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We study the positive solutions of the (n — 1, 1)-type fractional differential system with coupled integral boundary conditions. The
conditions for the existence of positive solutions to the system are established. In addition, we derive explicit formulae for the
estimation of the positive solutions and obtain the unique positive solution when certain additional conditions hold. An example
is then given to demonstrate the validity of our main results.

1. Introduction f(t, x, y) may be singular att = 0,1 and y = 0; g(¢, x, y) may
be singular att = 0,1 and x = 0.
This paper is motivated by the boundary value problem Research on fractional order integrodifferential operators
dates back to the end of the 19th century, when Riemann
Do (sint + cost) Vu _ and Liouville introduced the first definition of the fractional
o () + ———=—=0, o .
NATEDY: derivative. However, this field of study started to become
attractive to engineers only in the late 1960s, when fractional
Dg{zv ) + W ~0, 0<t<l, derivative description of some real systems was observed. It

was found that fractional operators are nonlocal and are more
suitable for constructing models possessing memory effect in

eNt(1-tu -

u(0) = u' (0)=0, along time period, and hence fractional differential equations
X @ possess many advantages.
_1 In this paper, we consider the existence of positive solu-
u(l) = v(t)dt, . . : : . :
2 Jo tions for a nonlinear singular fractional differential system

, with coupled boundary conditions:
v(0) =v (0) =0,

. DJu(t) + f (tu(t),v(t) =0,
v(1) =J u(t)dt’, N

0 Dyiv(t)+gtu),v(®)=0, 0<t<l,
which arises in a variety of disciplinary areas such as u©) =u (0)=---=u"? =0,
mechanics, chemical physics, mathematical biology, flows,

fluid electrical networks, and viscoelasticity (see [1-6] and 1
the references cited therein). In problem (1), the nonlinearity u(l) =m L v(s)dA; (s),
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VP =

>

v(0) =+ (0)="--=

1
v(1) =u, L u(s)dA,(s),
(2)

wheren—-1 < «; <n,n>2,and Dgi is the standard Riemann-
Liouville derivative. y; > 0, A; is right continuous on [0, 1),
left continuous at t = 1, and nondecreasing on [0, 1], A;(0) =

0, and fol x(s)dA;(s) denotes the Riemann-Stieltjes integrals
of x with respect to A; (i = 1,2). f : (0,1) x [0,+00) x
(0,+00) — [0,+00) and g : (0,1) x (0, +00) x [0, +00) —
[0, +00) are two continuous functions, and f(t, x, y) may be
singularatt = 0, 1 and y = 0, while g(t, x, y) may be singular
att =0,land x = 0.

Coupled boundary value problem arises naturally in
the research of Sturm-Liouville problems, reaction-diffusion
equations, mathematical biology, and so on. In recent years,
there has been a significant development in ordinary and
partial differential equations involving fractional derivatives
with coupled boundary conditions, as shown by [7-16] and
the references therein. By using the nonlinear alternative of
the Leray and Schauder theorem and the Krasnoselskii fixed
point theorem in a cone, Bai and Fang in [17] obtained some
results of existence of positive solutions by considering the
singular coupled system of nonlinear fractional differential
equations:

D'u+ f(t,v) =0,
(3)

DPv+g(t,bu)y=0, 0<t<lI,

where 0 < s, p < 1, D°, D are two standard Riemann-
Liouville fractional derivative, and f, g : (0,1] x [0, +0c0) —
[0, +00) are two given continuous functions and are singular
att =0.

Wang et al. [18] study the following system of nonlinear
fractional differential equations:

DEu(t) + f (v (b)) =0,

DEvt)+g(tu(®) =0, 0<t<l,

u(0) =v(0) =0, (4)
u(l)=au(l),
v(1)=bv(E),

wherel < a,$<2,0<a,b<1,0<E<1, f,g:[0,1]x
[0,+00) — [0,+00) are continuous functions, and D,

D(/; are two standard Riemann-Liouville fractional deriva-
tives. By using the Banach fixed point theorem and the
nonlinear alternative of Leray-Schauder type, the existence
and uniqueness of a positive solution are obtained.

In this paper, we consider the existence and uniqueness
of positive solutions for the singular system (2). The work
presented in this paper has the following new features. Firstly,
until now, coupled integral boundary value problems for
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fractional differential system as system (2) have seldom been
considered when f(t, x, y) may be singular at ¢t = 0,1 and
y = 0, and ¢(t, x, y) may be singular at t = 0,1 and x =
0. Also _[01 x(s)dA,(s) denotes the Riemann-Stieltjes integral,
and thus system (2) includes the multipoint problems and
integral problems as special cases. Secondly, by using the well-
known fixed point theorem due to Guo-Krasnoselskii, we not
only obtain the existence of positive solutions for system (2),
but also obtain the uniqueness of system (2).

A vector (u, v) is said to be a positive solution of system
(2) if and only if (u, v) satisfies (2) and u (¢) > 0, v(¢) > 0 for
anyt € (0,1].

2. Preliminaries and Lemmas

In what follows, we present some necessary definitions about
fractional calculus theory.

Definition I (see [2,19]). Leta > 0and let u be piecewise con-
tinuous on (0, +00) and integrable on any finite subinterval of
[0, +00). Then, for t > 0, we call

Igu(t) = %(x) J-o (t—9)""u(s)ds (5)

the Riemann-Liouville fractional integral of u of order a.

Definition 2 (see [2, 19]). The Riemann-Liouville fractional
derivative of order & > 0,n— 1 < « < n,n € N, is defined as

! d " n—a—1
m(a) L(f—5> u(s)ds, (6)

where N denotes the natural number set and the function u(t)
is n times continuously differentiable on [0, +00).

Lemma 3 (see [2]). Let o > 0; then,

Iy Dy.u (1) -
7

=u(t) +t* " + ot

R - A

n >

where ¢, ¢,,...,¢, € (-00,+00) and n is the smallest integer
greater than or equal to «.

Lemma 4. Let h; € C(0,1) N L'(0,1) (i = 1,2), and the
following condition (H,) holds:
(H,)
1
k, = J 1%\ dA | (t) > 0,
0
(8)

1
k, = J 7 dA, (1) > 0,
0

1 — ke ky > 0.
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Then the system subjected to the coupled boundary conditions
DJiu(t) + hy (t) = 0,

D3v(t) +hy (t) = 0,

0<t<l,
u@©=u (0)=--=u"? =0,
1 )
u®) = | v©da, ),
v(0)=v (0)=---=v"? =0,
1
v(l) =, Jo u(s)dA, (s)
has an integral representation
1 1
u(t) = I K, (t,)hy (s) ds+J H, (t5) h, (s) ds,
V) = I K, (t,5)h, (5) ds+J H, () h, (s) ds,
0 0
where
ikt (!
K, (t,5) = Hatal " j G, (t,5)dA, (t) + G, (1,5),
1= py ki ky Jo
P‘ltal_l !
H, (1, =—jG t,s)dA, (t),
(69 = e | G 69da @
(11)
Pyt Jl
K, (t,s) = —————— | G,(t,s)dA, (t)+G, (t,s),
2 (t,9) 1 ki, Jo L (t,8)dA () + G, (£, 5)
["zt(xz_l !
H, (s :—J G, (t,s)dA, (1),
(69 1 —pypkiky Jo 1 (694 ()
G;(t,s)
_ o;—1
- [Eea-o )
=—— 1 —-(t-9%", 0<s<t<l, i=12
T (o)

[t(1-9s)]%", 0<t<s<],

Proof. By Lemma 3, the system (9) is equivalent to the
following integral equations system:

u(t)=u@) "+ IlGl (t,s) hy (s)ds, (13)
0

v(t)=v (1)t + Jl G, (t,s) h, (s) ds. (14)
0

Integrating (13) and (14) with respect to dA,(t) and dA,(t),
respectively, we have

1
L u(t)dA, (t)
—u(l) jl 7 A, () + HIGI (t,s) h, (s)dsdA, (t),
0 0
1
L v(t)dA, (t)

1 1
— (1) JO IdA (D) + JJOGZ (t,5) by (s) dsdA, (£),

(15)
which yield
1 1
—u(l)-kv(1) = ” G, (t,s)h, (s)dsdA, (1),
t 0
(16)
1
—kyu (1) + iv(l) = “ G, (t,s)h, (s)dsdA,(t).
2 0
It follows from
-~ el py ok ke
[/ll 1 —_ 1072™17™2 ¢ 0 (17)
-k, — Mt

Hy

that the system of (16) has a unique solution, which can be
represented as

&

u(l)= ———
1= ki k,

: (”(I)GZ (t,s) h, (s)dsdA, (t)

1
+ Uk, ”oGl (t,s)h, (s)dsdA, (t)) ,

(18)
Hy

v(l)= ————
1= ki k,

1
. <”0G1 (t,s)hy (s)dsdA, (t)

1
+ ‘ulkZHOGz (t,s)h, (s)dsdA, (t)) .



Substituting (18) into (13) and (14), we have

!
u(t)y=——
1= ok k,

. <”1G2 (t,5)hy (s) dsdA, (1)
0
1
+ ptzklﬂoGl (t,s)hy (s)dsdA, (t))

1
+ J Gy (t,s)hy (s)ds
0

1

_ Jl K, (t,5) b, (s) ds +J H, (t,)hy () ds,
0 0 (19)

t™ '
y(t)= ———
1 — ki k,

1
. <”(}G1 (t,s)hy (s)dsdA, (t)
1
+ ik, “062 (t,5) b, (s)dsdA, (t))
1
+ J G, (t,s) h, (s)ds
0

1

= Jl K, (t,s)h, (s)ds + J H, (t,s) h, (s)ds.
0 0

So (10) holds. This completes the proof of the lemma. O

Lemma 5. Fort,s € [0, 1], the functions K;(t, s) and H;(t, s)
(i = 1,2) defined by (11) possess the following properties:

K, (t,s),H, (t,s) < ps(1 - s)a Tt

(20)
K, (t,s),H, (t,5) < ps(1 —s)®7",
K, (t,5),H, (t,s) < pt™ ",
(21)
K, (t,s),H, (t,s) < pt™7",
K, (t,s) = ot 's(1-5)%7",
(22)
H, (t,s) = ot™ 's(1—5)% 7",
K, (t,s) = ot® s (1 —5)%7",
(23)

H, (t,s) = ot“ 's(1—5)%7",
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where

_ 1 U1Ky ! >
p—max{r( )<1_P‘1M2kk JOdA O+

1

T (o, - 1) [’tlﬂzk ky) JO

1 ( ot ky Jl )
dA
r (“2 - 1) — ok ky Jo 1€

1

Ay (1),

W J
T (0, = 1) (1 = ki k5) Jo

dA, (t)]’ ,

0= min{ ok,
r(“l)(l ok, k

)J (1-0)t“7"dA, (1),

“ Jlu—t)t"‘fldA )
r(“z)(l‘lf‘lﬂzk1kz) 0 !

ok,
r (“2) (1 - ik, kz)

i jl( ytldA ()}
1-1)t"" .

r(“l)(l‘lﬁﬂzhkz) 0 ?
(24)

J (1-1)t""dA, (1),

Proof. By [20], for any ¢, s € [0, 1], we have

(1-) % 's(1—s)%"
T (o)
s ( _ s)oc -1

[(og-1)"

(25)

SG,(t,S)_ i:1,2.

It follows from (11) and (25) that

K, (t5s)

kgt !
_ bkt J G, (t,5)dA, (1) + G, (t,9)
1= ki ky Jo

!

s(1—s)n!
(e - 1)

okt J s(1—s)87"
< dA, (t) +
1—ukiky Joo T (e - 1) :

1 HlﬂzkltaFl Jl ) o -1
dA, (t)+1 |s(1—-s)™
r(“l_l) (1_P‘1P‘2k1k2 0 :

1 < ok
F( ) 1=y ppkik,

IN

J dA, (t)+1> (1-s)4!

<ps(l-s)7,
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H2 (t) S)

l" t“z*I 1

2

=—=—— | G (t,s)dA,(t
1 — ok k, J-O 1 (s dAz (0

s(l—s)™t ! jl
< dA, (t)
Ty —1) 1-mpkik, Jo ?

< ( ac: JldAz (t))s(l —g)ut
F(“l - 1) (1 - P‘l.uzklkz) 0

<ps(1—s)7t.

(26)
As for the proof of (26), we have
K, (t,s),H, (t,s) < ps(1-s)"", t,se[0,1]; (27)

that is, (20) holds.
By [20], for any t, s € [0, 1], we have

A-0)t%ts(1 -4t
T (a;)

(1t
<G;(ts) < #, i=1,2.
r(“z’_ 1)

(28)

So, by (11) and (28), we have

K, (t5s)

ktat ol
- tlat J G, (t,s)dA, (1) + G, (t,5)
1= pypirkiky Jo

L gkt Jl (1 -1)
T L-mppkiky Joo T(ay - 1)
N (1-1)
Iy -1)

dA, (t)

k t(xl—l 1 o =1
< bk J' 1 dA, (t) + t
1= ki ks Jo r(‘xl - 1) r

(2 - 1)

1 < ik, J'1 > a -1
< dA, (t)+1 )t
[(ag = 1) \ 1= pprkiky Jo (29)

< Pttxl—l)

H,(t,s)

taz—l 1
_ T J G, (t,5)dA, (t)

1= pprkiky Jo
ppt™! Jl 7 (1 - 1)
< dA, (t)
1= pkiky Jo T (“1 - 1) ?
‘uztaz—l J»l 1
< dA, (t)
1=k ky Jo F(oc1 - 1) ?

< pth,

Proceeding as for the proof of (29), we have

K, (t,s) < pt™",
H, (t,s) < pt™7", (30)

tel0,1];

thus (21) holds.
On the other hand, it follows from (11) and (25) that

K, (t5s)

kn bl
- skt J G, (t,5)dA, (t) + G, (£,5)
1= pypirkiky Jo

ktfxl—l 1 _ a -1 a1
5 Mtk J’(l Nt s(1-5s) dA, (1)

1= mpkiky Jo r(0‘1)

> tataky 1 1-1)t“7'dA t)
<F((x1) (1 _/41M2k1k2) L ( ) 2(0)

s (1 - )Mt

>ot“ s (1 - s)a
(31)
H,(t,s)

7 totrl 1

2

=—=— | G (t,s)dA,(t
1= ki k, L 1 (s dAz (0

pyt®! J’1 1-t)t9ls(1 -5t

> dA, (t)
1= ki ky Jo r (0‘1) ?

> < t jl (1- 1) dA, (t))
r (“1) (1 - /41!"2k1k2) 0

. f“rls (1 _ 5)“1*1

> ot s (1—5)M7",
which implies that (22) holds. Similarly, we also have

K, (t,s) = ot 's(1—s)=7",
H, (t,s) = otY 's(1-5)%7", (32)

t€[0,1].
This completes the proof of the lemma. O

From Lemma 5, we have the following conclusion.



Remark 6. Fort,t,s € [0, 1], we have
K; (t,s) = wt“ 'K, (1,5),
H; (t,s) > wt“ 'H; (1,5),

i=1,2,

K, (t,5) = 0t 'H, (1,5), (33)
H, (t,s) = wt™ 'K, (1,5),
K, (t,s) = 0t "H, (1,5),
H, (t,s) > wt“ 'K, (1,5),

where w = ¢/p,0 < w < 1.

Throughout this paper, we will work in the space X =

C[0, 1] xC[0, 1], which is a Banach space if it is endowed with
the norm

llGut, I = max {Jlu], [|V]1} 5

llall = max fuz (£)] (34)
= £)].
v max [v(®)l
Let
K = {(u, VeX:ul)>wt™ v,
(35)
v(t) 2wt u, v, t € [0,1]};
then K is a cone in X. For 0 < r < R, denote
Ky r ={wv) e K:r<|uv| <R},
(36)

K, ={(u,v) e K: |u,v| <r}.
In what follows, we list some conditions to be used later:

(Hy) f : (0,1) x [0,+00) x (0,+00) — [0,+00) is con-
tinuous, f(t,x, y) is nondecreasing in x and nonin-
creasing in y, and there exist A;, 8, € (0, 1) such that

Mftxy)< f(tex,y), x%y>0, ce(0,1),
(37)

fltx,cy) < f(t,xy), %y>0, ce(0,1);

g : (0,1) x (0,+00) x [0,+00) — [0,+00) is con-
tinuous, g(t, x, ¥) is nonincreasing in x and nonde-
creasing in y, and there exist A,, 8, € (0, 1) such that

Mg(txy)<gltxcy), xy>0, ce(01),
(38)

g(tex,y) <c®g(6xy), xy>0, ce(0,1);
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(Hy)

1
J s(1—s)M7! f(s, l,so‘fl)ds < +00,
0

) (39)
J s(1—s)%" g(s, st l)ds < +00.
0
Remark 7. By (H,), we have
f (s, s%7h1) < f(s, 1,s%7),
(40)
g (s, 1,5“171) <g (s, st 1).
This together with (H,) yields
1
J s(l—s)! f (s, sl 1) ds
0
1
< J s(1-s)nt f(s, 1,5“2_1)ds < +00,
' (4)

Jl s(l-s)@'g (s, 1, s"‘l_l) ds

0

1
< J s(1-s)n™t g(s,s“l_l, l)ds < +00.
0

From the above assumptions (H,)-(H,), for any (u,v) €
K\{(0,0)}, we define an integral operator T : K\{(0,0)} — X

by

T (u,v) (t)
(42)
= (T, V) (O, T, ) (1), 0<t<],
where
T, (u,v) (t)
1
= Jo K, (t,s) f (s,u(s),v(s))ds
1
+ J H, (t,s) g (s,u(s),v(s))ds,
’ (43)

T, (u,v) (t)

= Jl K, (t,s) g (s,u(s),v(s))ds

0
1

+ J H, (t,s) f (s,u(s),v(s))ds.
0

Now we claim that T is well defined for (u,v) € K \ {(0,0)}.
In fact, for any (u,v) € K \ {(0,0)}, we have

Wt ) < ut) < W),

W VI < v () < 1wV, (44

te0,1].
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Let ¢ be a positive number such that ||(u,v)| /c < 1,¢ > 1.
From (H,) and (44), we have

ftu@),v(@)
<f (t, ¢ wt™ || (u, V)||) < CAlf <t, , sV I vl t"‘fl)

C

<M @)™ f (61,6971,

gtu(t),v(t)

QISP

< g (Lo el ) < g (1,

<M (@l g (6177 1).
(45)
Hence, for any t € [0, 1], by Lemma 5 and (45), we have

T, (u,v) (t)

= Jl K, (t,s) f (s,u(s),v(s))ds

0

1
+ J H, (t,s) g (s,u(s),v(s))ds
0

1

<p (c’\f“Sl (@ [|(u, V)N J s(l=s)n7 ' f (s, 1,5“271) ds

0

+ M () (u, v ) %

. Jl s(1-s)%7" g(s,s“‘_l, 1)ds>
0

< +00.
(46)

Similarly, for any t € [0, 1], we have

T, (u,v) (t)

1
<p (c’\‘ﬂsl (|| (w, V)| L s(1—s5)M7! f (s, 1,5“2_1) ds

+M% (| (u, V) )

. Jl s(1-s)27! g(s, sah l)ds>

0

(47)

Together with the continuity of K;(¢,s) and H;(t,s) (i =
1,2), it is easy to see that T; (14, v) € CI[0, 1], for (u,v) € K\
{(0,0)}. Therefore T : K \ {(0,0)} — X is well defined.

Obviously, (u, v) is a positive solution of system (2) if and
only if (u, v) is a fixed point of T in K \ {(0, 0)}.

Lemma 8. Assume that (Hy)-(H,) hold. Then T : K, ., —
K is a completely continuous operator.

Proof. First, we show T' (K[,prz]) c K.
Forany (u,v) € K, 0 <t,7 < 1,by Remark 6, we have

]

T, (u,v) (£)

= Jl K, (t,s) f (s,u(s),v(s))ds

0

1
+ J- H, (t,s) g(s,u(s),v(s))ds
0
1
> J wt“ 'K, (1,9) f (s,u(s),v(s)) ds
0

1
+ J- wt“ " H, (1,5) g (s,u(s), v (s)) ds
0

> ! (jl K, (5,5) f (5 u(s),v() ds
0

1
+ J H, (1,8) g (s,u(s),v(s)) ds)

0

> wtal_lTl (M, V) (T) > (48)
T, (u,v) (t)

1
_ L K, (t,5) f (s,u(s), v (s)) ds

+ Jl H, (t,s) g (s,u(s),v(s))ds

0

1
> J wt“ ' H, (1,s) f (s,u(s), v (s))ds
0

1
+ J wt“ 'K, (1,5) g (s,u (s), v (s)) ds
0

1
> ! (j H, (1,5) f (s:1(s) v (s)) ds
0

+ Jl K, (1,8) g (s,u(s),v(s)) ds)
0

> wt“ T, (u,v) (7).
Then, we have
Ty (u,v) () = 0t || Ty (u, )],
(49)
T, (,v) (t) = wt™ T, (w, )| 5
that is,
Ty (u,v) () = wt™ 7 |(Ty (), T, ). (50)
In the same way as (48), we can prove that

T, ,v) (1) = 0t ||(T) w,v), T, w,v))|. (5D

Therefore, we have T (K[rl,rz]) cK.
Next, we show T': K, ., — K is continuous.



Let (u,,v,),(u,v) € Ki o such that ||(un,vn) —(u, v)||
— 0 (n — +00). Obviously, r; < [(u, V)], ||(un, vn)" <
for all n; choose ¢ such that ||(u, V)| /c < 1, |(w,,v,)| /c < 1,
¢ > 1. So, by Lemma 5, (H,), and (43), we have

Ty (4,5 v,,) @) = Ty (u,v) (1))

1
<Jo K, (t,s) f (s,u, (s),v,(s))ds

1
+ J H, (t,s) g (s,u, (s),v,(s)) ds)
0
_ <lel (t,5) f (s,u(s),v(s))ds
0

+ Jl H, (t,s) g (s,u(s),v(s)) ds>
0

1
< ZpJ s(1-s)07!
0

A (s, (8),v, () + f (s,u(s),v(s))| ds
+2p Ll s(1-s)%7!

19 (5,1, (5),7, () + g (5,1 (), v (s))| ds
< (@I ™ + @)

1

: J s(1—s)n! f(s, l,s‘xz_l) ds
0
+ M (@I + (@ (1 v,) ) )

1
. J s(l-s)%'g (5,5“171, 1) ds)
0
1
<p <26A1+81 (wry) ™ Jo s(l—-s)n7' f (s, 1,5“2_1) ds

1
+2cM7% (r,) ™% J s(1-9)%"g(ss71) ds>
0

< +00, te0,1].

(52)

By (52), for any € > 0, we can find a sufficiently large natural
number m > 0, for all n, such that

_wl
pIH(m)s(l s)
Af (s, (8),v, () + f (s,u(s),v(s))| ds
+p JH( )s(l — )%t

g (5,10, (8), v, () + g (s;u(s),v(s))|ds < g,
(53)
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where H(m) = [0, 1/m]U[1 — 1/m, 1]. On the other hand, for
each (u,v) € K, ,jandt € [1/m,1 - (1/m)], we have

wory <u(t),
(54)
V(t) <1y

where ® = min {t“""l ite[l/m1->1/m)],i= 1,2}. Since
f(t, x, y)and g(t, x, y) are uniformly continuous in [1/m, 1 -
(1/m)] X [wdr,,1,] X [wdr,,r,], we have

lim |f (s,u,(s),v,(s)) = f(s,u(s),v(s)| =0,

n—+0o

(55)
nﬂl}}w |g (s, u, (s),v,(s) - g(s,u(s) ,v(s))| =0

hold uniformly on s € [1/m, 1 — (1/m)]. Then the Lebesgue
dominated convergence theorem yields that

1-(1/m)
p J s(1—s)M7!
1

/m

S (s, (8),v,(8)) = f (s,u(s),v(s)|ds — 0,

as 1 — +00,

1-(1/m)
p J s(1-s)%7"
1

/m
g (su,(s),v,(5) = g (s,u(s),v(s)|ds — 0,
as 1 — +00.

(56)

So, for the above € > 0, there exists a sufficiently large natural
number N, such that when n > N, we have

1-(1/m)
p J s(1-s)n7!
1

/m

| f (514, (5), 7, (5))

—f (s,u(s),v(s)|ds < Z,

1-(1/m) )
p J s(1—s)%"
1

/m

(57)

g (51, (5),v,(5))

—g(s,u(s),v(s))|ds < Z
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It follows from (53) and (57) that
HTI (un’ vn) - Tl (u’ V)“

1
< J Ky (:9)|f (s1, (), (s))
0

—f (ssu(s),v(s)|ds

1
+ j H, (t5) |9 (51, (5), v, ()
0

—g(s,u(s),v(s))|ds

1-(1/m)
< pL/ s(1—s5)M7! If (s, (5), v, (s))

—f (s,u(s),v(s)|ds

1-(1/m)
] R RN FIEPRORAR)
1/

m

—g(s,u(s),v(s))|ds

+pJ s(1-s)87! |f (5,1, (8), v, (s))
H(m)

+f(s,u(s),v(s))|ds
+pJ s(1-s)27! |9 (s,14, (5), v, (5))
H(m)
+g (s,u(s),v(s))|ds

<& n> N,

This implies that the operator T,

continuous. So T': Ky, ,.; — K is continuous.
Finally, we show T': K|, ,; — K is compact.

Let D ¢ K|, , ) be any bounded set; then, for any (u,v) €

: K[rl’rz] - C[O, 1] is
continuous. Similarly, we can prove T, : K, . ; — CI[0,1] is

In what follows, we show that T;(D) is equicontinuous.
In fact, by (59), for any € > 0, there exists a sufficiently large
natural number my,, for all (1, v) € D, such that

p (J s(L=s)"" f(s,u(s),v(s))ds
H(myg)

(60)
+J s(1-9)""g(su(s), v(s))ds> £
H(my) 4
Let
1 1
MO:max{ (tx,y): —<t<1——,
my my
(58)
Wyt S X <1, Wyt S Y <1,
(61)
1
M, = tx,y): —<t<l-—,
0 maX{g( X, ) - -

WOy < X <1, W) < Y < rz} )

where @y =min {t*"" : t € [1/m,,1 - (1/m,)], i =1,2} > 0.

By the uniform continuity of K, (t,s), H,(t,s) on [0, 1] x
[0, 1], for the above € > 0, there exists §, > 0 such that, for
any t,,t, € [0,1], |t; — £,] < 8y, s € [1/my, 1 - (1/my)], we
have

Ky (115) = K (t2,9)] < & (MO (1 - mi>>l

0

D,wehaver, < |(u,v)| < r,. Choosec, such that || (u, v)|| /c <

1, ¢ > 1. By (45), for any (u,v) € D, t € [0, 1], we have

Ti (u) V) (t)

=F (Jol s(L=9%"" f(s,u(s),v(s)ds

+J~IS(1 _s)rxz—lg(s)u(s),v(s))dS)
0

1
< p(c’\lﬂSl (wr,)™ J s-9" f(s, l,saz_l)ds
0

1
+cM (o)) J s(l-s)%'g (s, st 1) ds)
0

<+00, i=1,2.

So T(D) is bounded in X.

(62)
€ 2 -1
|H1 (t;,s) - H; (t2,5)| < 1 <M <1 - m_0>> '
Thus, when t,t, € [0,1], |t; —=t,] < 8y, s € [1/1y, (I, — 1) /1],

for any (1, v) € D, we get
|T1 (u,v) (tl) =T (u,v) (tz)l

1
L K, (t;,s) f (s,u(s),v(s))ds

1
+ L H, (t,,5) g (s,u(s),v(s))ds

1
- (L K, (t5,8) f (s,u(s),v(s))ds

(59) 1
+ J- H, (tz,s)g(s,u(s),v(s))ds>
0
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1-(1/myg)
< J |K1 (tps) -K, (t2’5)|
1/my
| f (su(s),v(s)|ds
1-(1/my)
+ Jl/m |H, (t1,5) = Hy (t5,59)]
-|g(s,u(s),v(5))|d5
+ lKl (t18) - K, (t2’5)|
JH(m)
f (s uls),v(s)ds
+ lHl (tps) - Hl (t2,5)|
JH(m)

-g(s,u(s),v(s))ds

<

| M

el
+2p JH(mo) s(1-y9)
< f(su(s),v(s)ds
el
+2p JH(mU) s(l-y5s)

cg(s,su(s),v(s)ds<e.
(63)

This means that T|(D) is equicontinuous. By the Arzela-
Ascoli theorem, T' (D) is a relatively compact set. In the same
way, we can show that T,(D) is a relatively compact set. So
T:Ky ,, — Kiscompact.

From the above discussion, together with the fact that T":
K,y — Kis continuous, we get that T : K, .; — K
is completely continuous. This completes the proof of the
lemma. O

In order to obtain the existence of positive solutions of
system (2), we will use the following cone compression and
expansion fixed point theorem.

Lemma 9 (see [21]). Let P be a positive cone in a Banach space
E, Q, and Q, are bounded open sets in E, 0 € Q,, Q, C Q,,
and A: PNQ,\Q, — P isacompletely continuous operator.
If the following conditions are satisfied:

lAx|| < |x||, VxePnoQ,,
(64)
lAx|| > |x]|, Vx e PnoQ,,
or
[Ax] =[x, VxePnoQ,,
(65)
lAx| < [x, Vx e PnoQ,,

then A has at least one fixed point in P N (52 \ Q).

Abstract and Applied Analysis

3. Main Results

Theorem 10. Assume that (H,)-(H,) hold; then system (2)
has at least one positive solution (u”,v*), and there exists a real
number 0 < | < 1 satisfying

1

Loyt ) <IN

It

a-1

<yt () < 17! (66)

te[0,1],
where & = max {a;, o, }, & = min {a, o, }.
Proof. First, we show that system (2) has at least one positive

solution.
Choose r, R, such that

O<r

1 o -1 2
< min ((§> ow™
1 1/(1-1,) 1
. J s(1-s)n7! f(s, st 1)ds> ’E} )
0

1
R > max <|<p-[ s(1-s)a! f(s’ l,saz—l)ds
0

1
+pJ- s(1-s)%7!

0
1/(1-max{A;,A,}) 1
-g(s,s“l_l,l)ds) ,—,2]».

w
(67)
For any (u,v) € 0K,, we have
rot !t <u(t) <,
rot®t <v(t) <1, (68)
te[0,1].

By Lemma 5, Remark 7, and (H, ), for any (u, v) € 0K,, we get

T, (u,v) (t)

1
= L K, (t,s) f (s,u(s),v(s)ds
1
+J H, (t,s) g (s,u(s),v(s))ds
0

> Jl K, (t,s) f (s,u(s),v(s))ds
0

1
> QJ- 7 s(1 )M f (s, rws“‘fl,r) ds
0
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1
> QJ s (1—5)M7! f(s, rast 7, l)ds
0
1
> ot MM J s(l—s)' f (s, st 1)ds
0
> 1 ol A ! a—1 a—1
>\ = or'w s(1-5s) f(s,s ,l)ds
3 0

Sr=lww)l, te [1 2].

373
(69)
This guarantees
IT @, VIl 2 Ml V), (u,v) € OK,.. (70)
On the other hand, for any (1, v) € 0Ky, we have
Rwt™ ™' <u(t) <R,
Rwt™ ' <v(t) <R, (71)

te[0,1].

By Lemma 5, (H, ), and (H,), for any (u,v) € 0K, t € [0,1],
we get

T, (u,v) (t)

= Jl Ky (t,s) f (s,u(s),v(s)ds

0

1
+J H, (t,s) g(s,u(s),v(s))ds
0

1
<p Jo s(Q=s)7' f (s, R, Rws“rl) ds

1
+ pJ s(l-s)='g (s, Rws“rl,R) ds
0

<p JOI s(l—9)87' f (s, R, 5“271) ds

+p J: s(1-s)27! g (s, s“lfl,R) ds

1

< pRM J s(1-s)n7! f(s, l,s“fl)ds

0
1

+ pR™ J s(1-s)%" g(s, sah 1) ds
0

1
< pRO=ALA] (J s(l=s)n7 ' f (s, 1,5“271) ds
0

+ Jl s(1-s)%! g(s, sat 1)ds>
0

SR= ().
(72)

1

In the same way as (72), we have
T, (u,v)(t) <R =|(u,v)|[, (u,v) € oK. (73)
So,
IT @, < W), (u,v) € OKp. (74)

It follows from (70), (74), and Lemmas 8 and 9 that T has
a fixed point (u*, v*) with 0 < r < [|(u",v*)|| < R. Itis easy to
see that (u”,v") is a positive solution of system (2).

Next, we show there exists a real number 0 < [ < 1 such
that the positive solution (1™, v*) in system (2) satisfies

<t (1) <7
P ) o A (75)
telo0,1],

where @ = max {a, 0, }, «* = min {a, a,}.
From Lemma 8, we know (u*,v") € K \ {(0,0)}. So, we
have

o ') < u” @) < @Ol
o W < v O < | 06
tel0,1].

Choose ¢, such that ||(u*, vi)|/c < 1,¢ > 1/w; by Lemma 5
and (H,), for t € [0, 1], we have

1
u (t) = L K, (t,9) f (ssu” (s),v" (s))ds
1
+ jo H, (t,s)g(s,u” (s),v" (s))ds
! o -1 a,—1 *
< L pt f(s,c,ws (", v )||)ds
1
+ L pt“ 7 g (st (w07 ,c) ds
< pti7! J-Ol f (S, c MS“ZI)ds

1 * *
+Pta1—1j g(s,w”(u )

0 C

5”‘1_1,6) ds

< o) ot [ (s ) ds
< ) e [ g (s ) s

< M (R) pto] Llf(s,l,s“z_l)ds

1
+ 7% (R) ™2 pr! J g (s, st 1) ds
0

< M*
(77)
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where

1
M = M (R)™ pj f (s, 1,5“2_1) ds
0

Abstract and Applied Analysis

It is easy to see that 0 < [;I, < L < 1, and

Lu, (t) <u, (t) < %uz ®),

. (78)
Ay +6, =0, a1
+C (CUR) P J;) g (S, N > 1) ds. lv2 (t) < (t) < %Vz (t) , (84)
In the same way as (77), we also have v(¢) < Mt“ 1 te [0, 1]. te[0,1].
Choose
By (H,), h
l=mm{wr,i,1}; (o) DY (H)wehave
M 2
then we have ftu (0),v (1)
BT <ut @) <17 > f <t, Lu, (t), %vz (t)) > LMY (L, (), v, (1))
<yt () <17 (80)
> L7f (tuy (1), (1)),
t€[0,1]. (85)
g(tu (),v, (1))
This completes the proof of Theorem 10. O .
Ay+8,
Theorem 11. Assume that (H)-(H,) hold. If A, + 6, < 1 and =9 <t’ Lu, ®, LV2 (t)) =L g (6w (0,7, (1)

A, + 68, < 1, then system (2) has a unique positive solution for

o = o,

Proof. Assume that system (2) has two different positive
solutions (u;,v;) and (u,,v,). Denote &« = «; = «,; by

> L% (tu, (£),v, (1),

where 0 = max{A, +§,,1, +8,} < 1. Consider the following:

Theorem 10, there exists 0 < I; < 1,0 < I, < 1, such that

_ 1 .
Lt <u () < l—t"‘ !
1

a—1

1o
It Svl(t)sl—t“ Y

1
telo0,1],
lttx—l < 1 a-1
2 S Uy (t) < l—t >
2

a—1

1o
Lt sz(t)sl—t“ Y

2

te0,1].

Thus, we have

1
lllzuz () < Uy (t) < ﬁuz t),
1°2

1
LLv,(®)<v, (t) < —v, (1),
L

t e0,1].
Obviously, I,1, # 1. Let
L=sup{l:lu(t)<u (t) < uy(b),

v, < v (1) T, (), t e [0,1]}.

ftu, (8),v, (1))
1 1,48,
> (L 0, 77 0) = 1V F (61, (0,7, ()

> L7f (touy (£),v, (1)),
g(tu, (), v, (1))

(86)
(81)

>4 <t, Lu, (¢), %vl (t)) > 1% g (1w, (1), v, (1)
>L7g(tu, (£),v (1).
From (85), for ¢ € [0, 1], we have
uy ()

1
=Ty ) 0 = [ K09 F (s 0.0, ) s
(52)

1
+ L Hy (t,5) g (s,uy (s),v, (s))ds
1
>L° L K, (,9) f (s,uy (s), v, (5)) ds

1
+L° Jo H, (t,5) g (s,uy (s), v, (5)) ds (87)

(83)
> LT, (uy,v,) (t) = Lu,y (1),
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u, ()

1
ST ) 0= [ K (69 F (510,90, ) ds

1
+ J H, (t,5) g (s,uy (s),v,(s))ds
’ (88)

1
>L° J-O K, (t,s) f (s,uy (s), v, (s))ds

1
+1°7 Jo H, (t,5) g (s,u; (s),v,(s))ds

> LT, (uy,vy) (£) = Luy (£).
Similarly, from (86), we also have

v (t) = Lo, (t),
v, (t) = L7, (t), (89)

te0,1].

Therefore, we obtain

Lou, (t) < uy (t) < %uz ®,

L, () < v, (8) < %vz ®, (90)

te0,1].

Notice that 0 < L < 1,0 < 0 < 1; we have L7 > L, so it is
a contradiction with the maximality of L. Therefore, system
(2) has a unique positive solution (1", v*). This completes the
proof of Theorem 11. O

Remark 12. By the proof of Theorems 10 and 11, we obtained
the positive solutions of system (2) suppose (H,) — (H,) hold;
and the uniqueness of the solution to the system is established
provided that system (2) satisfies the additional conditions
(A{ +6; < land A, + 8, < 1) in theorem.

4. Example

Now we consider the existence and uniqueness of positive
solutions for the fractional differential system (1). Obviously,

5
o =, = >
1
= 5
py =1,
A=t (1)

A, (1) =t

13
We also have
- Y 2
k1=J 19" dAl(t)=J £Pde = 2 >0,
0 0 5
1 1
k2 — J totlfldAz (t) — J t3/2dt1/2
0 0 92)
1 1
= J tdt = 1 >0,
2 Jo 4
19
1- kik,=—>0.
Hith 1Ky 20
So, the condition (H,) holds. For
(sint + cost) v/x
flbxy)=——=—
Jt(1-t)y (©3)

g(txy)= .
et\t(1—-1t)x

it is easy to see that f : (0,1) x [0,+00) x (0,+00) —
(0, +00) is continuous, f(t,x, y) is nondecreasing in x and
nonincreasing in y, g (0,1) x (0,+00) x [0,+00) —
[0, +00) is continuous, and g(t, x, ¥) is nonincreasing in x
and nondecreasing in y. Take

n =2
20
2
o, = >
3 (94)
A, ==,
s
1
5, = —.
s
Then, we know that the condition (H,) holds. As
1
J s(1—s)n7! f(s, l,sazfl)ds
0
! 8
SZJ sl/z(l—s)ds= 5 < 400,
' (95)

Jl s(l-s)2"'g (s, sah 1) ds

0
1
_ 1
< J s 1/4(1—s)ds: —6 < 400,
0 21
the condition (H,) also holds.

Therefore, by Theorem 10, we get that system (1) has at
least one positive solution (u*,v") € K|, . ;. For

a = oy,
s oL 2 19
1= 5T 05" (96)
3 1 4
A+ =-+-==<1,
55 5
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by Theorem 11, we get that (u*,v") is the unique positive
solution of system (1).

Remark 13. The example not only implies that f(t, x, y) can
be singular att = 0,1, y = 0, and g(¢, x, ) can be singular at
t = 0,1, x = 0, but also indicates that there is a large number
of functions that satisfy the conditions of the theorems which
we discuss in this paper. Also, the conditions in our theorems
are easy to check.

5. Conclusions

In this paper, the (n—1, 1)-type singular fractional differential
system with coupled boundary conditions has been inves-
tigated. Based on the well-known Guo-Krasnoselskii fixed
point theorem, the existence of solutions for the (n—1, 1)-type
fractional differential system with coupled integral boundary
conditions is presented; also the uniqueness of positive
solution is established when certain additional conditions are
satisfied. The example given demonstrates the effectiveness
and feasibility of our results.
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