1

2
(
]
4
𝑥 −
1

3
(
]
4
𝑥)
3

+
2

15
(
]
4
𝑥)
5

−
17

315
(
]
4
𝑥)
7

+ ⋅ ⋅ ⋅ ) .

(32)

Matching the coefficients of this polynomial with those of
polynomial from solution (31), we obtain the value of the
coefficients: 𝑎0 = 1/2, 𝑎1 = −1/2, 𝑎2 = 0, 𝑎3 = 1/6, 𝑎4 = 0,
𝑎5 = −2/30, 𝑎6 = 0, 𝑎7 = 17/630, and so forth. With 𝑎2 and
𝑎3 values matched to their respective coefficients of (31), we
obtain a system of 2 equations with 2 variables to solve and to
obtain the values of the unknown parameters 𝑘 and 𝑤:

𝑘 =
]
4
, 𝑤 =

]2

8
+
𝛾

2
. (33)

Therefore from the solution (28) reads

𝑈 (𝑥, 𝑡)

=
1

2
−
1

2
((

]
4
𝑥 − (

]2

8
+
𝛾

2
) 𝑡) −

1

3
(
]
4
𝑥 − (

]2

8
+
𝛾

2
) 𝑡)

3

+
2

15
(
]
4
𝑥 − (

]2

8
+
𝛾

2
) 𝑡)

5

− ⋅ ⋅ ⋅ ) .

(34)

We computed the error with (34) and the exact solution
presented in [5] with the parameters values 𝛾 = 0.01 and
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Figure 7: Absolute error of generalized Burgers-Fisher-type equa-
tion, (24), with 𝛿 = 1, 𝛾 = 0.01, and ] = 0.01.
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Figure 8: Trajectories of the approximate solution of generalized
Burgers-Fisher-type equation, (24), with 𝛿 = 1, 𝛾 = 0.01, and
] = 0.01, for 𝑥 = 0.9.

] = 0.01 within the intervals 𝑥 = [−300, 300] and 𝑡 =
[0, 2200] until the power degree 𝑛 = 19.This error is shown in
Figure 7. Figure 8 shows the trajectories of the approximate
solution of problem (24) where 𝛿 = 1, for 𝑥 = 0.9, and
𝛾 = 0.01 and ] = 0.01, in the time interval 𝑡 = [0, 3000], with
the power degree polynomial (𝑛 = 7, 11, 19). In Figure 9, the
error is shown with 𝛿 = 2, and 𝛾 = 0.001 and ] = 0.25, in
the intervals 𝑥 = [−50, 50] and 𝑡 = [0, 100]. In Figure 10, the
computed error is shown for 𝛿 = 3, with 𝛾 = 0.001 and ] = 1,
in the intervals 𝑥 = [−50, 50] and 𝑡 = [0, 100].

We remark that Figures 2, 6, and 8 are shown simple
trajectories of the approximate solution due to the fact that
they are the solution of this NLDE in the time interval with
the axis 𝑥 fixed (to compare with [5]) where the behavior
is smoother. These are nonlinear equations where the error
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Figure 9: Absolute error of generalized Burgers-Fisher-type equa-
tion, (24), with 𝛿 = 2, 𝛾 = 0.001, and ] = 0.25.
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Figure 10: Absolute error of generalized Burgers-Fisher-type equa-
tion, (24), with 𝛿 = 3, 𝛾 = 0.001, and ] = 1.

grows in an exponential way, at difference of the behavior
of linear equations. We show that by adding more terms to
the ansatz series, the error is reduced and the solution is
extended to long times and an increased space in comparison
with other methods such as the spectral method that is one
of the most accurate numerical methods. The PSS method
is employed to more complex trajectories as shown in [13],
where the method is used to solve chaotic NLDE.

4. Discussion and Conclusions

In this work we have shown that it is possible to solve
nonlinear differential equations with the power series solu-
tion method. This method is implemented as a general
approximate solution for each nonlinear PDE or ODE, in a
similar way to the solution of a Linear DE. We transform a
nonlinear DE problem into an algebraic system of equations.
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Therefore, with this method, it is possible to obtain a well
posed problem when the system of DE is consistent. It
means that the system has the same number of variables
as equations, and consequently the number of algebraic
variables (coefficients of expansion series) obtained with this
method is the same as the number of equations.

We had shown that the PSS method is a semianalytic
technique that leads, in an easier and exact way, to the
solution of difficult differential equations with an approxi-
mated closed form expression. This is especially useful to
solve nonlinear equations and leaves open the possibility to
describe in an exact and convergent way the behavior of
chaotic dynamical systems [13, 15]. Then, the solution can
be approximated until the necessary degree into the power
series. The convergence of the PSS method depends on the
number of terms used in the power series. Once we know
it, we can determine the domain of the space and time
where the solution is valid. Three examples of the nonlinear
time-dependent one-dimensional Burgers-Huxley, Burgers-
type, and Burgers-Fisher-type equations were solved within
this capable method. The errors between the exact analytic
solution from [5] and our PSS are compared in each case.
We obtained a better approximation in larger space and time
intervals (∼10−3–10−7) with PSS of order 𝑛 = 19 but not with
the accuracy of [5] in a small space and time interval of the
solution.

The advantages of the PSS method over the traditional
methods are the sameones that are presented in theworkwith
respect to the spectral method that solves any kind of NLDE.
It means that it can solve NLDE with higher accuracy in an
interval of time and space than the other traditionalmethods,
adding more terms to the series.

In summary, we have shown that the PSS method is a
technique which can be used to solve this kind of nonlinear
differential equations [11]. In this work, the main goal was to
solve the differential partial equation nonlinear Burgers type
with dimension 1 (spatial) + 1 (time), doing a transformation
of this one to a single nonlinear equation. We compared the
PPS solution with that coming from the spectral method. We
believe that it is possible to extend the solution to 2 or 3 spatial
dimensions plus the time dimension. This possibility will be
considered in future works. The procedure provides a much
greater accuracy adding more terms into the series. The PSS
method opens the possibility to analyze other characteristics
of the NLPDE, obtaining better semianalytic approximations
that involve less computational efforts.
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