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Received 2 January 2015; Revised 15 May 2015; Accepted 18 May 2015

Academic Editor: Benito M. Chen-Charpentier
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Fluorescence recovery after photobleaching (FRAP) is a widely used measurement technique to determine the mobility of
fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed,
data (pre)processing represents an important issue. The aim of this paper is twofold. First, we formulate and solve the problem
of relevant FRAP data selection.The theoretical findings are illustrated by the comparison of the results of parameter identification
when the full data set was used and the case when the irrelevant data set (data with negligible impact on the confidence interval
of the estimated parameters) was removed from the data space. Second, we analyze and compare two approaches of FRAP data
processing. Our proposition, surprisingly for the FRAP community, claims that the data set represented by the FRAP recovery
curves in form of a time series (integrated data approach commonly used by the FRAP community) leads to a larger confidence
interval compared to the full (spatiotemporal) data approach.

1. Introduction

The method of fluorescence recovery after photobleaching
(FRAP) is based on themeasurement of the change of fluores-
cence emitted by autofluorescent molecules or fluorescently
tagged compounds (e.g., green fluorescence proteins (GFP)
in a region of interest (ROI), usually a 2D Euclidean bounded
domain, in response to a high-intensity laser pulse provided
by confocal laser scanning microscopy (CLSM). The initial
steady state is thus perturbed by an external stimulus, the so-
called bleach.The bleach (or bleaching) causes an irreversible
loss of fluorescence in the bleached area, apparently with-
out any significant damage to intracellular structures. After
bleaching, the observed recovery in fluorescence reflects the
mobility of fluorescence compounds from the area outside
the bleach [1].

To quantify the mobility of photosynthetic proteins of
different microbial species is the main research interest of
biologists. In Figure 1, we observe an example of FRAPdata in
form of a time series of both 2D and 1D fluorescence profiles
reflecting the photosynthetic proteins mobility on a mem-
brane [2, 3]. In the observed specimen (thylakoid membrane
of the red algae Porphyridium cruentum, cf. Figure 1(a)),
the experimentalists usually select a 2D rectangular ROI
with the larger side perpendicular to the bleach strip in
order to perform the averaging along the shorter axis. The
resulting 1D fluorescence profiles (Gaussian-shaped signals
in the central bleached region) are plotted on Figure 1(b).
Based on spatiotemporal FRAP data, the diffusion constant
is usually estimated by fitting a closed form model to the
preprocessed FRAP data; see, for example, [4–9]. Since all
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Figure 1: Experimental data from FRAP experiments [2, 3]. (a) Representative FRAP image sequence for a single cell of red algae
Porphyridium cruentum for phycobilisome fluorescence. First, a fluorescence image before bleaching was detected ((A) before bleach), and
then the phycobilisome fluorescence was bleached out across the middle of the cell in the vertical direction (red rectangle) and the postbleach
images were recorded every 8 seconds (5 plots are displayed only). The total measurement time was 200 seconds; the length of the scale bar
is 3𝜇m. (b) One-dimensional fluorescence profiles. The abscissa represents the position along the axis perpendicular to the bleach strip. The
ordinate quantifies the corresponding values of fluorescence (in arbitrary units) averaged along the axis parallel to the bleach strip. In the
central region we see the step-wise recovery of the Gaussian-shaped signals, from the lowest values of the first postbleach profile to the highest
prebleach (steady-state) values on the top.

closed form equation models need some simplified condi-
tions to be fulfilled, for example, specific assumptions about
initial and boundary conditions, they have limited accuracy.
The simulation based models are more general although
computationally more expensive, and they are using the raw
data; the underlying process is modeled numerically; see, for
example, PDE based model [10] or Monte Carlo simulations
based model [11, 12], and model parameters are inferred
within an optimization procedure.

Let us mention that CLSM allows the selection of a thin
cross section of the sample by rejecting the information
coming from the out-of-focus planes. However, the small
energy level emitted by the fluorophore and the amplification
performed by the photon detector is the cause of significant
measurement noise. Therefore, FRAP images are in general
very noisy with a small signal-to-noise ratio (SNR); that is,
in order to get reliable results for the diffusion coefficient
𝐷 (often modeled as time and space invariant), an adequate
technique residing in regularization is mandatory [13]. The
analysis of the ill-posedness of the parameter identification
of reaction-diffusion models based on spatiotemporal FRAP
images was treated in [14, 15] and previously also in [16].
Currently, our approach is implemented into the special
software CA-FRAP based on the UFO (Universal Functional
Optimization) system [17]. For the real FRAP data with the
red algae Porphyridium cruentum we obtained a good agree-
ment with reference values (the range of result 10−14m2s−1,
i.e., 10−2 𝜇m2s−1) [3, 15, 18].

In this paper, we focus on another rather theoreti-
cal issue with great practical relevance residing in FRAP

data (pre)processing. The key concept relies on sensitiv-
ity analysis; confer [19]. Sensitivity analysis, performed to
test the sensitivity of the parameter inference of particular
modelling conditions, is well established. However, we are
using sensitivity analysis to reduce data set size prior to
conducting parameter inference; that is, we calculate the
sensitivities and afterwards select the “relevant” data space
where the sensitivity is “sufficiently high.” The importance of
this point is notably raised when the cost of data acquisition
(besides considering the computational issues related to the
“irrelevant” data processing) cannot be neglected. As far as
we know, this approach is novel in both the FRAP-related and
statistic literature. Furthermore, based on the same sensitivity
analysis, we analyze two approaches of FRAPdata processing:
(i) the integrated data approach commonly used by the FRAP
community and (ii) the full (spatiotemporal) data case. The
inertia of the commonFRAPdata processingmethods almost
prohibits promoting new approaches with few exceptions
[10, 20, 21].

Our paper is organized as follows. After the introductory
section we describe the problem and introduce the sensi-
tivity analysis in Section 2. Then in Section 3, we develop a
new theoretical approach allowing a data space reduction.
Furthermore, in Section 4, we investigate a common way
of treating the data (in the FRAP community), that is,
using the so-called FRAP recovery curve in form of a time
series (integrated data approach), and we state a proposition
exhibiting larger sensitivities (and hence smaller confidence
intervals) of the parameter identification problem with full
data compared to that with integrated data. The novelty and
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advantages of our approach as well as outlooks for further
research are discussed in Section 5.

2. Preliminaries

2.1. Reaction-Diffusion System. Consider amodel of reaction-
diffusion system describing the fluorescent solute concen-
tration in time and space. Right now we assume that two
model parameters, (i) a diffusion coefficient 𝐷 and (ii) a
reaction factor 𝑅, are time-dependent and constant in space.
The introduced reaction term reflects the continuous pho-
tobleaching during data acquisition and is proportional to
the fluorescent particle concentration (which is proportional
to the fluorescence signal 𝑢 measured by CLSM); that is,
it is described as a first-order reaction [10]. The governing
equation for the spatiotemporal fluorescence signal 𝑢(𝑥, 𝑡) is
a diffusion equation with reaction term as follows:

𝜕

𝜕𝑡
𝑢 (𝑥, 𝑡) = 𝐷Δ𝑢 (𝑥, 𝑡) − 𝑅𝑢 (𝑥, 𝑡) ,

𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω,

boundary conditions on 𝜕Ω × [0, 𝑇] .

(1)

Boundary conditions could be, for example,

𝑢 (𝑥, 𝑡) = 0,

or 𝜕

𝜕𝑛
𝑢 (𝑥, 𝑡) = 0,

on 𝜕Ω, 𝑡 ∈ [0, 𝑇] .

(2)

We also consider the simplest case of unbounded domains,
Ω = R𝑛, in which we set appropriate decay conditions at
‖𝑥‖ → ∞, 𝑡 ∈ [0, 𝑇]. Equations (1) (and variants) are the
basis for all the further analysis.

In the case of constant coefficients, the solution to this
problem can be expressed by means of the Green function
𝐺(𝑥, 𝑡; 𝑦) for the heat equation. Consider

𝜕

𝜕𝑡
𝐺 (𝑥, 𝑡; 𝑦) = Δ𝐺 (𝑥, 𝑡; 𝑦) , 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] ,

𝐺 (𝑥, 0; 𝑦) = 𝛿 (𝑥 −𝑦) , 𝑥 ∈ Ω,

boundary conditions for 𝐺 (𝑥, 𝑡; 𝑦) , 𝑥 ∈ 𝜕Ω.

(3)

It is well-known that

𝑢̃ (𝑥, 𝑡) = ∫
Ω

𝐺 (𝑥, 𝑡; 𝑦) 𝑢0 (𝑦) 𝑑𝑦 (4)

solves the problem for 𝑅 = 0 and𝐷 = 1 and that

𝑢 (𝑥, 𝑡) := 𝑒
−𝑅𝑡

𝑢̃ (𝑥, 𝐷𝑡)

= 𝑒
−𝑅𝑡

∫
Ω

𝐺 (𝑥,𝐷𝑡; 𝑦) 𝑢0 (𝑦) 𝑑𝑦
(5)

solves (1) for constant parameters 𝑅,𝐷.

Some frequently used cases are that of a diffusion in free
space, that is, on the whole domain R𝑛 without boundary
conditions. In that case, the Green function (in 1 and 2 spatial
dimensions, resp.) is the well-known heat kernel. Consider

𝐺 (𝑥, 𝑡; 𝑦) =
1

√4𝜋𝑡
𝑒
−(𝑥−𝑦)

2
/4𝑡

, 𝑥, 𝑦 ∈ R,

𝐺 (𝑥, 𝑡; 𝑦) =
1
4𝜋𝑡

𝑒
−‖𝑥−𝑦‖

2
/4𝑡

, 𝑥, 𝑦 ∈ R
2
.

(6)

In FRAP experiments, the initial condition, that is, the
first postbleach profile (with the background or prebleach
signal subtracted), is often modeled as a Gaussian [4, 7, 8]
(cf. Figure 1(b)) which leads in the one- or two-dimensional
case to initial conditions of the form

𝑢0 (𝑥) = 𝑢0,0𝑒
−2𝑥2/𝑟20 (1𝐷) ,

𝑢0 (𝑥) = 𝑢0,0𝑒
−2‖𝑥‖2/𝑟20 (2𝐷) ,

(7)

where 𝑢0,0 < 0 is the maximum depth at time 𝑡0 (i.e., for 𝑥 =

0) and 𝑟0 > 0 is the half-width of the bleach at height (depth)
𝑢0,0𝑒
−2; see, for example, [7].The explicit solution for 𝑢 in the

free space case is then given by

𝑢 (𝑥, 𝑡) = 𝑒
−𝑅𝑡

𝑢0,0
𝑟0

√𝑟20 + 8𝐷𝑡

𝑒
−2𝑥2/(𝑟20+8𝐷𝑡) (1𝐷) ,

𝑢 (𝑥, 𝑡) = 𝑒
−𝑅𝑡

𝑢0,0
𝑟
2
0

𝑟20 + 8𝐷𝑡
𝑒
−2‖𝑥‖2/(𝑟20+8𝐷𝑡) (2𝐷) .

(8)

2.2. Parameter Identification Problem. We now discuss the
parameter identification problem, where we try to infer about
the parameters 𝐷, 𝑅 by using direct measurements of 𝑢 in
some space-time domain. That is, we assume that one of the
following kind of data are observed:

𝑢 (𝑥
𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 ∈ R

𝑁data Case Discrete Data (DD)

𝑢 (𝑥, 𝑡)

(𝑥, 𝑡) ∈ 𝐵 ⊂ Ω × [0, 𝑇] Case Continuous Data (CD) .

(9)

The first formulation (DD) is a discrete one, and the second
one (CD) is an idealized continuous version of it. In the
second one, the set𝐵 is some observation (monitored) region,
which does not have to be the full regionΩ×[0, 𝑇]. Of course,
if the data grid is small enough, the discrete data case can be
seen as an approximation to the continuous case. We will use
this at several instances, for example, for an approximation of
sums in the discrete case by the corresponding integrals.

Remark 1. A FRAP data structure usually consists of a time
sequence of rectangular matrices (2D fluorescence profiles,
cf. Figure 1(a)), where each entry quantifies the fluorescence
intensity at a particular point in a 2D domain (e.g., by a
number between 0 and 255). Consider

𝑢 (𝑥
𝑙

, 𝑡
𝑗

)
𝑁

𝑥

𝑙=1 , 𝑗 = 0 ⋅ ⋅ ⋅ 𝑁
𝑡

, (10)
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where 𝑙 is the spatial index uniquely identifying the position
where the signal 𝑢 is measured and 𝑗 is the time index (the
initial condition corresponds to 𝑗 = 0).

Moreover, the data points are uniformly distributed in
both time (the time interval between two consecutive mea-
surements is constant) and space (on an equidistant 1D or 2D
mesh). Nevertheless, in the following we adopt the simplified
notation consisting in using only one index 𝑖 (𝑖 = 1 ⋅ ⋅ ⋅ 𝑁data)
for all data in the space-time domain.

We now define the forward map (also called parameter-
to-data map)

𝐹 : R
2
󳨀→ R

𝑁data

(𝐷, 𝑅) 󳨀→ 𝑢 (𝑥
𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 ,

(11)

where 𝑢 is as in (5). Our regression model is now

𝐹 (𝐷, 𝑅) = data, (12)

where the data are modeled as contaminated with additive
white noise as follows:

data = 𝐹 (𝐷
𝑇

, 𝑅
𝑇

) + 𝑒 = 𝑢 (𝑥
𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 + (𝑒

𝑖

)
𝑁data
𝑖=1 . (13)

Here 𝐷
𝑇

, 𝑅
𝑇

denotes the true coefficients and 𝑒 is a data
error vector whichwe assume to be normally distributedwith
variance 𝜎2. Consider

(𝑒
𝑖

)
𝑁data
𝑖=1 ∈ R

𝑁data , 𝑒
𝑖

= N (0, 𝜎2
) . (14)

Given some data, the aim of the parameter identification
problem is to find 𝐷,𝑅 such that (12) is satisfied in some
appropriate sense. Since (12) usually consists of an overdeter-
mined system (there are more data points than unknowns), it
cannot be expected that (12) holds with equality, but instead
an appropriate notion of solution (whichwe adopt for the rest
of the paper) is that of a least-squares solution 𝐷

𝑐

, 𝑅
𝑐

(with
‖ ⋅ ‖ denoting the Euclidean norm on R𝑁data). One has

󵄩󵄩󵄩󵄩𝐹 (𝐷
𝑐

, 𝑅
𝑐

) − data󵄩󵄩󵄩󵄩
2
= min
𝐷,𝑅

‖𝐹 (𝐷, 𝑅) − data‖2 . (15)

The above defined parameter identification problem is
usually ill-posed for nonconstant coefficients such that reg-
ularization has to be employed; see, for example, [13]. The
solution of a practical example based on FRAP data was
presented in [15]. If we a priori restrict the coefficients 𝐷,𝑅

to be constant, then the identification problem becomes well-
posed.

Further, in Section 3, we solve and afterward discuss the
problem of data space selection based on sensitivity analysis.
The prerequisite for this study is the confidence intervals
estimation which we introduce in the next subsection.

2.3. Sensitivity Analysis and Confidence Intervals. For the
sensitivity analysis we require the Fréchet-derivative of the
forward map 𝐹; that is,

𝐹
󸀠

[𝐷, 𝑅]

= (
𝜕

𝜕𝐷
𝐹 (𝐷, 𝑅)

𝜕

𝜕𝑅
𝐹 (𝐷, 𝑅))

= (

𝜕

𝜕𝐷
𝑢 (𝑥1, 𝑡1)

𝜕

𝜕𝑅
𝑢 (𝑥1, 𝑡1)

.

.

.
.
.
.

𝜕

𝜕𝐷
𝑢 (𝑥
𝑁data

, 𝑡
𝑁data

)
𝜕

𝜕𝑅
𝑢 (𝑥
𝑁data

, 𝑡
𝑁data

)

)

∈ R
𝑁data×2.

(16)

A corresponding quantity is the Fisher information matrix

𝑀[𝐷, 𝑅] = 𝐹
󸀠

[𝐷, 𝑅]
𝑇

𝐹
󸀠

[𝐷, 𝑅] ∈ R
2×2

. (17)

According to Bates and Watts [22], we can estimate confi-
dence intervals. Suppose we have computed (𝐷

𝑐

, 𝑅
𝑐

) as least-
squares solutions in the sense of (15). Let us define the residual
as

res2 (𝐷
𝑐

, 𝑅
𝑐

) =
󵄩󵄩󵄩󵄩𝐹 (𝐷

𝑐

, 𝑅
𝑐

) − data󵄩󵄩󵄩󵄩
2

=

𝑁data

∑

𝑖=1
(data
𝑖

−𝑢
𝐷

𝑐
,𝑅

𝑐

(𝑥
𝑖

, 𝑡
𝑖

))
2
.

(18)

Then according to [22], it is possible to quantify the error
between the computed parameters (𝐷

𝑐

, 𝑅
𝑐

) and the true
parameters (𝐷

𝑇

, 𝑅
𝑇

). In fact, we have an approximate 1 − 𝛼

confidence interval as follows:

(𝐷
𝑐

− 𝐷
𝑇

𝑅
𝑐

− 𝑅
𝑇

)𝑀 [𝐷
𝑐

, 𝑅
𝑐

] (
𝐷
𝑐

− 𝐷
𝑡

𝑅
𝑐

− 𝑅
𝑇

)

≤ 2
res2 (𝐷

𝑐

, 𝑅
𝑐

)

𝑁data − 2
𝑓2,𝑁data−2 (𝛼) ,

(19)

where 𝑓
𝑚,𝑛

(𝛼) corresponds to the upper 𝛼 quantile of the
Fisher distribution with𝑚 and 𝑛 degrees of freedom.

The parameter 𝑅 can be either disregarded for its low
value [4] or measured by another set of FRAP experiments.
These new experiments allow the identification of parameters
related to the fluorescence loss due to the bleaching during
scanning; see, for example, [10]. Consequently, in case when
𝑅 is either fixed (known) or disregarded (𝑅 = 0), we only
have 𝐷 as unknown. Then a similar result holds and the
Fisher information matrix collapses into the scalar quantity
∑
𝑁data
𝑖=1 ((𝜕/𝜕𝐷)𝑢(𝑥

𝑖

, 𝑡
𝑖

))
2, and the confidence interval for full

observations is described as follows:

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁data

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

≤
res2 (𝐷

𝑐

)

𝑁data − 1
𝑓1,𝑁data−1 (𝛼) ,

(20)
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with

res2 (𝐷
𝑐

) =

𝑁data

∑

𝑖=1
(data
𝑖

−𝑢
𝐷

𝑐

(𝑥
𝑖

, 𝑡
𝑖

))
2
. (21)

Remark 2. In (20), several simplifications are possible.
Note that according to our noise model, the residual term
res2(𝐷

𝑐

)/(𝑁data − 1) is an estimator of the error variance [22]
such that the approximation

res2 (𝐷
𝑐

)

𝑁data − 1
∼ 𝜎

2 (22)

holds for 𝑁data being large. This approximation will be
used in several instances in the following, and the term
res2(𝐷

𝑐

)/(𝑁data − 1) in (20) can be viewed as rather indepen-
dent of𝐷

𝑐

or𝑁data.
Moreover, we remind the reader that the Fisher distribu-

tion with 1 and𝑁data − 1 degrees of freedom converges to the
𝜒
2-distribution as 𝑁data → ∞. Hence, the term 𝑓1,𝑁data−1(𝛼)

can approximately be viewed as independent of 𝑁data as well
and of moderate size.

3. Theoretical Results on Data Space Selection

In this section we present the theoretical results concerning
an (in further defined sense) optimal data space selection
for the problem of parameter identification based on FRAP
data. For all the results following, we always consider only the
constant diffusivity 𝐷 as unknown; set 𝑅 = 0. Hence, (20) is
the central estimate which we use in the sequel. We mention
that most of the analysis can be extended to the case of two
unknowns 𝐷,𝑅 as well. However, the case of an unknown
nonconstant diffusivity is out of the scope of this paper.

3.1. Data Reduction: Relevant versus Irrelevant Data. The
confidence interval estimate (20) gives us useful information
on the quality of a least-squares estimate. A central ingredient
in this estimate is the sensitivity (or the Fisher information
matrix), which is the main factor controlling the error |𝐷

𝑐

−

𝐷
𝑇

|. As a next step, starting from (20), we might change the
data observation and consider the question if we can use less
data without increasing the error too much.

Let us assume now that we have different kind of data (i.e.,
less data points, also called reduced data in the following).
One has

𝑢 (𝑥
𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 ∈ R

𝑁data , (23)

where

𝑁data < 𝑁data,

{(𝑥
𝑖

, 𝑡
𝑖

)} ⊂ {(𝑥
𝑖

, 𝑡
𝑖

)} ,

(24)

and we compute a least-squares estimate 𝐷
𝑐

using these
data. Without loss of generality let us impose the following
ordering of the data {(𝑥

𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 } = {(𝑥

𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 }, that is, that

the new data are just the first 𝑁data values of the original

data. We generally impose the condition that 𝑁data is large
enough such that certain estimators (like res2(𝐷

𝑐

)/(𝑁data−1))
are close to their expected value, that is, that a law of large
numbers is reasonable. As a rule of thumb, we impose in
all of the following that 𝑁data ≥ 50. The case of extreme
data reduction to a few points requires further more detailed
analysis, which we omit here.

The corresponding confidence interval estimate (20) still
holds with a (usually larger) confidence interval

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁data

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

≤
res2 (𝐷

𝑐

)

𝑁data − 1
𝑓1,𝑁data−1 (𝛼) .

(25)

Note that for the residual we now have to take the Euclidean
norm in R𝑁data in the corresponding expression (21) (i.e., a
sum of the form ∑

𝑁data
𝑖=1 ).

Suppose we would like to have a similar confidence
interval as before with the new data set (𝑥

𝑖

, 𝑡
𝑖

) instead. We
can thus estimate using (25)

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁data

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2
≤
res2 (𝐷

𝑐

)

𝑁data − 1

⋅ 𝑓1,𝑁data−1 (𝛼) + (𝐷
𝑐

−𝐷
𝑇

)
2

⋅

𝑁data

∑

𝑖=𝑁data+1

(
𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2
≤
res2 (𝐷

𝑐

)

𝑁data − 1

⋅ 𝑓1,𝑁data−1 (𝛼) [
𝑓1,𝑁data−1 (𝛼)

𝑓1,𝑁data−1 (𝛼)
]

⋅ [

[

1+
∑
𝑁data
𝑖=𝑁data+1

((𝜕/𝜕𝐷) 𝑢 (𝑥
𝑖

, 𝑡
𝑖

))
2

∑
𝑁data
𝑖=1 ((𝜕/𝜕𝐷) 𝑢 (𝑥

𝑖

, 𝑡
𝑖

))
2

]

]

.

(26)

Let us further introduce an upper bound 𝜂 > 0 such that

𝜂 ≥

∑
𝑁data
𝑖=𝑁data+1

((𝜕/𝜕𝐷) 𝑢 (𝑥
𝑖

, 𝑡
𝑖

))
2

∑
𝑁data
𝑖=1 ((𝜕/𝜕𝐷) 𝑢 (𝑥

𝑖

, 𝑡
𝑖

))
2

, (27)

then we finally find a confidence interval using the reduced
data. It will be announced in the following lemma.

Lemma 3. Let𝑁
𝑑𝑎𝑡𝑎

be the number of reduced data points and
suppose that 𝜂 is chosen according to (27). Then using reduced
data, one finds a confidence interval of the form

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁

𝑑𝑎𝑡𝑎

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2
≤ [

𝑓1,𝑁
𝑑𝑎𝑡𝑎
−1 (𝛼)

𝑓1,𝑁
𝑑𝑎𝑡𝑎
−1 (𝛼)

]

⋅ (1+ 𝜂)(
res2 (𝐷

𝑐

, 𝑅
𝑐

)

𝑁
𝑑𝑎𝑡𝑎

− 1
𝑓1,𝑁
𝑑𝑎𝑡𝑎
−1 (𝛼)) .

(28)
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Remark 4. The relevance of this observation is that we have
almost the same type of estimates as in the full data case
(20), but we might ignore irrelevant data points. The Fisher
distribution converges to the 𝜒2-distribution as 𝑁data → ∞

and thus it holds that 𝑓1,𝑁data−1(𝛼)/𝑓1,𝑁data−1(𝛼) ∼ 1 if both
𝑁data and 𝑁data → ∞. For reasonable values of 𝛼 and 𝑁data
(e.g., 𝛼 = 0.05 and 𝑁data ≥ 50), it can be verified that
𝑓1,𝑁data−1(𝛼)/𝑓1,𝑁data−1(𝛼) ≤ 1.05. This situation corresponds
to our initial assumption of sufficiently large𝑁data. Note that
a similar analysis as below could be done if this assumption is
not valid by incorporating the factor𝑓1,𝑁data−1(𝛼)/𝑓1,𝑁data−1(𝛼)

into the analysis.
Thus, in practice and for the later analysis we replace the

estimate (28) by the simpler one (forgetting the first factor).
Consider

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁data

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

≤ (1+ 𝜂)(
res2 (𝐷

𝑐

, 𝑅
𝑐

)

𝑁data − 1
𝑓1,𝑁data−1 (𝛼)) .

(29)

Remark 5. The previous Lemma 3 can be seen as a criterion
for selecting 𝑁data. If this 𝜂 is chosen as an upper bound,
then (27) is relating 𝑁data to 𝜂. Then this will be the main
condition for choosing 𝑁data (as small as possible such that
(27) holds). With this choice and if 𝜂 is small, we basically
obtain almost the same confidence interval than when using
the full data. Hence, out of the original data 𝑢(𝑥

𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1

we can pick a subset 𝑢(𝑥
𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 which contains almost the

same information. If (27) holds with small 𝜂, we thus call the
new data 𝑢(𝑥

𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 the relevant data and the complement

{𝑢(𝑥
𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 } \ {𝑢(𝑥

𝑖

, 𝑡
𝑖

)
𝑁data
𝑖=1 } the irrelevant data.

Let us mention, following Remark 2, that the expressions
res2(𝐷

𝑐

)/(𝑁data − 1) and res
2
(𝐷
𝑐

)/(𝑁data − 1) are both similar
to 𝜎

2 for 𝑁data and 𝑁data are large. More precisely, the
estimator res2(𝐷

𝑐

)/(𝑁data − 1) has variance 𝜎
4
/𝑁data, and

hence the ratio of these two terms is roughly of the order
of 1 + 𝜎

4
/𝑁data. With our assumption of large data sizes,

𝑁data ≥ 50, and for reasonable 𝜎, the two expressions can
hence be considered equal in our analysis. This explains,
why we considered the right-hand sides of the corresponding
estimates (20) and (28) (resp., (29)) almost equal. In fact, our
analysis is rather independent of the res2(𝐷

𝑐

)/(𝑁data − 1) and
𝜎 (as long as we impose the condition of 𝑁data being large
as above) because we compare two situations (full data and
reduced data) with similar 𝜎 and the corresponding factors
cancel out. The dependence of the confidence intervals itself
on the noise variance is, of course, well known and (in the
well-posed case) linear; see, for example, [6, 9] and Figure 4.

3.2. Data Reduction Based on the Data Noise Level. There is
also the possibility of using other selection criteria as well
for the data reduction step. The following one is based on
comparing the sensitivity with the noise level. In general, for

deterministic errors, the data noise level refers to the norm
of the noise. In our case, that is, that of stochastic errors, we
identify the noise level with the noise variance 𝜎2.

Lemma6. Let𝑁
𝑑𝑎𝑡𝑎

be the number of reduced data points and
let |(𝐷

𝑐

− 𝐷
𝑇

)/𝐷
𝑐

| ≤ 1 hold. (This means that the relative
difference |𝐷

𝑐

− 𝐷
𝑇

| with respect to 𝐷
𝑐

is less than 100%.)
Furthermore, we assume the following selection criterion with
some freely selected parameter 𝜏 > 0:

𝐷
𝑐

2
𝑁

𝑑𝑎𝑡𝑎

∑

𝑖=𝑁

𝑑𝑎𝑡𝑎
+1

(
𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2
≤ 𝜏𝜎

2
. (30)

Then using reduced data, we find a confidence interval of the
form

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁

𝑑𝑎𝑡𝑎

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

≤ (
res2 (𝐷

𝑐

, 𝑅
𝑐

)

𝑁
𝑑𝑎𝑡𝑎

− 1
𝑓1,𝑁

𝑑𝑎𝑡𝑎
−1 (𝛼) + 𝜏𝜎

2
) .

(31)

Proof. Theproof follows the steps of that preceding Lemma 3.
We obtain the estimate in Lemma 6 by using assumptions
(30) and |(𝐷

𝑐

− 𝐷
𝑇

)/𝐷
𝑐

| ≤ 1 in the second part of (26) as

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁data

∑

𝑖=𝑁data+1

(
𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

= (
𝐷
𝑐

− 𝐷
𝑇

𝐷
𝑐

)

2

𝐷
𝑐

2
𝑁data

∑

𝑖=𝑁data+1

(
𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

≤ 𝜏𝜎
2
,

(32)

which immediately yields the result.

Remark 7. If the approximation of residual (22) is valid and if
the ratio of 𝑓1,𝑁data−1

(𝛼)/𝑓1,𝑁data−1(𝛼) ∼ 1 as in Lemma 3, then
Lemma 6 leads to a confidence interval of the order

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁data

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

∼ 𝜎
2
(𝑓1,𝑁data−1 (𝛼) + 𝜏)

∼ (1+ 𝜏

𝑓1,𝑁data−1 (𝛼)
)𝑓1,𝑁data−1 (𝛼)

res2 (𝐷
𝑐

, 𝑅
𝑐

)

𝑁data − 1
,

(33)

which is again of the same order as the full data case; the
length of the confidence interval in the reduced data case is
multiplied by the factor (1 + 𝜏/𝑓1,𝑁data−1(𝛼)) compared to the
full data case.
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Remark 8. The previous analysis can be extended to the case
of an unknown reaction rate 𝑅 as well.The selection criterion
corresponding to Lemmas 3 and 6 should be formulated as

𝜂 ≥

󵄩󵄩󵄩󵄩󵄩
𝑀 [𝐷

𝑐

, 𝑅
𝑐

] − 𝑀[𝐷
𝑐

, 𝑅
𝑐

]
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑀 [𝐷

𝑐

, 𝑅
𝑐

]
󵄩󵄩󵄩󵄩󵄩

, (34)

󵄩󵄩󵄩󵄩󵄩
𝑀 [𝐷

𝑐

, 𝑅
𝑐

] −𝑀[𝐷
𝑐

, 𝑅
𝑐

]
󵄩󵄩󵄩󵄩󵄩
≤ 𝜏𝜎

2
, (35)

respectively.

Example 9. In this example we underline the previous the-
oretical results by numerical computations. To do so, we
compute a least-squares estimate 𝐷

𝑐

using different kind
of data. In a first experiment we consider a rectangular
spatiotemporal data grid with space interval 𝑥

𝑖

∈ [−4, 4] and
time interval 𝑡

𝑖

∈ [0, 6]. The grid size in both space and
time direction was set to Δ𝑥 = Δ𝑡 = 0.05. We simulated
data by assuming an exact diffusion coefficient 𝐷

𝑇

= 2 with
bleach radius 𝑟0 = 0.1 and computed the data for the 1D case
by (8). These data were perturbed by normally distributed
additive noise (whiteGaussian noise) with standard deviation
𝜎 = 0.05. Based on these data we computed a least-squares
estimate𝐷

𝑐

of the diffusion coefficient using a Gauss-Newton
procedure. We refer to this setup as the full data case.

Next, we computed a similar estimate using less data. For
this, we considered the data point selection criterion (27)
for various values of 𝜂 = 1, 0.3, 0.1. The data regions were
selected by first ordering all data points according to their
sensitivities ((𝜕/𝜕𝐷)𝑢(𝑥1, 𝑡1))

2
≤ ((𝜕/𝜕𝐷)𝑢(𝑥2, 𝑡2))

2
≤ ⋅ ⋅ ⋅

Then we selected the reduced data from the region of points
(𝑥
𝑖

, 𝑡
𝑖

), 𝑖, 1, . . . , 𝑁data using this ordering and the smallest
𝑁data such that (27) holds for the choice of 𝜂. In a sense,
we take the most sensitive data points as relevant data. In
Figure 2(a), the gray region corresponds to that region where
the data points were selected and the complementary region,
the white one, represents irrelevant data that can be neglected
without much loss of quality. A similar process (using the
same sensitivity ordering) was performed using selection
criterion (30) with values of 𝜏 = 20, 5, 1. The corresponding
data regions are displayed in Figure 2(b). Below of each
relevant data region, the ratio of 𝑁data/𝑁data is shown; that
is, (1 − 𝑁data/𝑁data) ⋅ 100% represents the percentage of data
reduction. For instance, in the first row, rightmost plot, 𝜂 =

0.1, only 50% of the original data are used.
Having identified several regions of relevant data using

different selection criteria, we considered the quality of the
computed estimate 𝐷

𝑐

using the reduced data. For the seven
cases (full data and six cases of reduced data), we sampled
1000 times a normally distributed noise vector 𝑒 (with fixed
standard deviation 𝜎 = 0.05), and for each of the noise
realizations, we computed a least-squares fit by a Gauss-
Newton iteration and computed the squared error |𝐷

𝑐

−𝐷
𝑇

|
2

This yields 1000 samples out of the error distribution of |𝐷
𝑐

−

𝐷
𝑇

|
2. For the seven cases, a boxplot of this error can be

seen in Figure 2(c). Here the box interior line corresponds
to the mean of the |𝐷

𝑐

− 𝐷
𝑇

|
2 (over 1000 realizations) and

the edges of the box in each column represents the 25th and
75th percentiles. The cross marks + are considered outliers.
The size of the box (more precisely the top of the box) can be
interpreted as an indicator of the size of a confidence interval.

This plot corresponds quite well with our theoretical
findings. For instance, the case 𝜂 = 1, in the second column
of the boxplot, corresponds to the case of using only 10% of
the original data, that is, 90% of data reduction. According
to Lemma 3, the theoretical confidence interval bound is
roughly 1 + 𝜂 = 2 times larger compared to the full data
case. And indeed, we observe the box in the second column
in Figure 2(c) being roughly 2 times larger compared to the
full data case in column one.The other cases with 𝜂 = 0.3 and
𝜂 = 0.1 behave similarly. Although the boxes in the last three
columns for 𝜏 = 20, 5, 1 are within the theoretical bound in
Lemma 6, it seems that this bound is not very precise, since
the actual error is quite smaller than the bound in (31). In
that respect, the data selection method of Lemma 3 is more
accurate and preferable.

Note that for the case 𝜂 = 0.1 (fourth column), we have
virtually the same error distribution as for the full data case
even though we have only used 50% of the original data.

There is a rather esthetic issue of the lotus flower-like
plots in Figure 2(a); what is the meaning of these lotus-like
grey regions? The answer is simple: those regions exhibit the
sensitivity to the fluorescence loss in photobleaching (FLIP);
see [18] for review and [23] for a more creative exploration of
the FRAP and FLIP synergic effect.

Remark 10. In Example 9, we have—in a sense—selected the
optimal region by ordering the sensitivities. However, the
data selection criteria of Lemmas 3 and 6 do not depend on
this ordering but can be performed in different situations. In
fact, in practice, one probably wants to select a rectangular
region as a relevant data region instead of the complicated
one in Figure 2. This is of course possible in Lemmas 3 and
6. One can compare all subregions of rectangular form and
accept those which satisfy the criterion in the above lemmas.
Such a concept will be pursued in the following subsections.

Remark 11. Another way of reducing the amount of data
could be to use a coarser data grid; that is, instead of 𝑢(𝑥

𝑖

, 𝑡
𝑖

),
one might perform a subsampling and just use every second
grid point (in space or time direction). However, such an
idea does not fit into our context because a subsampling
will in general increase the confidence interval significantly.
Looking at (25), one can observe that a subsampling by taking
every second data point will lead to Fréchet-derivative which
is about half the size of the original one and thus leading to a
doubling of the confidence intervals. On the contrary, in our
framework we consider cases where the confidence intervals
stay almost the same. Thus subsampling will lead to an 𝜂

which is not of the order of 1. Still, such a procedure makes
sense, if one has an idea of the wanted size of the confidence
intervals.Then the grid size can be selected such that estimate
(25) fits to one’s needs. For a rectangular grid on say a space-
time region [−𝐿/2, 𝐿/2] × [0, 𝑇], this requires an estimate of
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Figure 2: Examples of data reduction. Gray color indicates the data space, where the relevant data are taken. White color represents the data
regions of irrelevant data points. (a) Relevant data region using (27) with 𝜂 = 1, 0.3, 0.1. (b) Relevant data region using (30) with 𝜏 = 20, 5, 1.
(c) Boxplot of the distribution of the squared error |𝐷

𝑇

− 𝐷
𝑐

|
2 based on 1000 noisy signal samples using full and reduced data; cross marks

(+) indicates the outliers. The data were simulated using (8), with an exact diffusion coefficient 𝐷
𝑇

= 2, bleach radius 𝑟0 = 0.1, and additive
white Gaussian noise with standard deviation 𝜎 = 0.05.
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∑
𝑁data
𝑖=1 ((𝜕/𝜕𝐷)𝑢(𝑥

𝑖

, 𝑡
𝑖

))
2, which can roughly be obtained by

the asymtotics
𝑁data

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

∼
1

Δ𝑥Δ𝑡
∫
[−𝐿/2,𝐿/2]×[0,𝑇]

(
𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2
𝑑𝑥 𝑑𝑡

= O(
1

Δ𝑥Δ𝑡
)

(36)

as Δ𝑥, Δ𝑡 → 0. Thus from estimates of the integral on the
right-hand side, Δ𝑥, Δ𝑡 can be adapted to reach a desired
confidence.

3.3. Data Reduction for the Free Space Case. We now study
the data reduction procedure in view of practical relevance.
That is, we want to find simple formulas for selecting a
rectangular spatiotemporal regionwhich yield approximately
similar error bounds than when using all the spatial points
𝑥 ∈ R𝑛 as data.

Let us consider the problem on free space with 𝑅 = 0
and unknown𝐷 and a Gaussian as in (7) as initial condition.
From the solutions (8) in the one- and two-dimensional case,
we obtain by some calculations for the derivative

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡) = − 𝑢0,0

𝑟0

(𝑟20 + 8𝐷𝑡)
5/2

⋅ 𝑒
−2𝑥2/(𝑟20+8𝐷𝑡)4𝑡 (𝑟20 + 8𝐷𝑡− 4𝑥2

) , (1𝐷)

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡) = − 𝑢0,0

𝑟
2
0

(𝑟20 + 8𝐷𝑡)
3

⋅ 𝑒
−2‖𝑥‖2/(𝑟20+8𝐷𝑡)8𝑡 (𝑟20 + 8𝐷𝑡− 2 ‖𝑥‖2) (2𝐷) .

(37)

By an appropriate scaling based on the experimental design
factor 𝑟0 (yielding the new spatial dimensionless variable
𝑧 := 𝑥/𝑟0) and on the diffusion coefficient 𝐷 (yielding the
second dimensionless variable 𝑠 := 𝑡𝐷/𝑟

2
0) we may simplify

the expressions above.

Lemma 12. In the setting as before one can express the sensi-
tivity as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
=

󵄨󵄨󵄨󵄨𝑢0,0
󵄨󵄨󵄨󵄨
2

|𝐷|
2 𝐻1 (

𝑥

𝑟0
,
𝑡𝐷

𝑟20
) (1𝐷) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
=

󵄨󵄨󵄨󵄨𝑢0,0
󵄨󵄨󵄨󵄨
2

|𝐷|
2 𝐻2 (

𝑥

𝑟0
,
𝑡𝐷

𝑟20
) (2𝐷)

(38)

with the functions

𝐻1 (𝑧, 𝑠) =
16𝑠2

(1 + 8𝑠)3
𝑒
−4𝑧2/(1+8𝑠)

(1− 4𝑧2

1 + 8𝑠
)

2

,

𝐻2 (𝑧, 𝑠) =
64𝑠2

(1 + 8𝑠)4
𝑒
−4‖𝑧‖2/(1+8𝑠)

(1− 1
2
4 ‖𝑧‖2

1 + 8𝑠
)

2

.

(39)

In the one-dimensional case let us further assume the
usual situation that full data are given on a space-time
cylinder 𝑄 = [−𝐿/2, 𝐿/2] × [0, 𝑇], where [−𝐿/2, 𝐿/2] is the
space interval of observations and [0, 𝑇] is the time interval
as follows:

(𝑥
𝑖

, 𝑡
𝑖

) ∈ ([−
𝐿

2
,
𝐿

2
] × [0, 𝑇])

∩ {(𝑘Δ𝑥, 𝑙Δ𝑡) | (𝑘, 𝑙) ∈𝑁} .

(40)

Here Δ𝑥 and Δ𝑡 are the spacings of the grid in space and time
direction, respectively. The sensitivity can be approximated
by an integral

𝑁data

∑

𝑖=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑖

, 𝑡
𝑖

))

2

∼
1

Δ𝑥Δ𝑡
∫

𝐿/2

−𝐿/2
∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡.

(41)

Forgetting the factor 1/Δ𝑥Δ𝑡 (which cancels out anyway
later), we find

∫

𝐿/2

−𝐿/2
∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

=

󵄨󵄨󵄨󵄨𝑢0,0
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝐷𝑐
󵄨󵄨󵄨󵄨
2 ∫

𝐿/2

−𝐿/2
∫

𝑇

0
𝐻1 (

𝑥

𝑟0
,
𝑡𝐷
𝑐

𝑟20
)𝑑𝑥𝑑𝑡

=

󵄨󵄨󵄨󵄨𝑢0,0
󵄨󵄨󵄨󵄨
2
𝑟
3
0

󵄨󵄨󵄨󵄨𝐷𝑐
󵄨󵄨󵄨󵄨
3 ∫

𝑇𝐷

𝑐
/𝑟

2
0

0
∫

𝐿/2𝑟0

−𝐿/2𝑟0
𝐻1 (𝑧, 𝑠) 𝑑𝑧 𝑑𝑠

=

󵄨󵄨󵄨󵄨𝑢0,0
󵄨󵄨󵄨󵄨
2
𝑟
3
0

󵄨󵄨󵄨󵄨𝐷𝑐
󵄨󵄨󵄨󵄨
3 𝐾1 (

𝐿

2𝑟0
,
𝑇𝐷
𝑐

𝑟20
)

(42)

with

𝐾1 (𝑦, 𝑡) = ∫

𝑡

0
∫

𝑦

−𝑦

𝐻1 (𝑧, 𝑠) 𝑑𝑧 𝑑𝑠

= 2∫
𝑡

0
∫

𝑦

0
𝐻1 (𝑧, 𝑠) 𝑑𝑧 𝑑𝑠

= 2∫
𝑡

0
4𝑠2𝑦

1 + 8𝑠 − 8𝑦2

(1 + 8𝑠)4
𝑒
−4(𝑦2/(1+8𝑠))

+ 𝑠
2 3√𝜋

(1 + 8𝑠)5/2
erf

2𝑦
√1 + 8𝑠

𝑑𝑠,

(43)

and the error function erf(𝑥) = (2/√𝜋) ∫
𝑥

0 𝑒
−𝑡

2
𝑑𝑡.
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Analogously in the two-dimensional case, we can con-
sider data on a space-time cylinder 𝑄 = {‖𝑥‖ ≤ 𝑟} × [0, 𝑇],
yielding that

∫
‖𝑥‖≤𝑟

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

=

󵄨󵄨󵄨󵄨𝑢0,0
󵄨󵄨󵄨󵄨
2

󵄨󵄨󵄨󵄨𝐷𝑐
󵄨󵄨󵄨󵄨
2 ∫
‖𝑥‖≤𝑟

∫

𝑇

0
𝐻2 (

𝑥

𝑟0
,
𝑡𝐷
𝑐

𝑟20
)𝑑𝑥𝑑𝑡

= 2𝜋
󵄨󵄨󵄨󵄨𝑢0,0

󵄨󵄨󵄨󵄨
2
𝑟
4
0

󵄨󵄨󵄨󵄨𝐷𝑐
󵄨󵄨󵄨󵄨
3 𝐾2 (

𝑟

𝑟0
,
𝑇𝐷
𝑐

𝑟20
)

(44)

with

𝐾2 (𝑦, 𝑡) = ∫

𝑡

0
∫

𝑦

0
𝐻2 (𝑧, 𝑠) 𝑧 𝑑𝑧 𝑑𝑠 = ∫

𝑡

0

4𝑠2

(1 + 8𝑠)3
(1

+ 𝑒
−4𝑦2/(1+8𝑠)

(−1+ 4
𝑦
2

1 + 8𝑠
− 8

𝑦
4

(1 + 8𝑠)2
))𝑑𝑠.

(45)

A particular case happens if 𝐿 → ∞ in the above
integrals. Then

∫

∞

−∞

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

= 𝐾1 (∞,
𝑇𝐷
𝑐

𝑟20
) = 2∫

𝑇𝐷

𝑐
/𝑟

2
0

0

3√𝜋

(1 + 8𝑠)5/2
𝑑𝑠

=

√𝜋(1 + 12 (𝑇𝐷
𝑐

/𝑟
2
0) + 24 (𝑇𝐷

𝑐

/𝑟
2
0)

2
)

16 (1 + 8 (𝑇𝐷
𝑐

/𝑟20))
3/2 −

√𝜋

16
,

(46)

respectively,

∫
R2

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

= 𝐾2 (∞,
𝑇𝐷
𝑐

𝑟20
) = ∫

𝑇𝐷

𝑐
/𝑟

2
0

0

4𝑠2

(1 + 8𝑠)3
𝑑𝑠.

(47)

The data reduction process involves estimates of the
sensitivities and hence of 𝐾1(𝑦, 𝑡), 𝐾2(𝑥, 𝑡) as in (27). The
previous calculations lead to the following lemma, which
allows for data reduction in the spatial variable compared to
full spatial information; see Example 14 below.

Lemma 13. Let𝐾1(𝑦, 𝑡) and𝐾2(𝑦, 𝑡) be defined as in (43) and
(45), respectively. Let 𝑡 > 0 and 𝛽 > 1. If

𝑦 ≥ 𝛽√8𝑡 + 1, (48)

then

𝐾1 (𝑦, 𝑡)

𝐾1 (∞, 𝑡)
≥ 𝑓1 (𝛽) ,

𝐾2 (𝑦, 𝑡)

𝐾2 (∞, 𝑡)
≥ 𝑓2 (𝛽) ,

(49)

where

𝑓1 (𝛽) = erf (2𝛽) + 4
3√𝜋

𝑒
−4𝛽2

𝛽 (1− 8𝛽2
) ,

𝑓2 (𝛽) = 1+ 𝑒
−4𝛽2

(−1+ 4𝛽2
− 8𝛽4

) .

(50)

Proof. With (48)we have that𝑦 ≥ 𝛽√8𝑠 + 1 for all 𝑠 ≤ 𝑡.With
𝜉 = 𝑦/√1 + 8𝑠 ≥ 𝛽, (43) reads

𝐾1 (𝑦, 𝑡) = 2∫
𝑡

0
𝑠
2 3√𝜋

(1 + 8𝑠)5/2

⋅ (erf (2𝜉) + 4
3√𝜋

𝑒
−4𝜉2

𝜉 (1− 8𝜉2)) 𝑑𝑠 ≥ 𝑓1 (𝛽)

⋅ 2∫
𝑡

0
𝑠
2 3√𝜋

(1 + 8𝑠)5/2
= 𝑓1 (𝛽)𝐾1 (∞, 𝑡) ,

(51)

where we used the fact that 𝑓 is monotonically increasing
for 𝛽 ≥ 1. (This can easily be seen from its derivative.) The
same proof holds with 𝑓2 in place of 𝑓1. Note that 𝑓2 is again
monotonically increasing for 𝛽 ≥ 1.

This lemma leads to simple rules for selecting the length
of data intervals with respect to the spatial dimension, as the
following example explains.

Example 14. Let us now again exemplify the data reduction
procedure. Suppose we want to find the relevant data on a
space-time cylinder 𝑄 = [−𝐿/2, 𝐿/2] × [0, 𝑇] which yields
a comparable confidence interval to full data given on the
whole spatial domain [−𝐿

󸀠

/2, 𝐿󸀠/2] × [0, 𝑇] with 𝐿
󸀠 being

large and with equal grid spacings Δ𝑡, Δ𝑥. Assuming 𝐿󸀠 being
large, we can approximately view the full data interval as
[−𝐿
󸀠

/2, 𝐿󸀠/2] ∼ R and in the following treat this as the case
when the full data are given on the whole space interval.

The condition we impose now is (27), with some chosen
small 𝜂.We have the situation that the ideal𝑁data corresponds
to data on R × [0, 𝑇], while the actual data are given on
[−𝐿/2, 𝐿/2] × [0, 𝑇]. Condition (27), assuming that the data
points are dense such that the sums can be approximated by
integrals, can be stated as

𝜂

≥

∫
𝑇

0 ∫
∞

−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡 − ∫

𝑇

0 ∫
𝐿/2
−𝐿/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

∫
𝑇

0 ∫
𝐿/2
−𝐿/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝐷
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
𝑑𝑥 𝑑𝑡

.

(52)

Rearranging terms and with the notation as before we come
to the condition

𝜂 ≥
𝐾1 (∞, 𝑇𝐷

𝑐

/𝑟
2
0) − 𝐾1 (𝐿/2𝑟0, 𝑇𝐷𝑐/𝑟

2
0)

𝐾1 (𝐿/2𝑟0, 𝑇𝐷𝑐/𝑟20)
, (53)

or equivalently

𝐾1 (𝐿/2𝑟0, 𝑇𝐷𝑐/𝑟
2
0)

𝐾1 (∞, 𝑇𝐷
𝑐

/𝑟20)
≥

1
1 + 𝜂

. (54)
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We are now in the situation, where we can apply Lemma 13.
Using (48) with 𝑦 = 𝐿/2𝑟0 and 𝑡 = 𝑇𝐷

𝑐

/𝑟
2
0 and given 𝜂, we

have to find a 𝛽 > 1 such that 𝑓1(𝛽) ≥ 1/(1 + 𝜂), respectively,
1

𝑓1 (𝛽)
− 1 ≤ 𝜂. (55)

This inequality can be solved by numerical means; for
instance, if we allow for a 1% increase of the confidence
interval, we take 𝜂 = 0.01 and find numerically a value of
𝛽 = 1.35. For 𝜂 = 0.001 (0.1% increase) we find a value
𝛽 = 1.59. Thus with the above setting of variables, we have
the following recommendation for the length of data interval
𝐿:

𝐿

2
≥ 3.82√𝑇𝐷

𝑐

+
1
8
𝑟20 for 𝜂 ≤ 0.01,

𝐿

2
≥ 4.5√𝑇𝐷

𝑐

+
1
8
𝑟20 for 𝜂 ≤ 0.001,

(56)

which leads to the confidence intervals that are almost
identical to the case of full spacial data.

A similar procedure holds in the two-dimensional case. If
instead of full data onR2

×[0, 𝑇]wewant to take only relevant
data on a cylinder 𝑄 = {‖𝑥‖ ≤ 𝑟} × [0, 𝑇], we have to find
a 𝛽 such that (55) holds with 𝑓2 instead of 𝑓1. A numerical
examination of this function reveals the recommendation for
the spatial radius of the data-cylinder. One has

𝑟 ≥ 9.6√𝑇𝐷
𝑐

+
1
8
𝑟20 for 𝜂 ≤ 0.01,

𝑟 ≥ 10.7√𝑇𝐷
𝑐

+
1
8
𝑟20 for 𝜂 ≤ 0.001.

(57)

Note that in these examples we only restrict the spatial
coordinates while the time interval [0, 𝑇] for the full data
case and the restricted data case is the same. The question
comes up if it is possible to reduce the time interval as well
and to find a smaller interval [0, 𝑇] such that (27) holds with
a small 𝜂 and hence yielding similar confidence intervals.
Unfortunately it is not possible to do so without some loss
in precision of the resulting parameter estimates. In fact,
suppose that the spatial interval [−𝐿/2, 𝐿/2] is chosen as in
(56), then we can approximate the sensitivity on the interval
[−𝐿/2, 𝐿/2]×[0, 𝑇]well by𝐾1(∞, 𝑇). Hence (27) holds using
this approximation if

𝜂 ≥
𝐾1 (∞, 𝑇) − 𝐾1 (∞, 𝑇)

𝐾1 (∞,𝑇)
. (58)

According to Lemma 3, the ratio of the confidence interval
using data on [−𝐿/2, 𝐿/2] × [0, 𝑇] and [−𝐿/2, 𝐿/2] × [0, 𝑇] is
then approximately given by

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑐

− 𝐷
𝑇

󵄨󵄨󵄨󵄨󵄨

2
data on [−𝐿/2,𝐿/2]×[0,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑐

− 𝐷
𝑇

󵄨󵄨󵄨󵄨󵄨

2
data on [−𝐿/2,𝐿/2]×[0,𝑇]

∼ (1+ 𝜂) ∼
𝐾1 (∞, 𝑇)

𝐾1 (∞,𝑇)
.

(59)

The last ratio can be easily evaluated using (46). It turns out
that this ratio is of the order of 1 only if 𝑇 ∼ 𝑇. Thus it is
always better to have a larger time interval. Still, if one can
quantify the “costs” of using a large time interval and adds
these to the ratio in (59), this can lead to an optimization
problem in which case an optimal time interval [0, 𝑇] of data
measurements can be easily calculated.

Example 15. Let us illustrate the findings of this subsection
by numerical examples. The main point in the previous
analysis was that a very large spatial data domain 𝑥 ∈ R

can be replaced without loss of quality by a smaller one
[−𝐿/2, 𝐿/2] using formula (56). For the results in Figure 3, we
first considered data given on a rectangular grid with large
spatial size. The full data case corresponds to data given on
the spatial interval 𝑥

𝑖

∈ [−25, 25] and on the time interval
𝑡
𝑖

∈ [0, 10]. The spacing of the grid was Δ𝑥 = 0.05 in
space direction and Δ𝑡 = 0.05 in time direction. For all the
computations in this example we used an exact diffusivity
𝐷
𝑇

= 2 and normally distributed additive random noise with
𝜎 = 0.05. As in Example 9, we computed an estimate 𝐷

𝑐

for the diffusivity by using different kind of data. For each
data region we used 1000 samples of noise yielding the same
number of squared errors |𝐷

𝑐

− 𝐷
𝑇

|
2.

We considered seven different kinds of rectangular data
regions. The corresponding data regions (with labels (I)–
(VII)) are indicated in Figure 3(a) by different shadings. The
corresponding boxplot of the error is given in Figure 3(b).

The first boxplot in Figure 3(b) (labeled as (I)) corre-
sponds to the full data case with data given on the full grid on
(𝑥
𝑖

, 𝑡
𝑖

) ∈ [−25, 25]×[0, 10]. For the second boxplot (labeled as
(II)) we used reduced data on an interval [−𝐿/2, 𝐿/2] × [0, 𝑇]
with 𝐿 computed by (56) which yields 𝐿/2 ∼ 13.5. Note that
the time interval here is the same as that for the full data
case. According to the above analysis such a procedure with
(56) should not change the confidence interval significantly.
Indeed, we observe in Figure 3(b)that the cases (I) and (II)
are almost equal. Note that in case (II), we only use 54% of
the full data with similar results, which again indicates the
big amount of irrelevant data in the full data case.

The plots on the right, labeled as (III)–(VII), correspond
to a choice of a smaller time interval with the corresponding
length of the spatial interval 𝐿 given by (56). We have already
indicated that it is always better to have a larger time interval,
because a smaller time interval will yield a larger confidence
interval according to (59).

In case (III) we considered a time interval with 𝑇 =

0.335(𝑟20/𝐷) ∼ 0.04 which yields a very small data region
indicated by the (hardly visible) darkest color in the right
plot close to the origin of space-time coordinate system.
Case (IV) corresponds to 𝑇 = 2(𝑟20/𝐷) ∼ 0.25, case (V)
corresponds to 𝑇 = 20(𝑟20/𝐷) ∼ 2.5, and cases (VI) and
(VII) correspond to 𝑇 = 5 and 𝑇 = 7.5, respectively. The
according spatial interval is set by (56). The boxplots on
the right-hand side correspond to the theoretical findings
above. Note that case (III) has a too large error to fit to the
scaling of the plot (hence, there is no corresponding box in
Figure 3(b)).We observe that all the boxes in cases (III)–(VII)
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Figure 3: Comparison of the squared error |𝐷
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2 for 7 rectangular spatiotemporal regions. (a) Data regions for the cases (I)–(VII); full
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Boxplot of the error |𝐷

𝑇
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𝑐

|
2 corresponding to the use of data from the respective regions.

have larger confidence intervals than those in the full data
case (I). Only the last case (VII) is similar to the one in the full
data case (I). This shows that a reduction of the time interval
(Another issue to be considered is the enlargement of the time
interval between two consecutivemeasurements as the FRAP
experiment proceeds.) has to be paid by an enlargement of the
confidence intervals.

In Figure 4 we performed the same experiments as in
Figure 3 for some selected regions, but with different noise
variances 𝜎2. The first 5 plots correspond to the confidence
intervals of Figure 3(b) for regions (I), (II), (IV), (V), and
(VII), but now with a different 𝜎 for each plot. From left to
right and top to bottom we have 𝜎 = (0.01, 0.05, 0.1, 0.2, 0.3).
It can be observed that the relative size of two confidence
intervals corresponding to the same region, that is, (I), (II),
(IV), (V), and (VII), is almost the same in all cases and hence
rather independent of 𝜎. Of course, the absolute size depends
on 𝜎, as can be seen from the rightmost bottom plot, where
we indicate the intervals for region (II) versus different 𝜎2.
The roughly linear dependence of the mean of the |𝐷

𝑇

−𝐷
𝑐

|
2

on 𝜎
2 is in agreement with theory; see (20) with (22).

4. FRAP Recovery Curves:
Integrated Data Approach

In this section we investigate the different way of treating
the data; in the following we call it the integrated data
approach, which is a common procedure in the evaluation
of FRAP experiments [1, 12]. Almost without exception,
the experimental biologists are using for their purposes the
so-called FRAP recovery curve, the space averaged signal
(V(𝑡
𝑖

)
𝑖=1,𝑁

𝑡

; see below), instead of the spatiotemporal data
𝑢(𝑥
𝑙

, 𝑡
𝑖

). Our aim is to compare both approaches in view of
sensitivity and confidence intervals.

By integrating the data, we have to take into account that
the data error is integrated as well. This will in general reduce
the variance and this fact causes the false opinion about the
higher precision of the integrated data approach.
Proposition 16. Let us consider that the full data 𝑢(𝑥

𝑙

, 𝑡
𝑖

),
𝑙 = 1, . . . , 𝑁

𝑥

, 𝑖 = 1, . . . , 𝑁
𝑡

are given on a rectangular
spatiotemporal grid where 𝑁

𝑥

is the number of points in the
ROI (either 2D or 1D) and𝑁

𝑡

is the number of time points. The
(space-)integrated data

V (𝑡
𝑖

) =
1
𝑁
𝑥

𝑁

𝑥

∑

𝑙=1
𝑢 (𝑥
𝑙

, 𝑡
𝑖

) , 𝑖 = 1, . . . , 𝑁
𝑡

(60)

are given on a temporal grid. Assume that the data error is
normally distributed and that the number of data points is large
enough such that res2(𝐷

𝑐

)/(𝑁
𝑑𝑎𝑡𝑎

− 1) is almost equal to the
data error variance in either case and that the Fisher-quantile
satisfies 𝑓1,𝑁

𝑑𝑎𝑡𝑎
−1(𝛼)/𝑓1,𝑁

𝑡
−1(𝛼) ∼ 1.

Then the full data approach has equal or smaller confidence
interval bounds for the parameter estimates of𝐷

𝑇

.
Proof. Let us introduce for the integrated data case the
parameter-to-data mapping

𝐹
𝐼

(𝐷) = V (𝑡
𝑖

)
𝑖=1,𝑁

𝑡

. (61)

As the spatial errors 𝑒
𝑙

are distributed according to 𝑒
𝑙

=

N(0, 𝜎2
), then for the integrated errors it holds that

𝑒
𝑖

=
1
𝑁
𝑥

𝑁

𝑥

∑

𝑙=1
𝑒
𝑙

= N(0, 𝜎
2

𝑁
𝑥

) (62)

and we have the regression model

𝐹
𝐼

(𝐷) = V (𝑡
𝑖

) + 𝑒
𝑖

, 𝑒
𝑖

= N(0, 𝜎
2

𝑁
𝑥

) . (63)

Note that the error variance is now reduced by a factor 1/𝑁
𝑥

.
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After a regression using this model, we may employ a
similar estimate for the confidence interval as before (20),

(𝐷
𝑐

−𝐷
𝑇

)
2
𝑁

𝑡

∑

𝑖=1
(

𝜕

𝜕𝐷
𝐹
𝐼

(𝐷))

2

≤
res2 (𝐷

𝑐

)

𝑁
𝑡

− 1
𝑓1,𝑁
𝑡
−1 (𝛼) .

(64)

Note that the sensitivity for the integrated data approach is
(after changing the order of sum and derivative)

𝑁

𝑡

∑

𝑖=1
(

𝜕

𝜕𝐷
𝐹
𝐼

(𝐷))

2
=

𝑁

𝑡

∑

𝑖=1
(

1
𝑁
𝑥

𝑁

𝑥

∑

𝑙=1

𝜕

𝜕𝐷
𝑢 (𝑥
𝑙

, 𝑡
𝑖

))

2

. (65)

Compare this to the corresponding expression in the full
(nonintegrated) data case, which reads

𝑁

𝑡

∑

𝑖=1

𝑁

𝑥

∑

𝑙=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑙

, 𝑡
𝑖

))

2
. (66)

With the assumption that the residual error corresponds to
the error variance, we find

integrated data case:
res2 (𝐷

𝑐

)

𝑁
𝑡

− 1
∼

𝜎
2

𝑁
𝑥

,

full data case:
res2 (𝐷

𝑐

)

𝑁data − 1
∼ 𝜎

2
.

(67)

Wemay thus compare the sensitivities for the two approaches:

(𝐷
𝑐

−𝐷
𝑇

)
2
full data case

≤
𝜎
2

∑
𝑁

𝑡

𝑖=1 ∑
𝑁

𝑥

𝑙=1 ((
𝜕

𝜕𝐷
)𝑢 (𝑥

𝑙

, 𝑡
𝑖

))

2𝑓1,𝑁data−1 (𝛼) ,

(𝐷
𝑐

−𝐷
𝑇

)
2
integrated data case ≤

1
𝑁
𝑥

⋅
𝜎
2

∑
𝑁

𝑡

𝑖=1 ((1/𝑁𝑥)∑
𝑁

𝑥

𝑙=1 (𝜕/𝜕𝐷) 𝑢 (𝑥
𝑙

, 𝑡
𝑖

))
2𝑓1,𝑁𝑡−1 (𝛼)

=
𝜎
2

∑
𝑁

𝑡

𝑖=1 (1/𝑁𝑥) (∑
𝑁

𝑥

𝑙=1 (𝜕/𝜕𝐷) 𝑢 (𝑥
𝑙

, 𝑡
𝑖

))
2

⋅ 𝑓1,𝑁
𝑡
−1 (𝛼) .

(68)

Now using the Cauchy-Schwarz inequality

1
𝑁
𝑥

(

𝑁

𝑥

∑

𝑙=1

𝜕

𝜕𝐷
𝑢 (𝑥
𝑙

, 𝑡
𝑖

))

2

≤

𝑁

𝑥

∑

𝑙=1
(

𝜕

𝜕𝐷
𝑢 (𝑥
𝑙

, 𝑡
𝑖

))

2
(69)

in the last line and the assumption𝑓1,𝑁data−1(𝛼)/𝑓1,𝑁𝑡−1(𝛼) ∼ 1,
we find that the upper bound for the integrated data case is
always larger than that of the full data case. Consider

𝜎
2

∑
𝑁

𝑡

𝑖=1 (1/𝑁𝑥) (∑
𝑁

𝑥

𝑙=1 (𝜕/𝜕𝐷) 𝑢 (𝑥
𝑙

, 𝑡
𝑖

))
2𝑓1,𝑁𝑡−1 (𝛼)

≥
𝜎
2

∑
𝑁

𝑡

𝑖=1 ∑
𝑁

𝑥

𝑙=1 ((𝜕/𝜕𝐷) 𝑢 (𝑥
𝑙

, 𝑡
𝑖

))
2𝑓1,𝑁data−1 (𝛼) ,

(70)

which finishes the proof.

An explanation for this proposition is that although the
data error variance is smaller for the integrated data case, the
sensitivity is smaller as well, and this fact causes the greater
or equal confidence interval bounds.

Remark 17. The full data case always leads to a smaller
confidence interval and is thus preferable. For the one-
dimensional ROI, with the uniform spatiotemporal grid

𝑥
𝑙

∈ {−
𝐿

2
+

(𝑙 − 1)
𝑁
𝑥

− 1
𝐿 | 𝑙 = 1, 𝑁

𝑥

} ,

𝑡
𝑖

∈ {𝑡0 + 𝑖Δ𝑡 | 𝑖 = 1, 𝑁
𝑡

} ,

(71)

where𝑁
𝑥

is the number of points on the space axis,𝑁
𝑡

is the
number of time points, and Δ𝑡 is the time step and for the the
reasonable case that 0 ≤ 𝐿/2𝑟0 ∼ 𝑇𝐷

𝑐

/𝑟
2
0 ≤ 10, we found the

empirical estimate

(𝐷
𝑐

− 𝐷
𝑇

)
2
full data

(𝐷
𝑐

− 𝐷
𝑇

)
2
integrated data

≤ min {2
𝑟0
𝐿
, 1} . (72)

This inequality can be partially verified by analytical con-
siderations. Indeed, the ratio on the left of (72) is roughly
the ratio between the corresponding sensitivities in (69).
Using a large data-size approximation, that is, approximating
the sums by integrals, we can evaluate the corresponding
integrals as in (43) and find

(𝐷
𝑐

− 𝐷
𝑇

)
2
full data

(𝐷
𝑐

− 𝐷
𝑇

)
2
integrated data

∼ ∫

𝑇

0

(1/𝐿) (∫𝐿/2
−𝐿/2 (𝜕/𝜕𝐷) 𝑢 (𝑥, 𝑡) 𝑑𝑥)

2
𝑑𝑡

∫
𝑇

0 ∫
𝐿/2
−𝐿/2 |(𝜕/𝜕𝐷) 𝑢 (𝑥, 𝑡)|

2
𝑑𝑥

=

∫
𝑇

0 ∫
𝐿/2
−𝐿/2 |(𝜕/𝜕𝐷) 𝑢 (𝑥, 𝑡)|

2
𝜔 (𝜁 (𝑡)) 𝑑𝑡

∫
𝑇

0 ∫
𝐿/2
−𝐿/2 |(𝜕/𝜕𝐷) 𝑢 (𝑥, 𝑡)|

2
𝑑𝑡

,

(73)

with

𝜔 (𝜁 (𝑡)) =
8𝜁 (𝑡)

2𝜁 (𝑡) − 4𝜁 (𝑡)3 + 3𝑒𝜁(𝑡)2√𝜋 erf (𝜁 (𝑡))
, (74)

where 𝜁(𝑡) = 𝐿/√𝑟20 + 8𝐷
𝑐

𝑡. A plot of the function 𝜔 reveals
that it is close to 1 if 𝜁 ∈ [0, 1/2], close to 0 if 𝜁 ≥ 3, and
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monotonically decaying from 1 to 3 for 𝜁 ∈ [1/2, 3]. Thus if
𝑡 ∈ [0, 𝑇], then 𝜁(𝑡) ∈ [𝜁(𝑇), 𝐿/𝑟0]. In particular if 𝐿/𝑟0 ≤

1/2, then 𝜔 in the integrand is close to 1 and the intervals are
almost the same. This corresponds to the right-hand side of
(72) being min{2(𝑟0/𝐿), 1} = min{4, 1} = 1, hence verifying
(72). Conversely if 𝜁(𝑇) ≥ 3, then 𝜔 is almost 0, and the ratio
in (72) is close to 0. The case 𝜁(𝑇) ≥ 3 corresponds to 𝐿/𝑟0 ≥

3√1 + 8𝐷
𝑐

𝑇/𝑟20 . Within our assumptions of 𝐿/2𝑟0 ∼ 𝑇𝐷
𝑐

/𝑟
2
0

this leads to the condition 𝐿/2𝑟0 ≥ 18 and hence the right-
hand side of (72) being small (∼ 1/18) as well.

Remark 18. As the proof of Proposition 16 is based on the
Cauchy-Schwarz inequality, we can consider the cases in
which it is sharp, that is, when the left-hand side of (69)
is close to the right-hand side. This happens when the two
vectors in the inequality are collinear; in our case this means
that (𝜕/𝜕𝐷)𝑢(𝑥

𝑙

, 𝑡
𝑖

) ∼ const
𝑖

for all𝑥
𝑙

.Thus, by this reasoning,
if the sensitivity does not vary much in the spacial direction,
then the confidence intervals in the full data and integrated
data case should be approximately equal. We can roughly
interpret this case as that where all data points are highly
relevant and no data reduction is necessary. Conversely, if the
sensitivities are not constant in spacial direction, then the full
data case yields significantly smaller confidence intervals.

Example 19. Again, we underpin the theoretical study in this
section by numerical experiments. For the plots in Figure 5,
we compared the squared errors |𝐷

𝑐

− 𝐷
𝑇

|
2 for the full data

case and the integrated data case for four kinds of data regions
(labeled as (I)–(IV)). As data we used again a rectangular
region (𝑥

𝑖

, 𝑡
𝑖

) ∈ [−𝐿/2, 𝐿/2] × [0, 6] with different values of 𝐿.
The grid spacing Δ𝑥, Δ𝑡, the value of the exact diffusivity𝐷

𝑇

,
and the noise variance 𝜎2 were the same as in Examples 9 and
15. As before we used 1000 samples for each of cases (I)–(IV)
and for both the full and the integrated data we computed an
error distribution of |𝐷

𝑐

− 𝐷
𝑇

|
2.

The length of the spatial interval was as follows: for case
(I): 𝐿 = 0.2, for case (II): 𝐿 = 1, for case (III): 𝐿 = 2, and for
case (IV): 𝐿 = 4. The time interval [0, 6] was the same for all
four cases.

In the plot in Figure 5, we display four pairs of boxplots
of the squared error |𝐷

𝑐

− 𝐷
𝑇

|
2 corresponding to the four

cases of data regions. In each of the pairs, the left boxplot
corresponds to using full data as before, while the right
boxplot corresponds to using spatially integrated data (60) on
the same region. The error plots are in full accordance with
Proposition 16, because in each pair, the left box is smaller
or equal to the right box, which means that the error using
full data (left) is always smaller or equal to that of using
integrated data (right). The results also fit quantitatively to
the estimate in (72). Note that the factor 𝐿/2𝑟0 is equal to
1, 5, 10, 20, for cases (I), (II), (III), and (IV). Thus, in case (I),
we have 2𝑟0/𝐿 = 1 such that (72) predicts a comparable error
for the full and integrated data approach. Indeed, the first pair
in the boxplot has comparable sizes of the boxes. In the other
three case we have 2𝑟0/𝐿 < 1; hence (72) predicts a larger
error for the integrated data case. This can be observed again
for cases (II)–(IV) where the integrated data case has a larger
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Figure 5: Comparison of the squared errors |𝐷
𝑐

− 𝐷
𝑇

|
2 for the

full data approach and the integrated data approach for four data
regions with different length of the spatial interval (the factor 𝐿/2𝑟0
is equal to 1, 5, 10, 20, resp.) labeled as (I)–(IV); time interval was
the same for all cases [0, 6]. In the pairs, the left and right boxplot
correspond to using full data (Full) and spatially integrated data
(Int), respectively.

error with increasing value of 𝐿/2𝑟0. The explanation of such
a behavior resides in the inclusion of more and more larger
region of irrelevant data into the spatial integration.

Remark 20. Unexpectedly, Figure 5 shows another interest-
ing phenomenon, from left to right, with the growing ROI
(more precisely for increasing ratio 𝐿/2𝑟0); while the squared
error for the full data approach monotonically decreases,
there is a minimum for the integrated data approach; that is,
there is an optimum (maximum sensitivity) for some value
𝐿/2𝑟0. Indeed, when the ROI is too small we disregard a huge
amount of the relevant data, and conversely, when the ROI
is too big, the integrated approach kills the valuable spatial
resolution causing the loss of sensitivity of the output data
to the parameter value. Hence, this is an explanation of the
existence of an optimal size of ROI (i.e., an optimal value of
𝐿/2𝑟0) for the integrated data approach.

5. Conclusion and Future Directions

In this paper, we have introduced and solved the problem
of data space selection-reduction and data processing for
parameter identification in a reaction-diffusion model based
on FRAP experiments. First, either for a known data noise
level (determined by parameter 𝜏) or for previously chosen
coefficient of enlargement of the confidence interval for the
parameter estimate (parameter 𝜂), we propose a newmethod
to separate the relevant and irrelevant data sets.

Afterwards, we show that the data set represented by the
FRAP recovery curves (the integrated data approach) leads to
a larger confidence interval compared to the spatiotemporal
data. This rigorous statement is worth to be promoted in
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the FRAP community because it goes against the common
knowledge and practice.

Four numerical examples support our conclusions. The
corresponding graphical visualizations, despite their sim-
plicity, help us in discovering new features of FRAP and
FLIP techniques and inspire new investigation related to the
optimal design of photobleaching experiments. For instance,
the lotus flower-like plot (Figure 2) led us to the investigation
related to the combination of FRAP and FLIP experiments
[23]. The next step in the same direction was done in our
conference paper [24], where we use the sensitivity analysis
developed here to find specific conditions for optimizing the
radius of bleach spot. Again, the inspiration to optimize a
design factor was induced by Figure 5; that is, the existence
of an optimal size of monitored region for the integrated data
approach(cf. Remark 20) led us to look for an optimal value
of bleach size.

Once proving the concept, our future goal is even more
ambitious. Based on the same sensitivity analysis we shall
suggest the optimal values for the experimental design
variables, that is, the experimental protocol modifications.
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