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We present two classes of iterative methods whose orders of convergence are four and five, respectively, for solving systems of
nonlinear equations, by using the technique of weight functions in each step. Moreover, we show an extension to higher order,
adding only one functional evaluation of the vectorial nonlinear function. We perform numerical tests to compare the proposed
methods with other schemes in the literature and test their effectiveness on specific nonlinear problems.Moreover, some real basins
of attraction are analyzed in order to check the relation between the order of convergence and the set of convergent starting points.

1. Introduction

To find the solution of systems of nonlinear equations 𝐹(𝑥) =
0, 𝐹 : R𝑛 → R𝑛, is a common, ancient, and important prob-
lem in mathematics and engineering (see, e.g., [1]). Previous
experimentation on some of these applied problems shows
that high-ordermethods, associatedwith floating point arith-
metics of multiprecision, are very useful because they carry a
clear reduction in the number of required iterations (see, e.g.,
[2, 3]).

Over the last years there have been numerous contribu-
tions of different authors that have designed iterativemethods
trying to solve nonlinear systems, making several modifica-
tions to the classical schemes to accelerate the convergence
and reduce the number of operations and functional evalua-
tions at each step of the iterative process.The extension of the
variants of Newton’s method for scalar problems described
by Weerakoon and Fernando in [4], by Özban in [5], and by
Gerlach in [6], to functions of several variables has been deve-
loped in [7–10]. All these processes have yield generating
multipoint methods with Newton’s method as a predictor.
However, a general procedure called pseudocomposition is
designed in [11, 12] by using a generic predictor and the Gaus-
sian quadrature as the corrector.

On the other hand, one of the most used techniques to
generate high-order methods for solving nonlinear equations
or systems was introduced by Traub in [13], that is, the
composition of two iterative methods of orders 𝑝

1
and 𝑝

2
,

respectively, to obtain amethod of order𝑝
1
𝑝
2
.With the direct

application of this technique, it is usually necessary to evalu-
ate the nonlinear function and its associated Jacobian matrix
to increase the order of convergence and the new method
usually ends up being less efficient than the original ones.

So, for designing a more efficient method, it is usual to
estimate the new evaluation of the Jacobian matrix, in terms
of Jacobian matrices previously used. With this in mind, the
new method generally has a lower order of convergence than
𝑝
1
𝑝
2
but the number of functional evaluations per iteration

decreases.
Now, let us consider the problem of finding a real zero

of a function 𝐹 : Ω ⊆ R𝑛 → R𝑛, that is, a solution 𝜉 ∈ Ω
of the nonlinear system of equations 𝐹(𝑥) = 0. In general,
this solution must be approximated by means of iterative
methods. The most known and widely used method is
classical Newton’s method:

𝑥
(𝑘+1)

= 𝑥
(𝑘)

− [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) . (1)
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It is known that this method has second order of convergence
and it uses one functional evaluation of the vectorial function
𝐹(𝑥) and also of the associated Jacobian matrix 𝐹󸀠(𝑥) at the
previous iterate, to generate a new one.

In the numerical section, we will use some multipoint
iterative schemes to compare with ours.These have been dev-
eloped by different authors: the first one is the fourth-order
method designed by Jarratt in [14], whose iterative expression
is

𝑦
(𝑘)

= 𝑥 (𝑘) −
2

3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

− [6𝐹
󸀠

(𝑦
(𝑘)

) − 2𝐹
󸀠

(𝑥
(𝑘)

)]
−1

⋅ [3𝐹
󸀠

(𝑦
(𝑘)

) + 𝐹
󸀠

(𝑥
(𝑘)

)] [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) .

(2)

In the following, wewill denote it by JM4. Let us also consider
the fourth-order method designed by Sharma et al. in [15]
whose iterative formula is

𝑦
(𝑘)

= 𝑥
(𝑘)

−
2

3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

−
1

2
[−𝐼 +

9

4
[𝐹
󸀠

(𝑦
(𝑘)

)]
−1

+
3

4
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

)]

⋅ [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

(3)

denoted by SHM4.Wewill also use some fifth-ordermethods
to compare with ours: the scheme obtained by Vassileva [12],
generalizing Jarratt’s method, improves this convergence by
adding 𝑛 functional evaluations (one functional evaluation of
𝐹 in the second step of the process), being its iterative expres-
sion:

𝑦
(𝑘)

= 𝑥 (𝑘) − 𝛼 [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

− [𝑎
1
𝐹
󸀠

(𝑥
(𝑘)

) + 𝑎
2
𝐹
󸀠

(𝑦
(𝑘)

)]
−1

⋅ [𝑏
1
𝐹
󸀠

(𝑥
(𝑘)

) + 𝑏
2
𝐹
󸀠

(𝑦
(𝑘)

)] [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) ,

(4)

where 𝛼 = 1, 𝑎
1
= 1, 𝑎
2
= 5, 𝑏
1
= −3, and 𝑏

2
= −1 and denoted

by VM5, and the method designed by Sharma and Gupta in
[16] whose iterative formula is

𝑦
(𝑘)

= 𝑥
(𝑘)

−
1

2
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑧
(𝑘)

= 𝑥
(𝑘)

− [𝐹
󸀠

(𝑦
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑧
(𝑘)

− [𝑎𝐹
󸀠

(𝑦
(𝑘)

) + 𝑏𝐹
󸀠

(𝑥
(𝑘)

)]
−1

⋅ 𝐹 (𝑧
(𝑘)

) ,

(5)

where 𝑎 = 2 and 𝑏 = −1. We denote this method as SHM5.

In this work we have designed some iterative methods
with orders of convergence four and five and presented an
analysis in Section 2. We compare them in Section 3 with
other known processes on academic examples, with the
aim that the results of this comparison will give us an idea
of how robust our methods are. The stability is studied
under the point of view of the real dynamics on an specific
2-dimensional problem. An applied problem, the partial diff-
erential equation of molecular interaction, is used to check
the conclusions reached in previous sections.

2. Design and Analysis of Convergence

Let 𝐹 : Ω ⊆ R𝑛 → R𝑛, 𝑛 > 1, be a sufficiently differentiable
function on a convex set Ω ∈ R𝑛 and let 𝜉 be a solution of
the nonlinear system of equations 𝐹(𝑥) = 0. We propose the
following iterative scheme:

𝑦
(𝑘)

= 𝑥
(𝑘)

− 𝛼 [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

(6)

where

𝜂
(𝑘)

= 𝑚
1
𝐼 + 𝑚

2
[𝐹
󸀠

(𝑦
(𝑘)

)]
−1

𝐹
󸀠

(𝑥
(𝑘)

)

+ 𝑚
3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

) ,

(7)

with𝑚
1
,𝑚
2
, and𝑚

3
being real parameters.

This scheme has been designed as a modified double-
Newton method with a frozen evaluation of 𝐹 and 𝐹󸀠 and a
matrix weight function 𝐻(𝑡) at the second step. We denote
this class of methods (whose order of convergence is four
under certain conditions) byMS4. As it has been stated,𝐻 is a
matrix function withmatrix variable. Specifically, if𝑋 = 𝑅𝑛×𝑛
denotes the Banach space of real square 𝑛 × 𝑛matrices, then
we can define 𝐻 : 𝑋 → 𝑋 such that its Frechet derivatives
satisfy

(a) 𝐻󸀠(𝑢)(V) = 𝐻
1
𝑢V, where 𝐻󸀠 : 𝑋 → L(𝑋) and 𝐻

1
∈

R,
(b) 𝐻󸀠󸀠(𝑢, V)(𝑤) = 𝐻

2
𝑢V𝑤, where 𝐻󸀠󸀠 : 𝑋 × 𝑋 → L(𝑋)

and𝐻
2
∈ R.

Let us note that L(𝑋) denotes the space of linear mappings
of𝑋 on itself.

To prove the local convergence of the proposed iterative
method to the solution 𝜉 of 𝐹(𝑥) = 0, we will use a Taylor
series expansion of the involved functions around the solu-
tion, by assuming that Jacobian matrix 𝐹󸀠(𝑥) is nonsingular
in a neighborhood of 𝜉,

𝐹 (𝜉 + ℎ) = 𝐹
󸀠

(𝜉) [ℎ +

𝑝−1

∑

𝑞=2

𝐶
𝑞
ℎ
𝑞

] + 𝑂 (ℎ
𝑝

) , (8)

where 𝐶
𝑞
= (1/𝑞!)[𝐹

󸀠

(𝜉)]
−1

𝐹
(𝑞)

(𝜉), 𝑞 ≥ 2.
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So, 𝐹󸀠 can be expressed (in a neighborhood of 𝜉) as

𝐹
󸀠

(𝜉 + ℎ) = 𝐹
󸀠

(𝜉) [𝐼 +

𝑝−1

∑

𝑞=2

𝑞𝐶
𝑞
ℎ
𝑞−1

] + 𝑂 (ℎ
𝑝

) , (9)

where 𝐼 is the identity matrix. This technique, including the
notation used, has been detailed in [17].

Theorem 1. Let 𝐹 : Ω ⊆ R𝑛 → R𝑛, 𝑛 ≥ 2, be a sufficiently
differentiable function in an open convex set Ω and let 𝜉 ∈ Ω
be a solution of the system of nonlinear equations 𝐹(𝑥) = 0.
One supposes that 𝐹󸀠(𝑥) is continuous and nonsingular at 𝜉.
Let 𝐻 : R𝑛×𝑛 → R𝑛×𝑛 be a sufficiently differentiable matrix
weight function such that𝐻(𝐼) = (1/3)𝐼,𝐻

1
= 3/4(𝑚

2
− 𝑚
3
),

and𝐻
2
= 3(𝑚

2
− 3𝑚
3
)/4(𝑚

2
−𝑚
3
)
3, with 𝐼 being the identity

matrix. Let one consider 𝑥(0) as an initial guess, sufficiently clo-
se to 𝜉. Then, the sequence {𝑥(𝑘)}

𝑘≥0
obtained using expression

(6) converges to 𝜉with order of convergence four if 𝛼 = 2/3 and
𝑚
1
+ 𝑚
2
+ 𝑚
3
= 1. Moreover, the error equation is

𝑒
𝑘+1

= (
3

4 (𝑚
2
− 𝑚
3
)
2
(13𝑚
2

2
− 26𝑚

2
𝑚
3
+ 45𝑚

2

3
) 𝐶
3

2

− 𝐶
2
𝐶
3
+
1

9
𝐶
4

2
)𝑒
4

𝑘
+ O (𝑒

5

𝑘
) ,

(10)

where 𝐶
𝑞
= (1/𝑞!)[𝐹

󸀠

(𝜉)]
−1

𝐹
(𝑞)

(𝜉), 𝑞 ≥ 2, and 𝑒
𝑘
= 𝑥
(𝑘)

− 𝜉.

Proof. From (8) and (9) we obtain, respectively,

𝐹 (𝑥
(𝑘)

) = 𝐹
󸀠

(𝜉)(𝑒
𝑘
+

𝑝

∑

𝑗=2

𝐶
𝑗
𝑒
𝑗

𝑘
) + O (𝑒

𝑝+1

𝑘
) ,

𝐹
󸀠

(𝑥
(𝑘)

) = 𝐹
󸀠

(𝜉)(𝐼 +

𝑝−1

∑

𝑗=2

𝐶
𝑗
𝑒
𝑗−1

𝑘
) + O (𝑒

𝑝

𝑘
) .

(11)

Then, forcing 𝐹󸀠(𝑥(𝑘))[𝐹󸀠(𝑥(𝑘))]−1 = [𝐹󸀠(𝑥(𝑘))]−1𝐹󸀠(𝑥(𝑘)) = 𝐼,
the Taylor expansion of the inverse of the Jacobian matrix at
the iterate 𝑥(𝑘) is obtained as follows:

[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

= (𝐼 +

𝑝−1

∑

𝑗=2

𝑋
𝑗
𝑒
𝑗−1

𝑘
)[𝐹
󸀠

(𝜉)]
−1

+ O (𝑒
𝑝

𝑘
) ,

(12)

where𝑋
𝑚
= −∑

𝑚

𝑗=2
𝑖𝑋
𝑚−𝑖+1

𝐶
𝑗
,𝑚 = 2, 3, . . .. Then,

[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) = 𝑒
𝑘
+

𝑝

∑

𝑗=2

𝐴
𝑗
𝑒
𝑗

𝑘
+ O (𝑒

𝑝+1

𝑘
) , (13)

where 𝐴
2
= −𝐶

2
and 𝐴

𝑠
= 𝐶
𝑠
+ ∑
𝑠

𝑗=3
𝑋
𝑠−𝑗+2

𝐶
𝑗−1
+ 𝑋
𝑠
, 𝑠 =

3, 4, . . .. These expressions allow us to obtain

𝑦
(𝑘)

= 𝑥
(𝑘)

− 𝛼 [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

)

= 𝜉 + (1 − 𝛼) 𝑒
(𝑘)

− 𝛼𝐴 + O (𝑒
𝑝+1

𝑘
) ,

(14)

where 𝐴 = ∑𝑝
𝑗=2
𝐴
𝑗
𝑒
𝑗

𝑘
. Using result (14) and the Taylor series

expansion around 𝜉, we obtain

𝐹
󸀠

(𝑦
(𝑘)

) = 𝐹
󸀠

(𝜉) [

[

𝐼 +

𝑝−1

∑

𝑗=1

𝐷
𝑗
𝑒
𝑗

𝑘

]

]

+ O (𝑒
𝑝

𝑘
) ,

[𝐹
󸀠

(𝑦
(𝑘)

)]
−1

= (𝐼 +

𝑝−1

∑

𝑗=2

𝑌
2
𝑒
𝑗

𝑘
)[𝐹
󸀠

(𝜉)]
−1

+ O (𝑒
𝑝

𝑘
) ,

(15)

where 𝐷
1
= 2𝛽𝐶

2
, 𝐷
2
= 2𝛼𝐶

2

2
+ 3𝛽
2

𝐶
3
, 𝐷
3
= −2𝛼𝐶

2
𝐴
3
+

6𝛼𝛽𝐶
3
𝐶
2
+4𝛽
5

𝐶
4
,𝐷
4
= −2𝛼𝐶

2
𝐴
4
+3𝛼
2

𝐶
3
𝐶
2

2
+12𝛼𝛽𝐶

3
𝐴
3
−

3𝛼𝛽
2

𝐶
4
𝐶
2
+ 5𝛽
4

𝐶
5
, 𝛽 = 1 − 𝛼, 𝑌

1
= −𝐷

1
, and 𝑌

𝑠
= 𝐷
𝑠
−

∑
𝑠−1

𝑗=2
𝑌
𝑗
𝐷
𝑠−𝑗

, 𝑠 = 2, 3, . . .. Thus, we obtain

𝑢
(𝑘)

= [𝐹
󸀠

(𝑦
(𝑘)

)]
−1

𝐹
󸀠

(𝑥
(𝑘)

)

= 𝐼 +

𝑝

∑

𝑗=1

𝐸
𝑗
𝑒
𝑗

𝑘
+ O (𝑒

𝑝+1

𝑘
) ,

(16)

where

𝐸
1
= 2𝐶
2
+ 𝑌
1
,

𝐸
𝑠
= (𝑠 + 1) 𝐶

𝑠+1
+

𝑠−1

∑

𝑗=1

(𝑠 − 𝑗 + 1) 𝑌
𝑗+1
𝐶
𝑠−𝑗+1

+ 𝑌
𝑠+1
, 𝑠 = 2, 3, . . . .

(17)

Moreover,

V(𝑘) = [𝐹󸀠 (𝑥(𝑘))]
−1

𝐹
󸀠

(𝑦
(𝑘)

)

= 𝐼 +

𝑝

∑

𝑗=1

𝐹
𝑗
𝑒
𝑗

𝑘
+ O (𝑒

𝑝+1

𝑘
) ,

(18)

where

𝐹
1
= 𝐷
1
+ 𝑋
2
,

𝐹
𝑘
= 𝐷
𝑘
+

𝑘−1

∑

𝑗+1

𝑋
𝑗+1
𝐷
𝑘−𝑗
+ 𝑋
𝑘+1
, 𝑘 = 2, 3, . . . .

(19)

Then,

𝜂
(𝑘)

= 𝑚𝐼 +

𝑝

∑

𝑗=2

𝑁
𝑗
𝑒
𝑝

𝑘
+ O (𝑒

𝑝+1

𝑘
) , (20)

where 𝑁
1
= 𝑚 − 1, 𝑁

𝑖
= 𝑚
2
𝐸
𝑖−1
+ 𝑚
3
𝐹
𝑖−1

, 𝑖 = 2, 3, . . ., and
𝑚 = 𝑚

1
+ 𝑚
2
+ 𝑚
3
.

By using Taylor series expansion of𝐻 around 𝐼,

𝐻(𝜂
(𝑘)

) = 𝐻 (𝐼) + 𝐻
1
(𝜂
(𝑘)

− 𝐼) +
1

2
𝐻
2
(𝜂
(𝑘)

− 𝐼)
2

, (21)

we obtain the expression

𝐻(𝜂
(𝑘)

) = ℎ
1
𝐼 + ℎ
2
𝑒
𝑘
+ ℎ
3
𝑒
2

𝑘
+ ℎ
4
𝑒
3

𝑘
+ ℎ
5
𝑒
4

𝑘
+ O (𝑒

5

𝑘
) , (22)
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where ℎ
1
= 𝐻(𝐼) + 𝐻

1
𝑁
1
+ (1/2)𝐻

2
𝑁
2

1
, ℎ
𝑗
= 𝐻
1
𝑁
𝑗
+ (1/2)

𝐻
2
𝑀
𝑗−1

, 𝑗 = 2, 3, . . .,𝑀
1
= 𝑁
1
𝑁
2
+ 𝑁
2
𝑁
1
,𝑀
2
= 𝑁
1
𝑁
3
+

𝑁
2

2
+ 𝑁
3
𝑁
1
, 𝑀
3
= 𝑁
1
𝑁
4
+ 𝑁
2
𝑁
3
+ 𝑁
3
𝑁
2
+ 𝑁
4
𝑁
1
, 𝑀
4
=

𝑁
1
𝑁
5
+ 𝑁
2
𝑁
4
+ 𝑁
2

3
+ 𝑁
4
𝑁
2
+ 𝑁
5
𝑁
1
, and 𝑀

5
= 𝑁
1
𝑁
6
+

𝑁
2
𝑁
5
+ 𝑁
3
𝑁
4
+ 𝑁
4
𝑁
3
+ 𝑁
5
𝑁
2
+ 𝑁
6
𝑁
1
.

So, we get

𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

)

= 𝐿
1
𝑒
𝑘
+ 𝐿
2
𝑒
2

𝑘
+ 𝐿
3
𝑒
3

𝑘
+ 𝐿
4
𝑒
4

𝑘
+ O (𝑒

5

𝑘
) ,

(23)

where 𝐿
1
= ℎ
1
, 𝐿
𝑠
= ∑
𝑠−1

𝑗=1
ℎ
𝑗
𝐴
𝑠+𝑗−1

, 𝑠 = 2, 3, . . .. This allows
us to obtain the error equation of this iterative scheme:

𝑒
𝑘+1

= 𝑊
1
𝑒
𝑘
+𝑊
2
𝑒
2

𝑘
+𝑊
3
𝑒
3

𝑘
+𝑊
4
𝑒
4

𝑘
+ O (𝑒

5

𝑘
) , (24)

where𝑊
1
= 𝛽 − 𝐿

1
and𝑊

𝑠
= −(𝛼𝐴

𝑠
+ 𝐿
𝑠
), 𝑠 = 2, 3, . . ..

To get order of convergence of at least four, we impose
𝑊
1
= 0,𝑊

2
= 0, and𝑊

3
= 0: from𝑊

1
= 1 − 𝛼 − 𝐿

1
= 0,

we get ℎ
1
= 1 − 𝛼 that gives us second order of convergence.

Then, 𝐻(𝐼) + 𝐻
1
𝑁
1
+ (1/2)𝐻

2
𝑁
2

1
= 1 − 𝛼 and, as 𝑁

1
= 0,

𝐻
0
= 1 − 𝛼 is obtained.
Moreover, as𝑊

2
= 𝛼𝐴
2
+𝐿
2
= 0, by using ℎ

1
= 1−𝛼 and

𝑀
1
= 0,

𝛼𝐴
2
+ 𝐿
2
= 𝛼𝐴
2
+ ℎ
1
𝐴
2
+ ℎ
2

= 𝛼𝐴
2
+ (1 − 𝛼)𝐴

2
+ ℎ
2

= 𝐴
2
+ ℎ
2

= 𝐴
2
+ 𝐻
1
𝑁
2
+
1

2
𝐻
2
𝑀
1

= −𝐶
2
+ 𝐻
1
(𝑚
2
𝐸
1
+ 𝑚
3
𝐹
1
)

= [−1 + 𝐻
1
2𝛼 (𝑚

2
− 𝑚
3
)] 𝐶
2
.

(25)

By replacing𝐻
1
= 1/2𝛼(𝑚

2
− 𝑚
3
) in (25), we get third order

of convergence.
Forcing also𝑊

3
= 𝛼𝐴
3
+ 𝐿
3
= 0,

𝛼𝐴
3
+ 𝐿
3

= 𝛼𝐴
3
+ ℎ
1
𝐴
3
+ ℎ
2
𝐴
2
+ ℎ
3

= (𝛼 + ℎ
1
) 𝐴
3
+ ℎ
2
𝐴
2
+ ℎ
3

= 𝐴
3
− ℎ
2
𝐶
2
+ ℎ
3

= 2𝐶
2

2
− 𝐶
3
− [𝐻
1
𝑁
2
+
1

2
𝐻
2
𝑀
1
]𝐶
2

+ 𝐻
1
𝑁
3
+
1

2
𝐻
2
𝑀
2

= −2𝐶
2

2
− 𝐶
3
− 𝐻
1
[𝑁
2
𝐶
2
− 𝑁
3
] +

1

2
𝐻
2
𝑀
2

= (1 −
3

2
𝛼)𝐶
2

+ [−2 +
2𝛼𝑚
2

(𝑚
2
− 𝑚
3
)
+ 2𝛼
2

𝐻
2
(𝑚
2
− 𝑚
3
)
2

]𝐶
2

2
.

(26)

Then, replacing𝛼 = 2/3 and𝐻
2
= 3(𝑚

2
−𝑚
3
)/4(𝑚

2
−𝑚
3
)
3

in (26), the order of convergence will be four.
Finally, the error equation is

𝑒
𝑘+1

= (
3

4 (𝑚
2
− 𝑚
3
)
2
(13𝑚
2

2
− 26𝑚

2
𝑚
3
+ 45𝑚

2

3
) 𝐶
3

2

− 𝐶
2
𝐶
3
+
1

9
𝐶
4

2
)𝑒
4

𝑘
+ O (𝑒

5

𝑘
) .

(27)

So, the proof is completed.

Starting from the general family of iterative methods
(6) and under the hypothesis of Theorem 1, we develop two
specific fourth-order iterative schemes.

(i) By requiring 𝑚
1
= 𝑚
3
= 0 and 𝑚

2
= 1, it is directly

obtained from Theorem 1 that 𝐻(𝐼) = (1/3)𝐼 and
𝐻
1
= 𝐻
2
= 3/4. So, we get the following iterative

expression denoted by MS4A:

𝑦
(𝑘)

= 𝑥
(𝑘)

−
2

3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝐻 (𝜂
(𝑘)

) = −
1

24
𝐼 +

3

8
[𝐹
󸀠

(𝑦
(𝑘)

)]
−1

⋅ 𝐹
󸀠

(𝑥
(𝑘)

) [𝐹
󸀠

(𝑦
(𝑘)

)]
−1

𝐹
󸀠

(𝑥
(𝑘)

) .

(28)

(ii) The second iterative scheme is denoted by MS4B and
is defined by imposing the following conditions:𝑚

1
=

1/4, 𝑚
2
= 0, and 𝑚

3
= 3/4 so that Theorem 1 implies

that𝐻(𝐼) = (1/3)𝐼,𝐻
1
= −1, and𝐻

2
= 4. The resul-

tant iterative expression that we call MS4B is

𝑦
(𝑘)

= 𝑥
(𝑘)

−
2

3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

[𝐹 (𝑥
(𝑘)

)] ,

𝐻 (𝜂
(𝑘)

) =
53

24
𝐼 − 3 [𝐹

󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

)

+
9

8
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

⋅ 𝐹
󸀠

(𝑦
(𝑘)

) .

(29)

At this point we wonder if we can obtain a method of
order of convergence higher than four slightly modifying the
iterative scheme (6), just adding one functional evaluation of
𝐹 in its second step:

𝑦
(𝑘)

= 𝑥
(𝑘)

− 𝛼 [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) ,

(30)
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where

𝜂
(𝑘)

= 𝑚
1
𝐼 + 𝑚

2
[𝐹
󸀠

(𝑦
(𝑘)

)]
−1

𝐹
󸀠

(𝑥
(𝑘)

)

+ 𝑚
3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

) .

(31)

We denote this class of methods by MS5. In the following,
we prove that its order of convergence is five under certain
conditions.

Theorem 2. Let 𝐹 : Ω ⊆ R𝑛 → R𝑛, 𝑛 ≥ 2, be a sufficiently
differentiable function in an open convex set Ω and let 𝜉 ∈ Ω
be a solution of the system of nonlinear equations 𝐹(𝑥) = 0.
One supposes that𝐹󸀠(𝑥) is continuous and nonsingular at 𝜉. Let
𝐻 : R𝑛×𝑛 → R𝑛×𝑛 be a sufficiently differentiable matrix weight
function such that 𝐻(𝐼) = 𝐼, 𝐻

1
= 1/(𝑚

2
− 𝑚
3
), and 𝐻

2
=

(𝑚
2
−5𝑚
3
)/2(𝑚

2
−𝑚
3
)
3, where 𝐼 is the identity matrix. Let one

consider 𝑥(0) as an initial guess, sufficiently close to 𝜉. Then, the
sequence {𝑥(𝑘)}

𝑘≥0
obtained using the expression (30) converges

to 𝜉with order of convergence five if 𝛼 = 1 and𝑚
1
+𝑚
2
+𝑚
3
=

1. Moreover, the error equation is

𝑒
𝑘+1

= [
2𝑚
2

2
+ 14𝑚

2

3

𝑚
2
− 𝑚
3

𝐶
4

2
+
1

2
(𝐶
2
𝐶
3
𝐶
2
− 3𝐶
3
𝐶
2
)] 𝑒
5

𝑘

+ O (𝑒
6

𝑘
) ,

(32)

where 𝐶
𝑞
= (1/𝑞!)[𝐹

󸀠

(𝜉)]
−1

𝐹
(𝑞)

(𝜉), 𝑞 ≥ 2, and 𝑒
𝑘
= 𝑥
(𝑘)

− 𝜉.

Proof. Let us remark that the only difference between meth-
ods (30) and (6) is that, in its second step, 𝐹(𝑥(𝑘)) is replaced
by 𝐹(𝑦(𝑘)). So, we need the Taylor series expansion of

𝐹 (𝑦
(𝑘)

) = 𝐹
󸀠

(𝜉) [𝐵
1
𝑒
𝑘
+ 𝐵
2
𝑒
2

𝑘
+ 𝐵
3
𝑒
3

𝑘
+ 𝐵
4
𝑒
4

𝑘
+ 𝐵
5
𝑒
5

𝑘
]

+ O (𝑒
6

𝑘
) ,

(33)

where 𝐵
1
= 𝛽 = 1−𝛼, 𝐵

2
= (𝛼+𝛽

2

)𝐶
2
, 𝐵
3
= −𝛼𝐴

3
+2𝛼𝛽𝐶

2

2
+

𝛽
3

𝐶
3
, 𝐵
4
= −𝛼𝐴

4
+𝛼
2

𝐶
3

2
−2𝛼𝛽𝐶

2
𝐴
3
+3𝛼𝛽

2

𝐶
3
𝐶
2
+𝛽
4

𝐶
4
, and

𝐵
5
= −𝛼𝐴

5
− 2𝛼𝛽𝐶

2
𝐴
4
+𝛼
2

(𝐶
2

2
𝐴
3
+𝐶
2
𝐴
3
𝐶
2
) + 3𝛼

2

𝛽𝐶
3
𝐶
2

2
−

3𝛼𝛽
2

𝐶
3
𝐴
3
+4𝛼𝛽

3

𝐶
4
𝐶
2
+𝛽
5

𝐶
5
.Then, we obtain the following

expressions:

[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

)

= 𝑅
1
𝑒
𝑘
+ 𝑅
2
𝑒
2

𝑘
+ 𝑅
3
𝑒
3

𝑘
+ 𝑅
4
𝑒
4

𝑘
+ 𝑅
5
𝑒
5

𝑘
+ O (𝑒

6

𝑘
) ,

𝐻 (𝜂
𝑘
) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

)

= 𝑆
1
𝑒
𝑘
+ 𝑆
2
𝑒
2

𝑘
+ 𝑆
3
𝑒
3

𝑘
+ 𝑆
4
𝑒
4

𝑘
+ 𝑆
5
𝑒
5

𝑘
+ O (𝑒

6

𝑘
) ,

(34)

where 𝑅
1
= 𝐵
1
, 𝑅
𝑠
= 𝐵
𝑠
+ ∑
𝑠

𝑗=1
𝑋
𝑗+1
𝐵
𝑗−𝑠

, 𝑆
1
= ℎ
1
𝑅
1
, and

𝑆
𝑚
= ∑
𝑚

𝑗=1
ℎ
𝑗
𝑅
𝑚−𝑗+1

, 𝑠, 𝑚 = 2, 3, . . ..
So, the expression of the error equation in the last step is

𝑒
𝑘+1

= 𝑇
1
𝑒
𝑘
+ 𝑇
2
𝑒
2

𝑘
+ 𝑇
3
𝑒
3

𝑘
+ 𝑇
4
𝑒
4

𝑘
+ 𝑇
5
𝑒
5

𝑘
+ O (𝑒

6

𝑘
) , (35)

where 𝑇
1
= 𝛽 − 𝑆

1
and 𝑇

𝑗
= −𝛼𝐴

𝑗
− 𝑆
𝑗
, 𝑗 = 2, 3, . . .. Forcing

𝑇
1
= 0, 𝑇

2
= 0, 𝑇

3
= 0, and 𝑇

4
= 0, we obtain order of

convergence five. Solving this system of equations we obtain
the conditions that guarantee order of convergence five as
they appear in the hypothesis of this theorem.Then, the error
equation takes the form

𝑒
𝑘+1

= [
2𝑚
2

2
+ 14𝑚

2

3

𝑚
2
− 𝑚
3

𝐶
4

2
+
1

2
(𝐶
2
𝐶
3
𝐶
2
− 3𝐶
3
𝐶
2
)] 𝑒
5

𝑘

+ O (𝑒
6

𝑘
)

(36)

and the proof is completed.

From the family of iterative methods (30) under the
conditions imposed inTheorem 2, we get two particular fifth-
order iterative schemes.

(i) By requiring that𝑚
1
= 𝑚
3
= 1/2 and 𝑚

2
= 0, condi-

tions from Theorem 2 yield 𝐻(𝐼) = 𝐼, 𝐻
1
= −2, and

𝐻
2
= 10. The expression of the resulting iterative

method that we call MS5A is

𝑦
(𝑘)

= 𝑥
(𝑘)

− [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) ,

𝐻 (𝜂
(𝑘)

) =
13

4
𝐼 −

7

2
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

)

+
5

4
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

⋅ 𝐹
󸀠

(𝑦
(𝑘)

) .

(37)

(ii) The second scheme will be denoted by MS5B and
results from setting the parameters𝑚

1
= 1/4,𝑚

2
= 0,

and𝑚
3
= 3/4 in Theorem 2. Then,𝐻(𝐼) = 𝐼,𝐻

1
= 1,

and𝐻
2
= 4. Then the iterative expression is

𝑦
(𝑘)

= 𝑥
(𝑘)

−
2

3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) ,

𝐻 (𝜂
(𝑘)

) =
1

4
𝐼 +

1

2
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

)

+
1

4
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

⋅ 𝐹
󸀠

(𝑦
(𝑘)

) .

(38)

It is interesting that, based onTheorem 2, we can generate
methods whose order of convergence is higher than 5. This
process consists of adding a new step to scheme (30), keeping
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Table 1: Functional evaluations and product-quotients of the methods.

Methods FEM FEF NS1 NS2 MxV IEC

MS4A 2 1 2 1 2 4
(1/((2/3)𝑛

3
+7𝑛
2
+(1/3)𝑛))

MS4B 2 1 1 2 2 4
(1/((1/3)𝑛

3
+7𝑛
2
−(1/3)𝑛))

SHM4 2 1 2 1 1 4
(1/((2/3)𝑛

3
+6𝑛
2
−(1/3)𝑛))

JM4 2 1 2 0 1 4
(1/((2/3)𝑛

3
+5𝑛
2
−(1/3)𝑛))

MS5A 2 2 1 3 2 5
(1/((1/3)𝑛

3
+8𝑛
2
+(5/3)𝑛))

MS5B 2 2 1 3 2 5
(1/((1/3)𝑛

3
+8𝑛
2
+(5/3)𝑛))

SHM5 2 2 3 0 0 5
(1/(𝑛
3
+5𝑛
2
+𝑛))

VM5 2 2 2 1 1 5
(1/((2/3)𝑛

3
+6𝑛
2
+(4/3)𝑛))

the weight function𝐻(𝜂(𝑘)) unaltered. In this way, the iterat-
ive expression is

𝑦
(𝑘)

= 𝑥
(𝑘)
− 𝛼 [𝐹

󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑧
(𝑘)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑧
(𝑘)

− 𝑎𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑧
(𝑘)

) ,

(39)

where 𝜂(𝑘) = 𝑚
1
𝐼 + 𝑚

2
[𝐹
󸀠

(𝑦
(𝑘)

)]
−1

𝐹
󸀠

(𝑥
(𝑘)

) + 𝑚
3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

).
Assuming that hypotheses of Theorem 2 are satisfied, the

error in the second step of (30) can be expressed as 𝐸 = 𝑧(𝑘) −
𝜉 = 𝑀𝑒

5

𝑘
+𝑁𝑒
6

𝑘
+O(𝑒7
𝑘
). Then, the error equation of (39) takes

the form

𝑒
𝑘+1

= 𝑀𝑒
5

𝑘
+ 𝑁𝑒
6

𝑘
− 𝑎𝐻(𝜂

(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑧
(𝑘)

)

= 𝑀𝑒
5

𝑘
+ 𝑁𝑒
6

𝑘
− 𝑎 (𝐼 + ℎ

2
𝑒
𝑘
+ ℎ
3
𝑒
2

𝑘
)

⋅ (𝐼 + 𝑋
2
𝑒
𝑘
+ 𝑋
3
𝑒
2

𝑘
) (𝑀𝑒

5

𝑘
+ 𝑁𝑒
6

𝑘
)

= (𝑀 − 𝑎𝑀) 𝑒
5

𝑘
+ (𝑁 − 𝑎𝑁) 𝑒

6

𝑘
+ 𝑅𝑒
7

𝑘
+ O (𝑒

8

𝑘
)

(40)

and the iterative method has order of convergence five. If
𝑎 = 1, the order of convergence of the iterative scheme (39) is
seven.

Based on this result, we state the following theoremwhich
generalizes this procedure.

Theorem 3. Under the same hypothesis of Theorem 2 and
adding 𝑎 = 1, sequence {𝑥(𝑘)}

𝑘≥0
obtained using the following

expression converges to 𝜉 with order of convergence 𝑝 + 2:

𝑦
(𝑘)

= 𝑥
(𝑘)

− 𝛼 [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑥
(𝑘)

) ,

𝑧
(𝑘)

= 𝑦
(𝑘)

− 𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) ,

𝑢
(𝑘+1)

= 𝑧
(𝑘)

− 𝑎𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑧
(𝑘)

) ,

.

.

.

𝑥
(𝑘+1)

= 𝑤
(𝑘)

− 𝑎𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑤
(𝑘)

) ,

(41)

where 𝜂(𝑘) = 𝑚
1
𝐼 + 𝑚

2
[𝐹
󸀠

(𝑦
(𝑘)

)]
−1

𝐹
󸀠

(𝑥
(𝑘)

) + 𝑚
3
[𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹
󸀠

(𝑦
(𝑘)

), and the order of convergence of the penultimate step
is𝑝with error equation𝐸 = 𝑤(𝑘)−𝜉 = 𝑀𝑒𝑝

𝑘
+𝑁𝑒
𝑝+1

𝑘
+O(𝑒
𝑝+2

𝑘
).

Proof. In general, the error equation of the last step takes the
form

𝑒
𝑘+1

= 𝐸 − 𝑎𝐻(𝜂
(𝑘)

) [𝐹
󸀠

(𝑥
(𝑘)

)]
−1

𝐹 (𝑤
(𝑘)

)

= 𝑀𝑒
𝑝

𝑘
+ 𝑁𝑒
𝑝+1

𝑘
− 𝑎 (𝐼 + ℎ

2
𝑒
𝑘
+ ℎ
3
𝑒
2

𝑘
)

⋅ (𝐼 + 𝑋
2
𝑒
𝑘
+ 𝑋
3
𝑒
2

𝑘
) (𝑀𝑒

𝑝

𝑘
+ 𝑁𝑒
𝑝+1

𝑘
)

= (𝑀 − 𝑎𝑀) 𝑒
𝑝

𝑘
+ (𝑁 − 𝑎𝑁) 𝑒

𝑝+1

𝑘
+ 𝑅𝑒
𝑝+2

𝑘
+ O (𝑒

𝑝+3

𝑘
) .

(42)

This shows that the order of convergence of the method will
be 𝑝 + 2 if 𝑎 = 1.

In order to calculate the different efficiency indices, it
is necessary to take into account not only the order of
convergence, but also the number of functional evaluations
(𝑛2: each Jacobian matrix 𝐹󸀠 and 𝑛: each vectorial function
𝐹) per iteration and the amount of product-quotients per
step. This is obtained by observing the iterative expression of
the method and using the fact that the number of product-
quotients needed for solving a set of 𝑚 linear systems with
the same coefficient matrix is (1/3)𝑛3 +𝑚𝑛2 − (1/3)𝑛 and the
product between a matrix and a vector implies 𝑛2 products-
quotients.

With respect to the classical efficiency index, it is clear
that one of all (both proposed and known) fourth-order
methods is 𝐼

4th = 4
1/(2𝑛
2
+𝑛) and, for all fifth-order schemes,

𝐼
5th = 5

1/(2𝑛
2
+2𝑛). It is also easy to check that 𝐼

4th < 𝐼5th, for
any 𝑛 > 2.

In Table 1, the computational efficiency indices are sho-
wed, and also the needed information is showed: the number
of functional evaluations of matrices (FEM, 𝑛2 evaluations)
or nonlinear functions (FEF, 𝑛 evaluations), amount of linear
systemswith different Jacobianmatrices (NS1, (1/3)𝑛3+𝑚𝑛2−
(1/3)𝑛 products-quotients), the number of linear systems
with the same Jacobian matrix (NS2, 𝑛2 products-quotients),
and also how many times a matrix-vector product appears
(MxV, 𝑛2 products).
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Figure 1: Computational efficiency index of fourth- and fifth-order methods.

Figure 1 shows the computational efficiency index, for
different sizes of the system, of fourth- (MS4A and MS4B)
and fifth-order (MS5A and MS5B) proposed methods, joint
with the known ones (JM4, SHM4, VM5, and SHM5), for
comparison purposes. It can be observed that, in both cases,
known methods have better computational efficiency indices
for small sizes of the system, but in larger cases the newmeth-
ods show better behavior.

3. Numerical Results

In this section we test the developed methods to check their
effectiveness compared with other known ones. Here we
can see the list of systems of nonlinear equations used in
these numerical tests, conducted in Matlab R2010a by using
variable precision arithmetics with 2000 digits of mantissa
and ‖𝑥(𝑘+1) − 𝑥(𝑘)‖ < 10

−500 or ‖𝐹(𝑥(𝑘+1))‖ < 10
−500 as a

stopping criterion. Consider

(i) 𝐹
1
(𝑥
1
, 𝑥
2
) = (exp(𝑥

1
) exp(𝑥

2
)+𝑥
1
cos(𝑥
2
), 𝑥
1
+𝑥
2
−1),

𝜉 ≈ (3.47063096, −2, 47063096)
𝑇;

(ii) 𝐹
2
(𝑥
1
, 𝑥
2
) = (ln(𝑥2

1
) − 2 ln(cos(𝑥

2
)), 𝑥
1
tan((𝑥

1
/√2) +

𝑥
2
) − √2), 𝜉 ≈ (0.9548041416, 6.5849814845)𝑇;

(iii) 𝐹
3
(𝑥
1
, 𝑥
2
) = (𝑥

1
+exp(𝑥

2
)−cos(𝑥

2
), 3𝑥
1
−𝑥
2
−sin(𝑥

2
)),

𝜉 = (0, 0)
𝑇;

(iv) 𝐹
4
(𝑥
1
, 𝑥
2
, 𝑥
3
) = (cos(𝑥

2
) − sin(𝑥

1
), 𝑥
𝑥1

3
− (1/

𝑥
2
), exp(𝑥

1
) − 𝑥

2

3
), 𝜉 ≈ (0.90956949, 0.66122683,

1.57583414)
𝑇.

We have two comparative tables in which iterative meth-
ods are grouped according to the order of convergence of the
involved schemes: in Table 2, we can observe the behavior
of the fourth-order methods and in Table 3, the schemes of
order 5 can be found. We perform numerical tests for each
of the selected systems of nonlinear equations either for the
proposed methods MS4A, MS4B, MS5A, and MS5B or for
consolidated methods JM4, SHM4, VM5, and SHM5.

The columns of the tables correspond from left to right
to nonlinear system to be solved with the initial approxima-
tion, iterative method to be used, solutions or roots found,
absolute value of the difference between the two last iterations
(component by component), |𝑥(𝑘+1)

𝑖
− 𝑥
(𝑘)

𝑖
|, absolute value

of each coordinate function evaluated at the last iteration,
|𝐹(𝑥
(𝑘+1)

)
𝑖
|, the number of iterations used in the process, and

approximated computational order of convergence, ACOC,
according to (see [8])

𝑝 ≈ ACOC =
ln (󵄩󵄩󵄩󵄩󵄩𝑥

(𝑘+1)

− 𝑥
(𝑘)
󵄩󵄩󵄩󵄩󵄩
/
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑘)

− 𝑥
(𝑘−1)

󵄩󵄩󵄩󵄩󵄩
)

ln (󵄩󵄩󵄩󵄩𝑥(𝑘) − 𝑥(𝑘−1)
󵄩󵄩󵄩󵄩 /
󵄩󵄩󵄩󵄩𝑥
(𝑘−1) − 𝑥(𝑘−2)

󵄩󵄩󵄩󵄩)
. (43)

Let us remark that the value of ACOC that is presented in
Tables 2 and 3 is the last coordinate of vector ACOC when
the variation between its values is small.

Observing Tables 2 and 3, we note that the approximated
computational order of convergence confirms the theoretical
results.The results in terms of accuracy in the approximation
of the roots and number of iterations are kept in the range
expected for the orders of convergence of the methods, as is
apparent from a comparison with established methods. We
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Table 2: Numerical results obtained with the fourth-order schemes.

Methods 𝜉 |𝑥
(𝑘+1)

𝑖
− 𝑥
(𝑘)

𝑖
| |𝐹(𝑥

(𝑘+1)

)
𝑖
| Iteration ACOC

𝐹
1

𝑥
(0)

= (3, −2)
𝑇

MS4A 3.470631 2.7𝑒 − 1012 2.7𝑒 − 12 6 4.0000
−2.470631 2.7𝑒 − 1012 0

MS4B 3.470631 1.1𝑒 − 993 2.7𝑒 − 12 6 4.0000
−2.470631 1.1𝑒 − 993 0

SHM4 3.470631 1.0𝑒 − 1006 2.7𝑒 − 12 6 4.0000
−2.470631 1.0𝑒 − 1006 0

JM4 3.470631 2.0𝑒 − 1015 2.7𝑒 − 12 6 4.0000
−2.470631 2.0𝑒 − 1015 0

𝐹
2

𝑥
(0)

= (2, 6)
𝑇

MS4A 0.954804 4.0𝑒 − 1691 1.7𝑒 − 2009 7 3.9192
6.584981 4.6𝑒 − 1691 1.8𝑒 − 11

MS4B 0.954804 2.1𝑒 − 1115 2.9𝑒 − 2008 7 3.9821
6.584981 1.3𝑒 − 1114 1.8𝑒 − 11

SHM4 0.954804 3.8𝑒 − 1427 6.1𝑒 − 2008 7 3.9601
6.584981 5.2𝑒 − 1427 1.8𝑒 − 11

JM4 0.954804 5.6𝑒 − 612 7.7𝑒 − 612 6 4.0266
6.584981 6.6𝑒 − 612 1.8𝑒 − 11

𝐹
3

𝑥
(0)

= (0.5, 0.5)
𝑇

MS4A 0.000000 8.3𝑒 − 153 2.2𝑒 − 608 5 4.0000
0.000000 1.5𝑒 − 152 5.3𝑒 − 609

MS4B 0.000000 1.1𝑒 − 117 1.4𝑒 − 1868 5 3.9999
0.000000 1.7𝑒 − 117 8.5𝑒 − 1870

SHM4 0.000000 7.1𝑒 − 139 1.5𝑒 − 552 5 4.0000
0.000000 1.2𝑒 − 138 2.0𝑒 − 553

JM4 0.000000 1.4𝑒 − 662 4.5𝑒 − 662 6 4.0000
0.000000 3.0𝑒 − 662 1.7𝑒 − 662

𝐹
4

𝑥
(0)

= (0.8, 0.5, 1.4)
𝑇

MS4A
0.909569 1.0𝑒 − 466 7.4𝑒 − 1867

6 3.99370.661227 1.0𝑒 − 466 1.1𝑒 − 1863

1.575834 6.0𝑒 − 467 6.5𝑒 − 1864

MS4B
0.909569 2.4𝑒 − 297 1.8𝑒 − 1190

6 3.99960.661227 2.4𝑒 − 297 1.8𝑒 − 1185

1.575834 1.6𝑒 − 297 6.9𝑒 − 1186

SHM4
0.909569 1.2𝑒 − 382 3.8𝑒 − 1537

6 4.00130.661227 1.2𝑒 − 382 4.2𝑒 − 1527

1.575834 7.5𝑒 − 382 1.9𝑒 − 1527

JM4
0.909569 2.1𝑒 − 742 4.5𝑒 − 713

6 3.98700.661227 2.8𝑒 − 742 6.5𝑒 − 742

1.575834 3.5𝑒 − 743 4.2𝑒 − 742

believe that, in general, the proposed methods are competi-
tive on each of the systems of nonlinear equations used.

With respect to the extension to high-order methods, let
us see in the following how the increasing order does not
reduce the real region of good starting points, as it is usual
in iterative methods. We have selected a rectangular region
ofR2 that contains some of the solutions of system 𝐹

1
(𝑥) = 0

and have used the points of this region as starting ones for
the fifth-order iterativemethods and their partners of seventh
and ninth order.

So, in Figure 2, the dynamical planes associated with
known and proposed methods on 𝐹

1
(𝑥) are showed. These

planes have been generated by slightlymodifying the routines
described in [18]. In them, a mesh of 400 × 400 points has
been used, 80 has been the maximum number of iterations
involved, and 10−3 has been the tolerance used as a stopping
criterium. Then, if a starting point of this mesh converges to
one of the solutions of the system (marked with white stars),
it is painted in the color assigned to the root which it has
converged to. The color used is brighter when the number
of iterations is lower. If it reaches the maximum number of
iterations without converging to any of the roots, it is painted
in black. At the sight of Figure 2, it can be concluded that
the areas of converging starting points remain with slight
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Table 3: Numerical results obtained with fifth-order schemes.

Methods 𝜉 |𝑥
(𝑘+1)

𝑖
− 𝑥
(𝑘)

𝑖
| |𝐹(𝑥

(𝑘+1)

)
𝑖
| Iteration ACOC

𝐹
1

𝑥
(0)

= (3, −2)
𝑇

MS5A 3.470631 1.4𝑒 − 850 2.7𝑒 − 12 5 5.0000
−2.470631 1.4𝑒 − 850 0

MS5B 3.470631 1.6𝑒 − 807 2.7𝑒 − 12 5 5.0000
−2.470631 1.6𝑒 − 807 0

SHM5 3.470631 2.6𝑒 − 805 2.7𝑒 − 12 5 5.0000
−2.470631 2.6𝑒 − 805 0

VM5 3.470631 4.1𝑒 − 2002 2.7𝑒 − 12 6 4.9999
−2.470631 4.1𝑒 − 2002 0

𝐹
2

𝑥
(0)

= (2, 6)
𝑇

MS5A 0.954804 5.2𝑒 − 1386 1.7𝑒 − 2009 7 —
6.684981 6.7𝑒 − 1386 1.8𝑒 − 11

MS5B 0.954804 2.5𝑒 − 1649 2.5𝑒 − 2008 7 —
6.684981 5.4𝑒 − 1650 1.8𝑒 − 11

SHM5 0.954804 1.2𝑒 − 1001 2.0𝑒 − 1001 7 —
6.684981 7.3𝑒 − 1002 1.8𝑒 − 11

VM5 0.954804 2.9𝑒 − 813 5.6𝑒 − 2008 6 4.9994
6.684981 4.7𝑒 − 813 1.8𝑒 − 11

𝐹
3

𝑥
(0)

= (0.5, 0.5)
𝑇

MS5A 0.000000 3.7𝑒 − 262 1.8𝑒 − 1306 5 5.0000
0.000000 5.7𝑒 − 262 5.3𝑒 − 1308

MS5B 0.000000 1.5𝑒 − 357 7.1𝑒 − 1784 5 4.9970
0.000000 2.9𝑒 − 357 1.8𝑒 − 1784

SHM5 0.000000 4.3𝑒 − 1880 1.3𝑒 − 1879 6 4.9978
0.000000 8.8𝑒 − 1880 4.6𝑒 − 1880

VM5 0.000000 8.9𝑒 − 323 5.1𝑒 − 1610 5 5.0000
0.000000 1.5𝑒 − 322 6.0𝑒 − 1611

𝐹
4

𝑥
(0)

= (0.8, 0.5, 1.4)
𝑇

MS5A
0.909569 2.2𝑒 − 429 2.3𝑒 − 1711

6 —0.661227 1.1𝑒 − 428 1.2𝑒 − 1710

1.575834 1.1𝑒 − 428 1.6𝑒 − 1712

MS5B
0.909569 8.7𝑒 − 497 1.1𝑒 − 1985

6 —0.661227 7.0𝑒 − 497 3.8𝑒 − 1985

1.575834 7.0𝑒 − 497 5.4𝑒 − 1985

SHM5
0.909569 1.7𝑒 − 1534 8.1𝑒 − 1534

7 —0.661227 1.2𝑒 − 1533 3.7𝑒 − 1533

1.575834 1.1𝑒 − 1533 3.0𝑒 − 1533

VM5
0.909569 2.3𝑒 − 211 2.9𝑒 − 1060

5 4.99890.661227 2.3𝑒 − 211 4.8𝑒 − 1052

1.575834 1.5𝑒 − 211 2.1𝑒 − 1052

variations, in spite of the increasing order of convergence; this
makes this process especially interesting, as it can increase
the speed of convergence to a solution with no need of being
closer to it.

3.1. Molecular Interaction Problem. To solve the equation of
molecular interaction (see [19])

𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
= 𝑢
2

, (𝑥, 𝑦) ∈ [0, 1] × [0, 1] ,

𝑢 (𝑥, 0) = 2𝑥
2

− 𝑥 + 1,

𝑢 (𝑥, 1) = 2,

𝑢 (0, 𝑦) = 2𝑦
2

− 𝑦 + 1,

𝑢 (1, 𝑦) = 2,

(44)

we need to deal with a boundary value problemwith a nonlin-
ear partial differential equation of second order. To estimate
its solution numerically, we have used central divided differ-
ences in order to transform the problem in a nonlinear system
of equations, which is solved by using the proposed methods
(of orders four and five) and the extensions of family MS5 up
to order nine.
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Figure 2: Dynamical plane of increasing order methods on 𝐹
1
(𝑥).

The discretization process yields to the nonlinear system
of equations,

𝑢
𝑖+1,𝑗

− 4𝑢
𝑖,𝑗
+ 𝑢
𝑖−1,𝑗

+ 𝑢
𝑖,𝑗+1

+ 𝑢
𝑖,𝑗−1

− ℎ
2

𝑢
2

𝑖,𝑗

= 0 𝑖 = 1, . . . , 𝑛𝑥, 𝑗 = 1, . . . , 𝑛𝑦,

(45)

where 𝑢
𝑖,𝑗

denotes the estimation of the unknown 𝑢(𝑥
𝑖
, 𝑦
𝑗
),

𝑥
𝑖
= 𝑖ℎ and 𝑦

𝑗
= 𝑗𝑘 (with 𝑖 = 0, 1, . . . , 𝑛𝑥 and 𝑗 = 0, 1, . . . , 𝑛𝑦)

are the nodes in both variables, where ℎ = 1/𝑛𝑥 and 𝑘 = 1/𝑛𝑦.
In this case, we fix 𝑛𝑥 = 𝑛𝑦 = 4, so a mesh of 5 × 5

is generated. As the boundary conditions give us the value
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Table 4: Numerical tests for 𝑥(0) = (1, . . . , 1)𝑇.

Method ‖𝑥
(1)

− 𝑥
(0)

‖ ‖𝑥
(2)

− 𝑥
(1)

‖ ‖𝑥
(3)

− 𝑥
(2)

‖ ‖𝐹(𝑥
(1)

)‖ ‖𝐹(𝑥
(2)

)‖ ‖𝐹(𝑥
(3)

)‖

MS4A 1.463 2.775𝑒 − 5 4.137𝑒 − 24 4.359𝑒 − 5 6.102𝑒 − 24 3.591𝑒 − 99

MS4B 1.463 1.004𝑒 − 4 2.39𝑒 − 21 1.603𝑒 − 4 3.536𝑒 − 21 1.335𝑒 − 87

MS5A 1.463 5.948𝑒 − 6 2.349𝑒 − 28 1.095𝑒 − 5 6.678𝑒 − 28 6.392𝑒 − 117

MS5B 1.463 9.502𝑒 − 7 1.903𝑒 − 30 3.374𝑒 − 6 2.708𝑒 − 30 4.787𝑒 − 126

MS7A 1.436 2.22𝑒 − 9 3.54𝑒 − 63 3.485𝑒 − 9 9.787𝑒 − 63 1.441𝑒 − 384

MS7B 1.463 3.642𝑒 − 10 1.924𝑒 − 66 1.141𝑒 − 9 2.795𝑒 − 66 3.04𝑒 − 405

MS9A 1.463 9.508𝑒 − 13 3.564𝑒 − 111 1.448𝑒 − 12 9.223𝑒 − 111 6.301𝑒 − 897

MS9B 1.463 1.79𝑒 − 13 1.416𝑒 − 115 4.545𝑒 − 13 2.084𝑒 − 115 1.772𝑒 − 933

Table 5: Numerical tests for 𝑥(0) = (10, . . . , 10)𝑇.

Method ‖𝑥
(1)

− 𝑥
(0)

‖ ‖𝑥
(2)

− 𝑥
(1)

‖ ‖𝑥
(3)

− 𝑥
(2)

‖ ‖𝐹(𝑥
(1)

)‖ ‖𝐹(𝑥
(2)

)‖ ‖𝐹(𝑥
(3)

)‖

MS4A 25.2 0.5327 5.614𝑒 − 7 0.7255 8.027𝑒 − 7 1.314𝑒 − 30

MS4B 24.72 1.023 2.355𝑒 − 5 1.408 3.315𝑒 − 5 1.353𝑒 − 23

MS5A 25.2 0.5276 4.698𝑒 − 8 0.7184 7.861𝑒 − 8 5.271𝑒 − 37

MS5B 25.53 0.1917 9.957𝑒 − 11 0.2635 4.191𝑒 − 10 5.028𝑒 − 46

MS7A 25.63 0.08665 1.875𝑒 − 17 0.1176 4.203𝑒 − 17 7.064𝑒 − 111

MS7B 25.69 0.02205 1.189𝑒 − 21 0.03072 5.342𝑒 − 21 1.017𝑒 − 134

MS9A 25.7 0.01482 1.193𝑒 − 29 0.02016 3.181𝑒 − 29 5.147𝑒 − 245

MS9B 25.71 0.002606 4.285𝑒 − 36 0.003662 1.738𝑒 − 35 1.636𝑒 − 295

of the unknown function at the nodes (𝑥
0
, 𝑦
𝑗
), (𝑥
4
, 𝑦
𝑗
) for

all 𝑗 and also at (𝑥
𝑖
, 𝑦
0
), (𝑥
𝑖
, 𝑦
4
) for all 𝑖, we have only nine

unknowns that are renamed as
𝑥
1
= 𝑢
1,1
,

𝑥
2
= 𝑢
2,1
,

𝑥
3
= 𝑢
3,1
,

𝑥
4
= 𝑢
1,2
,

𝑥
5
= 𝑢
2,2
,

𝑥
6
= 𝑢
3,2
,

𝑥
7
= 𝑢
1,3
,

𝑥
8
= 𝑢
2,3
,

𝑥
9
= 𝑢
3,3
.

(46)

So, the system can be expressed as
𝐹 (𝑥) = 𝐴𝑥 + 𝜙 (𝑥) − 𝑏 = 0, (47)

where

𝐴 = (

𝑀 −𝐼 0

−𝐼 𝑀 −𝐼

0 −𝐼 𝑀

) , being 𝑀 = (

4 −1 0

−1 4 −1

0 −1 4

) ,

𝜙 (𝑥) = ℎ
2

(𝑥
2

1
, 𝑥
2

2
, . . . , 𝑥

2

9
)
𝑇

,

(48)

and 𝐼 is the 3 × 3 identity matrix and 𝑏 = (7/4, 1, 27/8, 1, 0, 2,
27/8, 2, 4)

𝑇. Now, we will check the performance of themeth-
ods bymeans of somenumerical tests, by using variable preci-
sion arithmetics of 2000 digits of mantissa. In Tables 4 and 5,

we show the numerical results obtained for the problem of
molecular interaction (45), with different initial estimations.
We show, for the first three iterations, the residual of the
function at the last iteration, ‖𝐹(𝑥(𝑘+1))‖, and the difference
between the last iteration and the preceding one ‖𝑥(𝑘+1)−𝑥(𝑘)‖.

We can observe in Tables 4 and 5 that all the newmethods
converge to the solution of the problem that appears in
Table 6. It can be noticed that the error of the test is lower
when the order of the iterative method is higher, even at the
first iterations. Indeed, if the initial estimation is far from
the solution, the proposedmethods converge with reasonable
results.This is especially important as in real problems, where
good initial estimations are not always known.

4. Conclusions

As far as we know, the weight functions procedure has been
used only for designing iterative schemes to solve nonlinear
equations. In this paper, by using matrix functions, the men-
tioned procedure is applied to obtain iterative methods for
solving nonlinear systems. Fourth- and fifth-order methods
are obtained and a technique for designing iterative schemes
of any order is presented.

By using different academic test problems and the discre-
tization of a partial differential equation modeling the mol-
ecular interaction problem, we compare our methods with
several known ones such as Jarratt’s method and Sharma’s
method, some of them optimal in the context of nonlinear
equations.The numerical tests confirm the theoretical results
and show that our methods are more competitive than those
used for comparing. In addition, the calculus of the compu-
tational efficiency index of the different schemes allows us to
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Table 6: Approximated solution.

𝛼
1

𝑢
1,1

1.0259117. . .
𝑢
2,1

1.2097139. . .
𝑢
3,1

1.5167030. . .
𝑢
1,2

1.2097139. . .
𝑢
2,2

1.3877038. . .
𝑢
3,2

1.6258725. . .
𝑢
1,3

1.5167030. . .
𝑢
2,3

1.6258725. . .
𝑢
3,3

1.7642995. . .

ensure that methods MS5A and MS5B are the best for non-
linear systems with big size.

Finally, with respect to the extension to high-order
methods, we show that the increasing order does not reduce
the real region of good starting points, as it is usual in iterative
schemes.
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