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Traumatic brain injury (TBI) is a critical public health and socioeconomic problem throughout the world. Cognitive rehabilitation
(CR) has become the treatment of choice for cognitive impairments after TBI. It consists of hierarchically organized tasks that
require repetitive use of impaired cognitive functions. One important focus for CR professionals is the number of repetitions and
the type of task performed throughout treatment leading to functional recovery. However, very little research is available that
quantifies the amount and type of practice. The Neurorehabilitation Range (NRR) and the Sectorized and Annotated Plane (SAP)
have been introduced as a means of identifying formal operational models in order to provide therapists with decision support
information for assigning the most appropriate CR plan. In this paper we present a novel methodology based on combining SAP
and NRR to solve what we call the Neurorehabilitation Range Maximal Regions (NRRMR) problem and to generate analytical
and visual tools enabling the automatic identification of NRR. A new SAP representation is introduced and applied to overcome
the drawbacks identified with existing methods. The results obtained show patterns of response to treatment that might lead to
reconsideration of some of the current clinical hypotheses.

1. Introduction The consequences of TBI vary from case to case but
can include motor, cognitive, and behavioral deficits in the
patient, disrupting their daily life activities at personal, social,
and professional levels. The most important cognitive deficits
after suffering a TBI are those related to attention, decrease
in memory and learning capacity, worsening of the capacity
to schedule and to solve problems, a reduction in abstract
thinking, communication problems, and a lack of awareness
of one’s own limitations. These cognitive impairments ham-

Traumatic brain injury (TBI) is a critical public health and
socioeconomic problem throughout the world. Although
high-quality prevalence data are scarce, it is estimated that
in the USA around 5.3 million people are living with a TBI-
related disability, and in the European Union approximately
7.7 million people who have experienced a TBI have disabili-
ties [1].

TBI is considered a silent epidemic, because society is
largely unaware of the magnitude of the problem [2]. The
World Health Organization predicts that, by the year 2020,
TBI and road traffic accidents will be the third greatest cause
of disease and injury worldwide [3].

per the path to functional independence and a productive
lifestyle for the person with TBI.

New techniques of early intervention and the develop-
ment of intensive TBI care have improved the survival rate
noticeably. However, despite these advances, brain injuries
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still have no surgical or pharmacological treatment to reestab-
lish lost functions [4]. In this context, cognitive rehabilitation
(CR) is defined as a process whereby people with brain
injury work together with health service professionals and
others to remedy or alleviate cognitive deficits arising from
a neurological injury [5].

A typical CR program consists mainly of exercises which
require repetitive use of the impaired cognitive system in a
sequence of tasks that is progressively more demanding [6].
Both the brain and body need to relearn how to function
following neurological injury; harnessing this inherent ability
for neuronal circuit change in the brain may be essential if the
benefit of rehabilitation is to be maximized.

The process by which neuronal circuits are modified by
experience, learning, or injury is referred to as neuroplasticity
(7].

While task repetition is not the only important feature,
it is becoming clear that neuroplastic change and functional
improvement occur after a number of specific tasks are
performed but do not occur with other numbers [8, 9]. Thus,
one important focus for rehabilitation professionals is the
number of repetitions and the type of task performed during
treatment. However, there is very little research to quantify
the amount and type of practice that occurs during clinical
rehabilitation treatment and its relationship to rehabilitation
outcomes [10, 11].

In our previous research [12], the Neurorehabilitation
Range (NRR) was introduced as the conceptual framework
by which to describe the degree of performance of a CR task
that produces maximum rehabilitation effects. The Sectorized
and Annotated Plane (SAP) is proposed as a visual tool to
find both the NRR and an operational definition for it, to
be used in real clinical practice. Two data-driven methods
to build the SAP were introduced in [12] and compared. The
NRR of a given task is therefore determined as a rectangular
region defined by 2 dimensions: the number of executions of
a task during a CR treatment and the performance in each
execution of the task.

In this paper, we build on the concept of NRR and SAP
tools to solve what we refer to as the Neurorehabilitation
Range Maximal Regions (NRRMR) problem. Basically, this
consists in the automatic identification of NRRs with data-
driven models that are able to avoid the limitations observed
in the SAP performance. In the NRRMR, the problem of
occlusions that appeared in the SAP, being a pure visualiza-
tion tool, is overcome, and a variable number of NRRs for a
given CR task are found, according to different user-defined
conditions concerning the acceptable degree of uncertainty.
In the current proposal, the SAP is transformed into a masked
binary matrix and a geometric optimization algorithm (the
maximal empty rectangle (MER) problem [13]) is generalized
to the NRRMR, allowing for the identification of regions
satisfying user-defined conditions (see details in Section 3).
The proposed methods are extended to any number of tasks
grouped in cognitive functions, allowing for the identification
of NRR of not only a single task (as in [12]) but also a group
of them. Methods are applied in the same real clinical context
as in [12] in order to allow comparison of results.
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The structure of the paper is as follows: Section 2 briefly
presents the state of the art and the starting point of
the proposal. Section 3 introduces the proposed analysis
methodology and Section 4 its application to the CR context;
Section 5 presents a discussion of the obtained results and a
comparison with the previous and Section 6 the conclusions
and future lines of research.

2. State of the Art

There is a common belief that CR is effective for TBI patients,
based on a large number of studies and extensive clinical
experience. Different statistical methodologies and predictive
data mining methods have been applied to predict clinical
outcomes of the rehabilitation of patients with TBI [14-
16]. Most of these studies focus on determining survival,
predicting disability or the recovery of patients, and looking
for the factors that better predict the patient’s condition after
TBIL

However, current knowledge about the factors that deter-
mine a favorable outcome is mainly empirical and the benefit
of such interventions is still controversial [17] (see also
Ecri Cognitive Rehabilitation Therapy for Traumatic Brain
Injury: What We Know and Don’t Know about Its Efficacy.
Editorial Note 10/11/11: IOM’s New Report on Brain Injury
Treatments Draws Conclusions Similar to ECRI Institute’s
Earlier Findings). The development of new tools to evaluate
scientific evidence of such effectiveness will contribute to a
better understanding of CR.

It seems that patient improvement might depend inter
alia on the location of the injuries, cognitive profile, duration,
and intensity of proposed treatments and their level of
completion [18, 19]. However, these seem to be only some
of the determining factors and they cannot by themselves
explain the overall phenomenon. Although these factors
are considered in the design of rehabilitation treatments,
other relevant factors exist that are much more difficult
to control and which are related to the high variability of
the lesions, the complexity of cognitive functions, and the
lack of proper instrumentation by which to systematize
interventions. This produces intrinsic group heterogeneity
and the classical comparative studies do not perform well
[20], which makes it difficult to advance the pathophysiology
of cognitive neurorehabilitation knowledge.

In [21], basic machine learning, algorithms were used to
predict the probability of improvement in a patient according
to their initial neuropsychological assessment. This approach
was able to identify subpopulations of patients more suitable
for improvement using CR treatments. However, it did not
provide any information to help CR therapists adapt CR
programs to increase the improvement itself or to enlarge
the subpopulations that might activate improvement to CR
treatments. Going a little bit further, in [22] the performance
obtained by the patient in a certain task has been included
in the model together with the initial assessment. Machine
learning methods significantly improved predictive capac-
ity. This work provided evidence that task performance is
involved in patient improvement. However, it did not provide
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information on successful patterns of tasks to be proposed to
the patients leading to improvements in cognitive functions.

For these reasons, other approaches have to be found to
better understand the CR process, with the aim of obtaining
scientific evidence about its effectiveness and providing rele-
vant information for the establishment of general guidelines
for CR program design that can assist CR therapists in
clinical practice. Analyzing data from new perspectives can
contribute to this field [23].

Our proposal in [12] approaches the problem from a data-
driven perspective by developing new data mining tools that
can reduce uncertainty in the field. The paper introduces
elements to assess when a patient is performing a task under
a Neurorehabilitation Range, as an indicator that maximum
improvement of the patient might be expected on the targeted
cognitive function. This contributes to a better understanding
of the role over clinical improvement of a particular degree
of performance of a CR task. Two different methodologies
to build the SAP were proposed in [12]: direct construction
by visualization of raw data (Vis-SAP method) and DT-
SAP, which is based on decision tree induction and therefore
could be automated. Decision trees have been considered
because their inherent structure leads directly to the NRR
model. This is built as the OR of all branches leading to
a leaf labeled as improvement. Both methods effectively
determine the areas where the probability of improvement
is higher; a statistical two-proportion test has been used to
assess the quality of the NRR models by checking whether
the probability of improvement is significantly higher when
tasks are performed according to NRR than away from it.
Whereas DT-SAP is a deterministic method that can be
automated, the Vis-SAP is a semideterministic method that
requires visual inspection as a final step. However, it seems
to produce better results in practical applications because the
incomplete sectorization of the plane in very homogeneous
areas provided by Vis-SAP outperforms the results induced
from a DT where the leaves are often contaminated; that
is, they contain both improving and nonimproving patients.
However, the Vis-SAP method has a limitation: the graphical
representation used in [12] does not take into account the
occlusions. This means that whether or not a pixel in the
graph is depicted as an improvement depends on the majority
of pixel points but this does not take into account the error
tax produced by this simplification. In this paper, a new
methodology is provided that overcomes this limitation.

2.1. Maximal Empty Rectangle. The key idea of the present
work is to transform the Vis-SAP method from [12] into a
geometric optimization algorithm that avoids the visual effect
of occlusions while permitting some degree of impurity in the
detected areas of the NRR to be taken into account.

For this purpose, a generalization of the MER problem
will be introduced. The MER problem consists of recognizing
all maximal empty axes-parallel (isothetic) rectangles, in a
rectangular space region where some points are located. It
was first introduced in 1984 [13] as follows.

Given a rectilinearly oriented rectangle A in the Car-
tesian plane and a set S = {P,,P,,...,P,}ofn > 1

points in the interior of A, where each point P, is
specified by its X and Y coordinates (X;,Y;), i =
1,2,...,n, and A specified by its left boundary A,
right boundary A,, top boundary A,, and bottom
boundary A,, the maximum empty rectangle (MER)
problem is to find a maximum area rectangle whose
sides are parallel with those of A and which is
contained in A such that no point of S lies in its
interior.

Several algorithms have been proposed for the planar prob-
lem over the years [24]. For instance, an early algorithm by
Chazelle et al. [25] runs in O(n10g3n) time and O(nlogn)
space. The fastest known algorithm, proposed by Aggarwal
and Suri in 1987 [26], runs in O(nlogzn) time and O(n) space.
A lower bound of Q(nlogn) in the algebraic decision tree
model for this problem has been shown by McKenna et al.
[27].

This problem arises in situations where a rectangular
shaped plant is to be located within a similar region which has
a number of forbidden areas or when a “perfect” rectangular
piece from a large similarly shaped metal sheet with some
defective spots [13] is to be cut. The problem could also be
further modified so that the length and width of the sought-
after rectangle have a certain ratio or a certain minimum
length.

Maximal empty rectangles also arose in the enumeration
of maximal white rectangles in image segmentation [28].

More recently, applications can be found in data mining
[29], geographical information systems (GIS), and very large-
scale integration design [30].

To the best of our knowledge, MERs have not yet been
applied, either for NRR identification in particular or in the
context of CR in general.

3. Materials and Methods

The proposed methods present two strategies for the analyti-
cal and graphical identification and visualization of NRR and
non-NRR based on the notion of SAP as introduced in [12]
and on the classical MER problem, respectively.

3.1. Sectorized and Anmnotated Plane (SAP). Given three
variables Y, X1, and X2, where Y is a qualitative response
variable, with values {y1, y2,...}, and X1, X2 numerical
explanatory variables, the SAP is a 2-dimensional plot with
X1 in the x-axis, X2 in the y-axis and rectangular regions
with constant Y displayed and labeled with Y values as
outlined in Figure 1. An SAP is therefore a graphical support
tool aimed at visualization, where the response variable is
constant in certain regions of the X1 x X2 space. Eventually,
allowing a relaxation of strict constant Y in the marked
regions, the SAP might include an indicator of region purity,
adding the probability of occurrence of the labeling value.
Given a particular CR task and assuming Y as a binary
variable reporting improvement of the patient in the cogni-
tive function targeted by the task (YES, NO), the SAP leads
to response zones where participants show similar response
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FIGURE 1: General Sectorized and Annotated Plane (SAP) descrip-
tion.

to treatment. The SAP shows a plane sectorization directly
related to treatment response. This allows identification of
logical restrictions (rules) determining different treatment
outcomes.

3.2. Visualization-Based SAP (Vis-SAP). Data is plotted
regarding X1 and X2, and each point is marked with different
colors according to the values of Y. This categorized scat-
terplot (sometimes known as a letterplot) is an exploratory
technique for investigating relationships between X1 and X2
within the subgroups determined by Y. For the particular
application presented here, X1 is the result obtained at
every single execution (e.g., an integer number in the range
0---100) and X2 is the number of executions of the task
performed by the subject, while Y is the effect of the neurore-
habilitation process (improvement/nonimprovement).

This exploratory analysis is used to identify systematic
relationships between variables when there is no previous
knowledge about the nature of those relationships. The
constant Y regions detected in the plot can be expressed in
the form of logical rules involving the implied variables in the
following form:

if (Result in [r1, r2] and Executions in [RI, R2]) then P
(Improvement) = p,

where 11, 2, RI, and R2 indicate the limits of the regions
detected in the graph.
The SAP is built on the basis of these rules.

3.3. Frequency Table SAP (FT-SAP). The main problem with
Vis-SAP is that in every pixel in the image several points
might be overlapped and not always labeled with the same
response value. Detection of NRR regions is performed
by labeling each pixel with the majority label, using a
simple voting scheme and without taking into account the
balance between improvement and nonimprovement pixels
overlapped.
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TABLE L: p;; is the proportion of improving patients in pixel (i, j).
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FIGURE 2: Color gradient for p;; values in quartiles.

In this work the first idea proposed is to use a numerical
representation of the Vis-SAP based on a two-way matrix,
precisely indicating how many points of each class are over-
lapped at any pixel in the graph.

As in Vis-SAP, in this approach X1 is the result obtained
at every single execution (Result), X2 is the number of execu-
tions of the task performed by the subject (Executions), while
Y is the effect of the neurorehabilitation process: improve-
ment/nonimprovement (YES, NO) assessed by standardized
neuropsychological tests.

Given mExec the maximum number of Executions of a
task and mResults the maximum scoring of a task i = (1 :
mExec), j = (1 : mResults), we define

m;; = number of subjects such that (X2 = i) & (X1 =

7) & (Y = YES),
nj = number of subjects such that (X2 = i) & (X1 =
j))

pij = m;;/n;; = percentage of subjects such that (X2 =
i) & (X1 =j) & (Y = YES).

For each (i, j) the matrix P = ( pij) is built (see Table 1).

An FT-SAP is a graphical visualization where a gradient
color from red to green can be assigned to pixel (i, f)
according to its p;; as shown in Figure 2.

Given a threshold y € [0, 1] the NRRMR regions can be
found over the FT-SAP (y) as the set of regions (r,s) x (¢, u)
such that

v (i, j)

Given ¥y, a 2-color gradient can be defined providing a neat
heatmap of the FT-SAP (y) (as shown in Figure 3). qij is
defined as

r<i<s, t<j<u, itholdsp,-ij. 1)

1, pi=v,
q;; = ! ()
0, pi<y-

Therefore a binary matrix Q is obtained, with Q = (qij). Qis
a mask over FT-SAP filtering pixels according to y (for empty
cells, no color is provided for the pixel).
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FIGURE 3: A 2-color heatmap defining a two-dimensional NRR for
bijzv-

3.4. Analytical Identification of NRR. Taking as input param-
eter the Q matrix resulting from filtering FT-SAP over v,
a method to automatically identify NRR (given maximum
width and length of the surface to be searched as user-
defined parameters) is described below. The idea is to find
all rectangular groups of Is cells equal to or greater than the
minimum width and length provided by the user.

It is solved by two-pass linear O(n) time algorithm (n
being the number of cells in the input matrix). As shown in
Figure 4, first pass scans the matrix by columns, numbering
cells consecutively until a red element (a 0 cell) is found, and
second pass scans by rows, searching for elements matching
the length and width provided as parameters.

As is shown in the R code in Algorithm 2 the method
allows for the simultaneous identification of the NRRs
satisfying the user-defined conditions. The MAXRES and
MAXEXEC values in the R code correspond to mResults and
mExec, respectively, as defined above. The proposed pseudo
code is introduced in Algorithm 1.

With Algorithm 2, the green rectangles as specified by the
user in the FT-SAP for a given threshold y can be identified
and NRR established accordingly.

As will be seen in the application section, some real cases
provide large green areas contaminated by a small percentage
of isolated red points that could be assumed as part of the
NRR, provided that an uncertainty tax becomes associated
with it. This implies modification of the previous algorithm
to find regions with a certain degree of contamination. But
the generalization about the provided implementation is
not evident. Thus, a classical version of the MER algorithm
has been used instead and properly modified. Section 3.5
provides our implementation (Algorithm 3) of the classical
MER and Section 3.5.1 provides the proposed generalization
to permit a certain degree of contamination in the regions
(Algorithm 4).

3.5. Maximal Empty Rectangle (MER) Method. As a first
attempt the direct approach to the MER problem is followed:
Scan through the matrix, stopping at each element. Treat
each element as a potential top-left corner of the MER.
For each such top-left corner, try all other elements as

FIGURE 4: Example of the two-pass algorithm.

a potential bottom-right corner of the MER. This approach
is implemented in Algorithm 3.

Regarding the performance, in this approach each top-left
corner visits about O(mn) locations. For each such top-left
corner, the bottom-right corner visits no more than O(mn)
positions. An evaluation (checking for 1s) takes O(mn) in
the worst-case for each rectangle checked (total: o(m*n’))
(worst-case). This means that finding pure regions in the Q
matrix performs better over time when Algorthim 2 is used.
Some improvements to the classical MER approach have been
identified which improve performance: checking the area first
before scanning for 1s and prune, ignoring the rectangle
when the area is too small, also, eliminating as many size 1
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Input

Output
NRR maxrowxmaxcolumn
First pass

Repeat

Second pass
For each row from left to right

Repeat
If element >= MAXCOL
Increment NRRrows

Else NRRrows = 0
Until NRRrows = MAXROW
Return NRR

Anxm matrix of red(0)/green(1) elements obtained after FT-SAP (y):
MAXROW maximum number of rows
MAXCOL maximum number of columns

For each column from bottom to top
Number green element incrementally

Until a red element is found — Restart numbering

NRRrows = 0 #Number of rows of the NRR solution so far

NRR = NRR + NRR[element]

ALGORITHM 1

#First pass
for (jin 1 : MAXRES){
cont « 1
for (i in MAXEXEC : 1) {
if (y[i, j] == 0){
cont « 1
bli, j] — NA}
else {b[i, j] < cont
cont « cont + 1}
1
#Second pass
Mdat « b
apply(mdat, 1, function(x) {
r « rle(x >= MAXROW)

if (length(w) > 0) {

} else
NULL

H

w « which(lis.na(r$values) & r$values & r$lengths >= MAXCOL)

lapply(w, FUN = function(wl){before « sum(r$lengths[1 : wl]) —r$lengths[wl];
c(before + 1, before + r$lengths[w1])})

ALGORITHM 2

rectangles from the search as possible and checking corners
for 0's before proceeding.

3.5.1. Neurorehabilitation Range Maximal Regions (NRRMR)
Problem. To allow for the identification of nonempty regions
(i.e., regions containing some degree of 0 values) a modifi-
cation of the checkFilled function is introduced as shown in
Algorithm 4. A user-defined tolerance is included as input

to the function and only when that value is exceeded is the
area considered as not filled. Figure 5 shows the identification
of the maximal rectangle containing one nonempty element
as output ([topLeftx, topLefty, botRightX, botRightY] =
[5,1,7,8] area = 24), instead of the bottom-right rectangle
that would be the output if no tolerance parameter is
introduced ([topLeftx, topLefty, botRightX, botRightY] =
[13,8,16,12] area = 20).
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Input

Output
MER submatrix of A

# (1) Initialize.
maxArea < 0;
area < 0;

for (iin 1 : m){
for (jin 1 : n){

for (aini: m){
for (bin j: m){

#(2.1.3) If so, compute it’s area.

if (area > maxArea){

}
}
}
}

}

computeArea «— function (i, j, a, b) {
if (a < i) {return(-1)}

if (b < j) {return(-1)}

return ((a—i+1) = (b—j+1))

1

checkFilled « function (i, j, a, b) {
for (k1ini: a){

for (k2 1in j : b){
}

1

return (TRUE)

1

Amxn matrix of red/green elements obtained after FT-SAP(y)

findMaxRectangleArea < function (A) {

# (2) Outer double-for-loop to consider all possible positions for top-left corner.

#(2.1) With (4, j) as top-left, consider all possible bottom-right corners.

#(2.1.2) See if rectangle(, j, a, b) is filled.
Filled « checkFilled (i, j, a, b);

if (filled){area < computeArea (i, j, a, b)}
# If the area is largest, adjust maximum and update coordinates.

maxArea « area;
topLeftx « i;
topLefty « j;
botRightX « a;
botRightY « b

max R < c(topLeftx, topLefty, botRightX, botRightY)
return (list(area = maxArea, rect = max R));

if (A[k1,k2] == 0) {return (FALSE)}

ALGORITHM 3

4. Application and Results

4.1. Clinical Context. This work is based on the same context
as in [12], the Neuropsychological Department of Institut
Guttmann Neurorehabilitation Hospital (IG). The Informa-
tion Technology framework for CR treatments in this clinical
setting is therefore the PREVIRNEC® platform [31]. It is
specifically designed to operate CR plans assigned to subjects,
as well as to manage precise follow-up information about the
process.

Three main cognitive functions are usually addressed in a
CR program [6]: attention, memory, and executive functions;

all of them can profoundly affect individuals’ daily function-
ing. Even mild changes in the ability to attend, process, recall,
and act upon information can have a significant effect on the
quality of life of the patient.

Before starting the CR program at IG every patient
undergoes a Neuropsychological Assessment Battery (NAB).
This battery includes 28 items covering the major cognitive
domains (attention, memory, and executive functions) mea-
sured using standardized cognitive tests.

Differences between pre- and posttreatment NAB test
scores are used to measure particular patient improvement



checkFilled « function (i, j, a, b, TOLERANCE) {
tol « 0;
for (klini: a){
for (k2 in j : b){
if (A[k1, k2] == 0){
tol — tol + 1;
if (tol > TOLERANCE) {return (FALSE)}}
}
t
return (TRUE)
}

ALGORITHM 4

O 0 NN R WD
L

Executions

e e e e =
A U R W N = O
L L L L

2 3 4 5 6 7 8 9 10 11 12
Results

FIGURE 5: MER with user-defined tolerance = 1.

in the fields of attention, memory, and executive functions.
Improvement criteria in the respective cognitive functions are
defined in IG cognitive rehabilitation protocols.

For each patient the therapist creates a specific CR
treatment, that is, a sequence of tasks. At IG a typical CR
program in PREVIRNEC® platform ranges from 2 to 4
sessions a week for a period of 2 to 5 months. After the
execution of a given task the patient gets a result ranging
from 0 to 100: a 0 result denotes the lowest level of task
completion and a 100 the highest. At the moment of this
analysis PREVIRNEC® platform supports 96 different CR
tasks targeting the three main cognitive functions mentioned
above (17 regarding attention rehabilitation, 59 memory, and
20 executive functions). In a typical CR treatment every
patient executes a different number of tasks in a different
order; the same task could be executed » times by a patient
and may not be included during the whole treatment of
another patient, depending on the decision of the therapist.

One hundred and twenty-three TBI adults following
a 3- to 5-month CR treatment at IG Neuropsychological

Abstract and Applied Analysis

F1GURE 6: FT-SAP(0.8) for idTask = 146 for a total number of 3329
executions.

Rehabilitation Unit are analyzed in this study. For every
patient the following demographic and clinical variables are
considered: age, gender, educational level, Glasgow Comma
Scale (GCS), and posttraumatic amnesia (PTA) duration.
Table 2 shows the basic statistics for numerical variables.

Initial assessment of the TBI severity is reported accord-
ing to GCS levels. A GCS score of eight or less after resusci-
tation from the initial injury is classified as a severe brain
injury. The GCS score for a moderate brain injury ranges
between nine and thirteen and a score of thirteen or higher
indicates a mild brain injury or concussion. For the patients
analyzed, most GCS scores (86.17%) show severe brain injury
level (mean value 6.45 + 3.15).

The following methods have been implemented and
executed in R version 2.15.1 (2012-06-22), “Roasted Marsh-
mallows” Copyright © 2012 (the R Foundation for Statis-
tical Computing, ISBN 3-900051-07-0, Execution Platform:
x86_64-pc-mingw32/x64 (64-bit)).

4.2. Visual Identification of NRR Considering One Task. The
first application is the FT-SAP presented in Section 3.3 for
a CR task (idTask = 146 targeting the attention cognitive
function) with y = 0.8. The 2-color heatmap shown in
Figure 6 is obtained. “Results” are plotted along the x-axis
ranging from 0 to 100 and “number of executions” along the
y-axis, also ranging from 0 to 100. Two neat NRR regions
can be visually identified for high values of Result and mid
to high values of number of executions. The identified NRR
might indicate that other tasks of the same type (e.g., targeting
the same function or subfunction) could behave in a similar
way; Section 4.4 below shows results for tasks grouped by
cognitive function.

CR treatment for this task comprises 3329 executions
in total, where 1950 of them correspond to patients with
improvement = YES and 1379 to improvement = NO.
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TABLE 2: Basic descriptive statistics for numerical variables.

Variable N N* Mean Std. Dev. Min Q1 Median Q3 Max

AGE 123 0 36.56 6.50 18 25 32 40 68

GCS 89 34 6.45 3.15 0 4 6.5 40 14

PTA 40 83 131.6 140.5 34 79 103 136 947

9194

9598100

FIGURE 7: NRR coordinates identified by the proposed method.

4.3. Analytical Identification of NRR. The method presented

in Section 3.4 is applied for the analytical identification of the

NRRs. The results obtained are shown in Figure 7 with input

parameter values MAXROW =4 and MAXCOLUM = 3.
The resulting NRRs are the following:

if (Results in [91, 94] and Repetitions in [11, 13]) then P
(Improvement) > 0.8,

if (Results in [95, 98] and Repetitions in [21, 23]) then
P (Improvement) > 0.8.

4.4. Visual Identification of NRR Considering Every Task by CR
Function. As introduced in Section 4.1, this study analyzes
one hundred and twenty-three TBI adults following a 3-5-
month CR treatment at the IG Neuropsychological Reha-
bilitation Unit. PREVIRNEC®© platform includes 17 tasks
addressing the attention function, 59 memory, and 20 exec-
utive functions. During this CR treatment, the total number
of task executions is 41010 (15475 targeting attention, 14557
memory, and 10978 executive functions). Figure 8 shows FT-
SAP (y = 0.8 left column and y = 0.9 right column) for every
execution of tasks grouped by CR functions. The top pair of
plots corresponds to the execution of attention tasks, the mid-
dle pair to memory tasks, and the bottom pair to executive
functions. Three different responses to CR treatment patterns
can be identified according to how improvement points are
distributed. Attention tasks are grouped on medium to high
values of Results and medium to low values of number of
executions. Memory is more uniformly spread from low to

high values of results; executions are all over the plot and
executive functions are a mix of the above patterns with
concentration on high values and also for specific lower
values of results and executions.

4.5. Analytical Identification of NRR (MER Method). The
methods presented in Sections 3.5 and 3.5.1 are applied for
the analytical identification of NRRs.

The first plot in Figure 8 (attention tasks with y = 0.8) is
now analyzed using the method presented in Section 3.5.1 to
identify maximum zones of improvement for every execution
of attention tasks, allowing for a tolerance of 2 elements.
Obtained results (graphically represented in Figure 9) are as
follows:

y=0.38,

[topLeftx, topLefty, botRightX, botRightY] = [11, 87,
20, 88],

area = 20,

tolerance = 2:
y=0.8,

[topLeftx, topLefty, botRightX, botRightY] = [16, 98,
25,100],

area = 30,

leading to the following NRRs:

if (Results in [87, 88] and Repetitions in [11, 20]) then P
(Improvement) > 0.8,

if (Results in [98, 100] and Repetitions in [16, 25]) then
P (Improvement) > 0.8.

5. Discussion

This work aims to identify the conditions in which perform-
ing a certain cognitive rehabilitation task (or a group of
tasks) guarantees better potential for the activation of brain
plasticity and therefore helps bring about improvements in
the assessed cognitive functions after CR treatment. As this
research takes our previous research as a starting point, the
results comparison is provided below and the pros and cons
are discussed.

Figure 10(a) presents FT-SAP proposed in this work for
idTask = 151 and y = 1 and Figure 10(b) shows Vis-SAP
obtained in [12]. As presented in Section 3.3, FT-SAP(1)
represents a green pointat position (i, j) if p;; > y, where p;; =
1; that is, all patients executing i times Task 151 and obtaining
score j improve after treatment. In Figure 10(a), gray cells
do not register observations. As shown in Figure 10(b), no
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F1GURE 10: FT-SAP (a) and Vis-SAP (b) for idTask = 151.

subject with Y = NO executed the task more than 60 times
obtaining results other than zero, leading to the identified
rule: (NRR(151) = ExecsI51 > 65 and Res > 20).

However, it can be seen that the area [22,35] x [15,30]
appears as a totally green area in the Vis-SAP, whereas there
are plenty of red points in the FT-SAP. This indicates that
most of the points in this area do not have 100% of patients
improving. This is the major contribution of the FT-SAP.
One can evaluate the degree of certainty of the induced NRR
as the points occlusion occurring in the VIS-SAP is over-
come. On the other hand, in the areas of the plot with high
concentrations of executions and results (as shown for results
lower than 40 and number of executions lower than 60 in
Figure 10(b)) Vis-SAP does not provide a neat visualization.
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By construction, FT-SAP avoids the confusion produced by
overlapping points. Decreasing y to 0.5, that is, admitting half
of the patients in a nonimproving point after the treatment,
produces an FT-SAP(0.5) as shown in Figure 11 with many
more green points, but it is still difficult to identify an
interesting rectangular green region to establish a second area
of NRR for Task 151. In conclusion, the FT-SAP provides a
refinement of the Vis-SAP that enables uncertainty to be dealt
with and avoids, by construction, confusions produced by
several patients overlapping in the same point.

When longer periods of CR treatments are considered,
including therefore an increasing number of subjects, the
areas of the plot where no task executions can be found tend
to decrease. Also, when a group of tasks targeting the same
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F1GURE 11: FT-SAP(0.5) for idTask = 151.

cognitive function is considered instead of a single one, more
robust NRR can be induced from the proposed FT-SAP
representation.

In addition, both plots in Figure 10 agree on the identifi-
cation of a zone where NRR is not achieved, as shown by the
high values for results and the low number of executions. This
seems to suggest that, for this type of task, the therapist might
expect to achieve NRR for lower results. An explanation for
this might be that the rehabilitating effect of a task depends
on the ratio between the skills of the treated patient and the
challenges involved in the execution of the task itself. The
difficulty is related to the level of stimulation of cognitively
involved functions; maximum activation occurs when the
task is “just barely too difficult” [32]. If the task is either
too easy or too difficult for the patient, it appears to be
less effective. Active monitoring of the subject’s progress
is therefore required to adapt the difficulty of the tasks to
the potential capacities and progress of the subject, always
pushing them to reach a goal just beyond what they can
attain, but not too far. Thus, determining the correct training
schedule requires a very precise tradeoft between sufficiently
stimulating and sufficiently achievable tasks, which is far from
intuitive, and is still an open problem, both empirically and
theoretically.

At the moment of submission, PREVIRNEC®© was as-
suming as clinical hypothesis a constant NRR for the whole
set of available tasks. The assumed NRR is a one-dimensional
NRR which only takes into account the scorings obtained
in the execution of tasks. Thus, a task is considered to be
executed in NRR if the scoring obtained falls in the interval
[65, 85]. Therefore the PREVIRNEC® system automatically
increases the difficulty if the patient performs beyond the
NRR (i.e., achieving a result higher than 85, meaning that
the task was too easy for the patient, and thus stimulating
the required brain areas only to a poor degree) and decreases
it if he/she performs below NRR (meaning that the effort
demanded for the task was so hard that it became impossible,
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and thus nontherapeutic effects can be achieved). The current
proposal enables a more precise refinement of the system
where the NRR might change from task to task, depending on
its own characteristics and the type of stimulation involved.

As shown in Section 4.4 where tasks are analyzed grouped
by cognitive function, a different pattern can be identified
for groups of tasks. Executive functions (at the bottom
of Figure 8) seem to be a combination of the attention
and memory plots. An explanation for this might be that
executive functions are those abilities that allow individuals
to efficiently and effectively engage in complex goal-directed
behaviors such as planning, sequencing, categorization, flex-
ibility, and inhibition. According to Lezak [33], this includes
the capacity to set goals, to form plans, to initiate actions,
and to regulate and evaluate behavior according to the plan
and to situational constraints. Therefore executive functions
are considered higher level functions which control the more
basic cognitive functions such as attention and memory. This
implies that intactness of the executive functions might deter-
mine whether a brain-damaged individual with lower level
cognitive deficits, for example, selective or divided attention
processing or memory deficits, is able to compensate for these
deficits and to adapt to the altered situations by restructuring
activities [34].

This suggests that the current NRR considered (the
scoring interval [65,85]) might be enlarged to also include
the number of executions as introduced in [12] and also could
be addressed by cognitive function, possibly leading to a
different NRR for each function, as shown in Section 4.4.

The methods presented in Section 3 were tested on a
Windows 7 Professional SP1PC, Intel Core i3 2.40 GHz (2 GB
RAM) 64-bit OS.

The algorithm presented in Section 3.4 runs in few
seconds. The MER method described in Sections 3.5 and
3.5.1 took about 15 minutes to execute. Though inefficient, it
provides a good basis upon which to build. To improve its
performance, direction to the search needs to be introduced.
The proposed algorithm could enumerate the subrectangles
in any random order and still find the correct solution.
Instead, we might take advantage of the fact that if a small
rectangle contains a zero, so will each of its surrounding
rectangles. Therefore, rectangles will be grown for each possi-
ble lower-left corner. This growing process will only produce
upper-right corners defining rectangles which contain only
successes (ones, i.e., improvements).

As presented in [12] the main drawbacks of the Vis-SAP
proposal are twofold: on the one hand, the lack of com-
pleteness of the Vis-SAP criterion proposed. Indeed, look-
ing at the SAP diagram, VIS-SAP is not assigning improve-
ment or nonimprovement to the whole area, but only to
small parts of the diagram corresponding to concrete and
reduced areas where either improvement or nonresponse can
be ensured. Therefore it could be said that Vis-SAP provides
a semideterministic procedure where a particular configura-
tion for both results and repetitions ensures improvement,
a second configuration where the task does not produce
patient improvement, and out of these regions the outcome
is undetermined. On the other hand, the proposed analysis
considers each task individually, being NRR defined for every
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single task. FT-SAP and the proposed NRRMR methods
overcome both these drawbacks.

6. Conclusions and Future Work

This work builds on our previous contribution towards the
design, implementation, and execution of personalized, pre-
dictable, and data-driven CR programs. We wish to identify
NRR for cognitive rehabilitation tasks that lead to patient
improvement.

SAP and MER problems were used to automatically
generate data-driven models in order to identify bidimen-
sional NRRs, taking into account the proper combinations
of repetition of tasks and performance. In this work, a new
SAP is proposed overcoming the identified limitations of
Vis-SAP and allowing for the automatic identification of a
bidimensional NRR for a given task. A method is introduced
to identify a variable number of NRRs satisfying a certain
degree of reliability (y) for a given task. A direct MER
algorithm is implemented and modified to identify regions
of minimum probability of improvement y, in order to solve
the Neurorehabilitation Range Maximal Regions (NRRMR)
problem introduced in this paper. The proposed methods are
also applied to any number of CR tasks grouped in cognitive
functions allowing for the identification of NRR, not only for
a single task but also for a group of them stimulating the same
cognitive function. When grouped by cognitive functions, a
different response pattern has been identified for memory
skills, attention, or executive functions, suggesting that NRR
might also depend on the targeted function. Further anal-
yses, including subfunctions of each cognitive function, are
currently underway. In PREVIRNEC®O platform each CR task
is designed to target a cognitive subfunction (e.g., idTask 151
analyzed above targets the visual memory subfunction of the
memory function) and the improvement/nonimprovement
values of Y variable can therefore be determined by the
specific subtests of the NAB assessment which evaluate that
subfunction, leading to a finer granularity of the results.

Analytical and visual tools are proposed, designed, imple-
mented, and executed to find an operational approach for
the identification of a bidimensional NRR from a data-driven
approach. FT-SAP has been introduced as a parametric
heatmap-based visualization tool to find areas where a target
event has a minimum probability of occurring. For this
particular application, the FT-SAP identifies areas with high
probability of cognitive improvement. Although FT-SAP is
not a complex concept, it has shown great potential for
finding the NRR region of a cognitive rehabilitation task (or
a set of tasks) in an automatic, efficient, simple, and very
intuitive way. Identified NRRs will be validated with a random
group of patients not included in this analysis to verify the
obtained results.

As a complementary visual and analytical tool, starting
from the representation provided by FT-SAP, the MER
problem method has been introduced in order to identify
maximum NRR. An existing MER method has been imple-
mented and adapted to support a user-defined tolerance
to the search for MER. This allows the therapist to define
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the extent to which the MER should be empty. The tolerance
specifies the number of nonempty elements allowed in an
MER. The visual identification of these regions to allow a
certain degree of nonempty elements is not straightforward
and therefore an automatic identification provides therapist
with this additional information. As suggested in Section 3.5,
the current NRRMR implementation is due to be improved
with regard to faster computational time. The tolerance
parameter can also be adapted to be a percentage of points of
the identified area instead of a fixed number of points, thus
supporting therapists with more elements for a potentially
good response to treatment.

As presented in Section 1, other factors are supposed to
be highly determinant of response to treatment, such as the
TBI severity reported by GCS, the time since injury, age, and
educational level [20]. Extension of the current proposals
to include such other factors is currently being explored,
provided that the formal framework of FT-SAP is easily
extendable to hypercubes instead of two-way tables as shown
in this work.
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