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We establish a fixed point theorem with w-distance for nonlinear contractive mappings in complete metric spaces. As applications
of our results, we derive the existence and uniqueness of solution for a first-order ordinary differential equation with periodic
boundary conditions. Here, we need not assume that the equation has a lower solution.

1. Introduction and Preliminaries

The main purpose of this paper is to obtain the existence
and uniqueness of solution for a periodic boundary value
problem. This topic has been considered in [1–11] and the
references therein. A powerful tool to solve the problem is the
fixed point theorem in partially orderedmetric spaces.On the
existing research results, admitting the existence of a lower
solution is necessary. In this paper, we establish a fixed point
theorem for w-distance contraction type maps in complete
metric spaces without partially ordered structure. From this,
we obtain some results on the existence and uniqueness for
ordinary differential equations. We will see that the assump-
tion of the existence of a lower solution can be removed. In
particular, we also show that under assumptions of a recent
result in [10] the equation has a unique zero solution.

In this note, we consider the following periodic boundary
value problem:

𝑢
󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , if 𝑡 ∈ 𝐼 = [0, 𝑇] ;

𝑢 (0) = 𝑢 (𝑇) ,

(1)

where 𝑇 > 0 and 𝑓 : 𝐼 × R is a continuous function.

Definition 1. A lower solution for (1) is a function 𝛼 ∈ 𝐶1(𝐼)
such that

𝛼
󸀠

(𝑡) ≤ 𝑓 (𝑡, 𝛼 (𝑡)) for 𝑡 ∈ 𝐼,

𝛼 (0) ≤ 𝛼 (𝑇) .

(2)

Let 𝑋 = 𝐶(𝐼) be the set of all real continuous functions
on a closed interval 𝐼. We endow𝑋 with the norm

‖𝑢‖ = max
𝑡∈𝐼

|𝑢 (𝑡)| , (3)

for all 𝑢 ∈ 𝑋. Obviously, this space is a Banach space and the
norm induces a complete metric on𝑋 as follows:

𝑑 (𝑢, V) = ‖𝑢 − V‖ = max
𝑡∈𝐼

|𝑢 (𝑡) − V (𝑡)| , (4)

for all 𝑢, V ∈ 𝑋.
Let B denote the class of those functions 𝛽 : [0,∞) →

[0, 1) which satisfy the condition

𝛽 (𝑡
𝑛
) 󳨀→ 1 implies 𝑡

𝑛
󳨀→ 0. (5)

LetA denote the class of the functions 𝜙 : [0,∞) → [0,∞)

which have the following properties:

(i) 𝜙 is increasing;

(ii) for each 𝑥 > 0, 𝜙(𝑥) < 𝑥;

(iii) 𝛽(𝑥) = 𝜙(𝑥)/𝑥 ∈B.

For example, 𝜙(𝑡) = 𝜇𝑡, where 0 ≤ 𝜇 < 1, 𝜙(𝑡) = 𝑡/(1 + 𝑡), and
𝜙(𝑡) = ln(1 + 𝑡) are inA.

Recently, Amini-Harandi and Emami [4] proved the
following existence theorem.
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2 Abstract and Applied Analysis

Theorem 2 (see [4, Theorem 3.1]). Consider problem (1) with
𝑓 : 𝐼 × R → R continuous and suppose that there exists 𝜆 > 0
such that for 𝑥, 𝑦 ∈ R with 𝑦 ≥ 𝑥,

0 ≤ 𝑓 (𝑡, 𝑦) + 𝜆𝑦 − [𝑓 (𝑡, 𝑥) + 𝜆𝑥] ≤ 𝜆𝜙 (𝑦 − 𝑥) , (6)

where 𝜙 ∈ A. Then the existence of a lower solution of (1)
provides the existence of a unique solution of (1).

Then, Caballero et al. [6] also give an existence theorem.

Theorem 3 (see [6,Theorem 3.2]). Consider problem (1) with
𝑓 : 𝐼×R → R continuous and suppose that there exist 𝜆, 𝛼 > 0
with

𝛼 ≤ (

2𝜆 (𝑒
𝜆𝑇
− 1)

𝑇 (𝑒
𝜆𝑇
+ 1)

)

1/2

(7)

such that for 𝑥, 𝑦 ∈ R with 𝑦 ≥ 𝑥

0 ≤ 𝑓 (𝑡, 𝑦) + 𝜆𝑦 − [𝑓 (𝑡, 𝑥) + 𝜆𝑥] ≤ 𝛼√(𝑦 − 𝑥) 𝜙 (𝑦 − 𝑥),

(8)

where 𝜙 ∈ A. Then the existence of a lower solution of (1)
provides the existence of a solution of (1).

Very recently, Hussain et al. [10] obtain the following
result.

Theorem 4 (see [10, Section 3]). Consider problem (1) with
𝑓 : 𝐼 × R → R continuous and suppose that there exists 𝜆 > 0
such that for 𝑥, 𝑦 ∈ 𝐶(𝐼)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥 (𝑡)) + 𝜆𝑥 (𝑡)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦 (𝑡)) + 𝜆𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

≤

𝜆

2
𝑝−1

𝑝
√ln( 𝑎

2
𝑝−1
(|𝑥 (𝑡)| +

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
)
𝑝

+ 1),

(9)

where 0 ≤ 𝑎 < 1 and 𝑝 > 1. Then the existence of a lower
solution of (1) provides the existence of a solution of (1).

Remark 5. If we take 𝑥(𝑡) = 𝑦(𝑡) = 𝜃(𝑡) = 0 for all 𝑡 ∈ 𝐼 in the
condition (9), then we deduce that

𝑓 (𝑡, 𝜃 (𝑡)) = 0 ∀𝑡 ∈ 𝐼. (10)

This means that 𝜃(𝑡) is a solution of (1) (of course, a lower
solution of (1)). In Section 3, we will show this fact again; see
Remark 17.

Now, let us recall the concept of w-distance, which was
introduced by Kada et al. [12].

Definition 6. Let 𝑋 be a metric space with metric 𝑑. Then a
function 𝑝 : 𝑋 × 𝑋 → [0,∞) is called a w-distance on 𝑋 if
the following are satisfied:

(w1) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧), for any 𝑥, 𝑦, 𝑧 ∈ 𝑋;
(w2) for any 𝑥 ∈ 𝑋, 𝑝(𝑥, ⋅) : 𝑋 → [0,∞) is lower semi-

continuous; that is, 𝑝(𝑥, 𝑦
0
) ≤ lim inf

𝑛→∞
𝑝(𝑥, 𝑦

𝑛
),

whenever 𝑦
𝑛
∈ 𝑋 and 𝑦

𝑛
→ 𝑦
0
;

(w3) for any 𝜀 > 0, there exists 𝛿 > 0 such that 𝑝(𝑧, 𝑥) ≤ 𝛿
and 𝑝(𝑧, 𝑦) ≤ 𝛿 imply 𝑑(𝑥, 𝑦) ≤ 𝜀.

Let us give some basic examples of w-distances (see [12]).

Example 7. Let (𝑋, 𝑑) be a metric space. Then the metric 𝑑 is
a w-distance on𝑋.

Example 8. Let 𝑋 be a normed space with norm ‖ ⋅ ‖. Then
the function 𝑝 : 𝑋 × 𝑋 → [0,∞) defined by

𝑝 (𝑥, 𝑦) = ‖𝑥‖ +
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

(11)

for every 𝑥, 𝑦 ∈ 𝑋 is a w-distance on𝑋.

Example 9. Let 𝑋 be a normed space with norm ‖ ⋅ ‖. Then
the function 𝑝 : 𝑋 × 𝑋 → [0,∞) defined by

𝑝 (𝑥, 𝑦) =
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

(12)

for every 𝑥, 𝑦 ∈ 𝑋 is a w-distance on𝑋.

We also need the following example in Section 3.

Example 10. Let𝑋 = 𝐶(𝐼) be endowed with the norm

‖𝑢‖ = max
𝑡∈𝐼

|𝑢 (𝑡)| , (13)

for all 𝑢 ∈ 𝑋. We easily deduce that the function 𝑝 : 𝑋×𝑋 →

[0,∞) defined by

𝑝 (𝑥, 𝑦) = max
𝑡∈𝐼

(|𝑥 (𝑡)| +
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
) (14)

for every 𝑥, 𝑦 ∈ 𝑋 is a w-distance on𝑋.

The following lemma has been proved in [12].

Lemma 11. Let 𝑋 be a metric space with metric 𝑑 and let 𝑝
be a w-distance on 𝑋. Let {𝑥

𝑛
} and {𝑦

𝑛
} be sequences in 𝑋, let

{𝛼
𝑛
} and {𝛽

𝑛
} be sequences in [0,∞) converging to 0, and let

𝑥, 𝑦, 𝑧 ∈ 𝑋. Then the following hold.

(i) If 𝑝(𝑥
𝑛
, 𝑦) ≤ 𝛼

𝑛
and 𝑝(𝑥

𝑛
, 𝑧) ≤ 𝛽

𝑛
for any 𝑛 ∈ N, then

𝑦 = 𝑧. In particular, if 𝑝(𝑥, 𝑦) = 0 and 𝑝(𝑥, 𝑧) = 0,
then 𝑦 = 𝑧.

(ii) If 𝑝(𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝛼
𝑛
and 𝑝(𝑥

𝑛
, 𝑧) ≤ 𝛽

𝑛
for any 𝑛 ∈ N, then

{𝑦
𝑛
} converges to 𝑧.

(iii) If 𝑝(𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝛼
𝑛
for any 𝑛,𝑚 ∈ N with 𝑚 > 𝑛, then

{𝑥
𝑛
} is a Cauchy sequence.

2. Fixed Point Results with 𝑤-Distance

We are now ready to state and prove our main theorem.

Theorem 12. Let (𝑋, 𝑑) be a complete metric space and let 𝑝
be a w-distance on 𝑋. Let 𝑓 : 𝑋 → 𝑋 be a map and suppose
that there exists 𝛽 ∈B such that

𝑝 (𝑓𝑥, 𝑓𝑦) ≤ 𝛽 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) , (15)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑓 has a unique fixed point 𝑧 in 𝑋 and
𝑝(𝑧, 𝑧) = 0.
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Proof. Starting with an arbitrary 𝑥
0
∈ 𝑋, we construct by

induction a sequence {𝑓𝑛(𝑥
0
)} in 𝑋. Put 𝑥

𝑛
= 𝑓
𝑛
(𝑥
0
), 𝑛 =

1, 2, . . ..
Applying the condition (15) with 𝑥 = 𝑥

𝑛
and 𝑦 = 𝑥

𝑛+1
, we

have

𝑝 (𝑥
𝑛+1
, 𝑥
𝑛+2
) = 𝑝 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1
)

≤ 𝛽 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1
)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
) .

(16)

Therefore {𝑝(𝑥
𝑛
, 𝑥
𝑛+1
)} is a decreasing sequence and bounded

below and hence lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑥
𝑛+1
) = 𝑟 ≥ 0.

Let us prove that 𝑟 = 0. Assume that 𝑟 > 0. From (15), we
obtain

𝑝 (𝑥
𝑛+1
, 𝑥
𝑛+2
)

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)

≤ 𝛽 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1
)) < 1, 𝑛 = 1, 2, . . . . (17)

Taking limit when 𝑛 → ∞, the above inequality yields
lim
𝑛→∞

𝛽(𝑝(𝑥
𝑛
, 𝑥
𝑛+1
)) = 1, and since 𝛽 ∈ B this implies

𝑟 = 0. Thus lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑥
𝑛+1
) = 0. Analogously, it can be

proved that lim
𝑛→∞

𝑝(𝑥
𝑛+1
, 𝑥
𝑛
) = 0.

Now, we show that

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) 󳨀→ 0 as 𝑚 > 𝑛 󳨀→ ∞. (18)

Suppose that this is not true. Then there exists 𝜀
0
> 0 for

which we can find subsequences {𝑥
𝑛𝑘
} and {𝑥

𝑚𝑘
} of {𝑥

𝑛
} with

𝑚
𝑘
> 𝑛
𝑘
> 𝑘 such that

𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) ≥ 𝜀
0
, 𝑘 = 1, 2, . . . . (19)

By the triangle inequality and the condition (15), for every
𝑘 ∈ N,

𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) ≤ 𝑝 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) + 𝑝 (𝑥
𝑛𝑘+1

, 𝑥
𝑚𝑘+1

)

+ 𝑝 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘
)

≤ 𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) + 𝛽 (𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
)) 𝑝 (𝑥

𝑛𝑘
, 𝑥
𝑚𝑘
)

+ 𝑝 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘
) .

(20)

From this, we obtain

1 − 𝛽 (𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
))

≤ 𝑝(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
)

−1

⋅ [𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) + 𝑝 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘
)]

≤ 𝜀
−1

0
⋅ [𝑝 (𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1

) + 𝑝 (𝑥
𝑚𝑘+1

, 𝑥
𝑚𝑘
)] .

(21)

Letting 𝑘 → ∞ in the above inequality, using lim
𝑛→∞

𝑝(𝑥
𝑛
,

𝑥
𝑛+1
) = 0 and lim

𝑛→∞
𝑝(𝑥
𝑛+1
, 𝑥
𝑛
) = 0, we deduce that

lim
𝑘→∞

𝛽 (𝑝 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
)) = 1. (22)

But since 𝛽 ∈ B we get lim
𝑘→∞

𝑝(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘
) = 0. This is a

contradiction and hence we have shown that (18) holds.
From (18) and Lemma 11(iii), it follows that {𝑥

𝑛
} is a

Cauchy sequence in 𝑋. Since (𝑋, 𝑑) is a complete metric
space, there exists a 𝑧 ∈ 𝑋 such that lim

𝑛→∞
𝑥
𝑛
= 𝑧.

Next, we prove that 𝑧 is a fixed point of 𝑓. To the end, we
prove that lim

𝑛→∞
𝑝(𝑥
𝑛
, 𝑧) = 0 and lim

𝑛→∞
𝑝(𝑥
𝑛
, 𝑓𝑧) = 0.

Let 𝜀 > 0 be given. Using (18), there exists 𝑛
0
∈ N such that

𝑝(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for all 𝑚 > 𝑛 ≥ 𝑛

0
. Letting 𝑚 → ∞, by (w2)

we have 𝑝(𝑥
𝑛
, 𝑧) ≤ lim inf

𝑚→∞
𝑝(𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝜀 for all 𝑛 ≥ 𝑛

0
.

Thismeans that lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑧) = 0. Applying the condition

(15) with 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑧, we have

𝑝 (𝑥
𝑛+1
, 𝑓𝑧) = 𝑝 (𝑓𝑥

𝑛
, 𝑓𝑧) ≤ 𝛽 (𝑝 (𝑥

𝑛
, 𝑧)) 𝑝 (𝑥

𝑛
, 𝑧)

≤ 𝑝 (𝑥
𝑛
, 𝑧) .

(23)

Due to lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑧) = 0, it follows that lim

𝑛→∞
𝑝(𝑥
𝑛
,

𝑓𝑧) = 0. According to Lemma 11(i), we obtain 𝑓𝑧 = 𝑧; that
is, 𝑧 is a fixed point of 𝑓.

To prove the uniqueness of the fixed point of 𝑓, let us
suppose that𝑦 is another fixed point of𝑓. Using the condition
(15), we get

𝑝 (𝑥
𝑛+1
, 𝑦) = 𝑝 (𝑓𝑥

𝑛
, 𝑓𝑦) ≤ 𝛽 (𝑝 (𝑥

𝑛
, 𝑦)) 𝑝 (𝑥

𝑛
, 𝑦)

≤ 𝑝 (𝑥
𝑛
, 𝑦) .

(24)

Therefore {𝑝(𝑥
𝑛
, 𝑦)} is a decreasing sequence and bounded

below and hence lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑦) = 𝑠 ≥ 0. Suppose that 𝑠 >

0. Using the condition (15), we have

𝑝 (𝑥
𝑛+1
, 𝑦)

𝑝 (𝑥
𝑛
, 𝑦)

≤ 𝛽 (𝑝 (𝑥
𝑛
, 𝑦)) < 1, 𝑛 = 1, 2, . . . . (25)

Taking limit when 𝑛 → ∞, the above inequality yields
lim
𝑛→∞

𝛽(𝑝(𝑥
𝑛
, 𝑦)) = 1, and since 𝛽 ∈ B this implies

𝑠 = 0. Then lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑦) = 0. Combining this and

lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑧) = 0, we get by Lemma 11(i) that 𝑦 = 𝑧.

Finally, we prove 𝑝(𝑧, 𝑧) = 0 when 𝑧 is a fixed point of 𝑓.
Applying the condition (15) with 𝑥 = 𝑧 and 𝑦 = 𝑧, we obtain

𝑝 (𝑧, 𝑧) = 𝑝 (𝑓𝑧, 𝑓𝑧) ≤ 𝛽 (𝑝 (𝑧, 𝑧)) 𝑝 (𝑧, 𝑧) (26)

and hence (1 − 𝛽(𝑝(𝑧, 𝑧))) ⋅ 𝑝(𝑧, 𝑧) = 0. Now that 𝛽 ∈ B, it
follows that 𝑝(𝑧, 𝑧) = 0.

The following corollary is immediate result from Theo-
rem 12 and Example 7.

Corollary 13. Let (𝑋, 𝑑) be a complete metric space. Let 𝑓 :
𝑋 → 𝑋 be a map and suppose that there exists 𝛽 ∈ B such
that

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) (27)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑓 has a unique fixed point 𝑧 in𝑋.

3. Application to Ordinary
Differential Equations

Now, we prove some results on the existence of solution for
problem (1).
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Theorem 14. Consider problem (1) with 𝑓 continuous and
suppose that there exists 𝜆 > 0 such that for any 𝑥, 𝑦 ∈ R

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦) + 𝜆𝑦 − [𝑓 (𝑡, 𝑥) + 𝜆𝑥]

󵄨
󵄨
󵄨
󵄨
≤ 𝜆𝜙 (

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨
) , (28)

where 𝜙 ∈ A. Then there exists a unique solution for (1).

Proof. Problem (1) can be rewritten as

𝑢
󸀠

(𝑡) + 𝜆𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) + 𝜆𝑢 (𝑡) , if 𝑡 ∈ 𝐼 = [0, 𝑇] ;

𝑢 (0) = 𝑢 (𝑇) .

(29)

Using variation of parameters formula, we can easily deduce
that problem (1) is equivalent to the integral equation

𝑢 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)] 𝑑𝑠, (30)

where

𝐺 (𝑡, 𝑠) =

{
{
{

{
{
{

{

𝑒
𝜆(𝑇+𝑠−𝑡)

𝑒
𝜆𝑇
− 1

, 0 ≤ 𝑠 < 𝑡 ≤ 𝑇,

𝑒
𝜆(𝑠−𝑡)

𝑒
𝜆𝑇
− 1

, 0 ≤ 𝑡 < 𝑠 ≤ 𝑇.

(31)

Define 𝐹 : 𝐶(𝐼) → 𝐶(𝐼) by

(𝐹𝑢) (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)] 𝑑𝑠. (32)

Note that if 𝑢 ∈ 𝐶(𝐼) is a fixed point of 𝐹 then 𝑢 ∈ 𝐶1(𝐼) is a
solution of (1).

Now, we check that hypotheses of Corollary 13. Consider
the space𝑋 = 𝐶(𝐼) with the metric

𝑑 (𝑥, 𝑦) =
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
= max
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
. (33)

Then by (28) for any 𝑢, V ∈ 𝑋,

𝑑 (𝐹𝑢, 𝐹V) = max
𝑡∈𝐼

|(𝐹𝑢) (𝑡) − (𝐹V) (𝑡)|

≤ max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)

− [𝑓 (𝑡, V (𝑠)) + 𝜆V (𝑠)]󵄨󵄨󵄨
󵄨
𝑑𝑠

≤ max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝜆𝜙 (|𝑢 (𝑠) − V (𝑠)|) 𝑑𝑠.

(34)

As the function 𝜙(𝑥) is increasing, we obtain

𝑑 (𝐹𝑢, 𝐹V) ≤ max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝜆𝜙 (|𝑢 (𝑠) − V (𝑠)|) 𝑑𝑠

≤ 𝜆𝜙 (𝑑 (𝑢, V)) ⋅max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

= 𝜆𝜙 (𝑑 (𝑢, V)) ⋅max
𝑡∈𝐼

1

𝑒
𝜆𝑇
− 1

× (

1

𝜆

𝑒
𝜆(𝑇+𝑠−𝑡)

]

𝑡

0

+

1

𝜆

𝑒
𝜆(𝑠−𝑡)

]

𝑇

𝑡

)

= 𝜆𝜙 (𝑑 (𝑢, V)) ⋅
1

𝑒
𝜆𝑇
− 1

⋅

1

𝜆

(𝑒
𝜆𝑇
− 1)

= 𝜙 (𝑑 (𝑢, V)) =
𝜙 (𝑑 (𝑢, V))
𝑑 (𝑢, V)

⋅ 𝑑 (𝑢, V)

= 𝛽 (𝑑 (𝑢, V)) 𝑑 (𝑢, V) .
(35)

FromCorollary 13, we see that𝐹 has a unique fixed point.

Remark 15. Clearly, we see that the condition (6) ofTheorem
2 implies the condition (28) of Theorem 14. In addition,
Theorem 14 need not assume the existence of a lower solution
for (1). Hence this result is an improvement of Theorem 2.

Theorem 16. Consider problem (1) with 𝑓 continuous and
suppose that there exists 𝜆 > 0 such that for any 𝑥, 𝑦 ∈ R

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥) + 𝜆𝑥

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦) + 𝜆𝑦

󵄨
󵄨
󵄨
󵄨
≤ 𝜆𝜙 (|𝑥| +

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
) , (36)

where 𝜙 ∈ A. Then there exists a unique solution for (1).

Proof. Problem (1) is equivalent to the integral equation

𝑢 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)] 𝑑𝑠, (37)

where 𝐺(𝑡, 𝑠) is the same as (31). Define 𝐹 : 𝐶(𝐼) → 𝐶(𝐼) by

(𝐹𝑢) (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)] 𝑑𝑠. (38)

Notice that if 𝑢 ∈ 𝐶(𝐼) is a fixed point of 𝐹 then 𝑢 ∈ 𝐶1(𝐼) is
a solution of (1).

Now, we check that hypotheses of Theorem 12. Consider
the space𝑋 = 𝐶(𝐼) with the metric

𝑑 (𝑥, 𝑦) =
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
= max
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
. (39)

We take a w-distance on 𝑋 = 𝐶(𝐼) by 𝑝(𝑥, 𝑦) =

max
𝑡∈𝐼
(|𝑥(𝑡)| + |𝑦(𝑡)|); see Example 10. Using the monotene

property of the function 𝜙(𝑥) and condition (36), for any
𝑢, V ∈ 𝑋,

𝑝 (𝐹𝑢, 𝐹V) = max
𝑡∈𝐼

(|(𝐹𝑢) (𝑡)| + |(𝐹V) (𝑡)|)

≤ max
𝑡∈𝐼

(∫

𝑇

0

𝐺 (𝑡, 𝑠) (
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, V (𝑠)) + 𝜆V (𝑠)󵄨󵄨󵄨

󵄨
) 𝑑𝑠)
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≤ max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝜆𝜙 (|𝑢 (𝑠)| + |V (𝑠)|) 𝑑𝑠

≤ 𝜆𝜙 (𝑝 (𝑢, V)) ⋅max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

= 𝜆𝜙 (𝑝 (𝑢, V)) ⋅
1

𝜆

= 𝜙 (𝑝 (𝑢, V)) =
𝜙 (𝑝 (𝑢, V))
𝑝 (𝑢, V)

⋅ 𝑝 (𝑢, V)

= 𝛽 (𝑝 (𝑢, V)) 𝑝 (𝑢, V) .
(40)

FromTheorem 12, we deduce that 𝐹 has a unique fixed point.

Remark 17. Let 0 ≤ 𝑎 < 1 and 𝑝 > 1. If we denote

𝜙 (𝑡) =

1

2
𝑝−1

𝑝
√ln( 𝑎

2
𝑝−1
𝑡
𝑝
+ 1), (41)

then 𝜙 ∈ A and 𝜙(𝑡) ≤ ln(𝑡 + 1). Thus Theorem 4 is a
sepical case ofTheorem 16. However, fromTheorem 12 we get
𝑝(𝑢, 𝑢) = max

𝑡∈𝐼
(2|𝑢(𝑡)|) = 2‖𝑢‖ = 0 if 𝑢 is a solution of

(1). This means 𝑢(𝑡) = 0 for all 𝑡 ∈ 𝐼. In other words, the
unique solution for (1) fromTheorem 16 (in particular, from
Theorem 4) can only be a zero function.

Theorem 18. Consider problem (1) with 𝑓 continuous and
suppose that there exist 𝜆, 𝛼 > 0 and 𝑝 > 1 with

𝛼 ≤ (

𝑝𝜆(𝑒
𝜆𝑇
− 1)

𝑝

𝑇
𝑝−1
(𝑒
𝑝𝜆𝑇

− 1)

)

1/𝑝

(42)

such that for 𝑥, 𝑦 ∈ R

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦) + 𝜆𝑦 − [𝑓 (𝑡, 𝑥) + 𝜆𝑥]

󵄨
󵄨
󵄨
󵄨
≤ 𝛼𝜙 (

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨
) , (43)

where 𝜙 ∈ A. Then there exists a unique solution for (1).

Proof. Problem (1) is equivalent to the integral equation

𝑢 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)] 𝑑𝑠, (44)

where 𝐺(𝑡, 𝑠) is the same as (31). Define 𝐹 : 𝐶(𝐼) → 𝐶(𝐼) by

(𝐹𝑢) (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)] 𝑑𝑠. (45)

Notice that if 𝑢 ∈ 𝐶(𝐼) is a fixed point of 𝐹 then 𝑢 ∈ 𝐶1(𝐼) is
a solution of (1).

Now, we check that hypotheses of Corollary 13. By (43),
for any 𝑢, V ∈ 𝑋,

𝑑 (𝐹𝑢, 𝐹V) = max
𝑡∈𝐼

|(𝐹𝑢) (𝑡) − (𝐹V) (𝑡)|

≤ max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢 (𝑠)) + 𝜆𝑢 (𝑠)

− [𝑓 (𝑡, V (𝑠)) + 𝜆V (𝑠)]󵄨󵄨󵄨
󵄨
𝑑𝑠

≤ max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝛼𝜙 (|𝑢 (𝑠) − V (𝑠)|) 𝑑𝑠

= 𝛼max
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝜙 (|𝑢 (𝑠) − V (𝑠)|) 𝑑𝑠.

(46)

Using the Hölder inequality in the last integral, we get

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝜙 (|𝑢 (𝑠) − V (𝑠)|) 𝑑𝑠

≤ (∫

𝑇

0

𝐺(𝑡, 𝑠)
𝑝
𝑑𝑠)

1/𝑝

(∫

𝑇

0

𝜙(|𝑢 (𝑠) − V (𝑠)|)𝑞𝑑𝑠)
1/𝑞

,

(47)

where 𝑞 > 0 with 1/𝑝 + 1/𝑞 = 1. The first integral gives us

∫

𝑇

0

𝐺(𝑡, 𝑠)
𝑝
𝑑𝑠 = ∫

𝑡

0

𝐺(𝑡, 𝑠)
𝑝
𝑑𝑠 + ∫

𝑇

𝑡

𝐺(𝑡, 𝑠)
𝑝
𝑑𝑠

= ∫

𝑡

0

𝑒
𝑝𝜆(𝑇+𝑠−𝑡)

(𝑒
𝜆𝑇
− 1)
𝑝
𝑑𝑠 + ∫

𝑇

𝑡

𝑒
𝑝𝜆(𝑠−𝑡)

(𝑒
𝜆𝑇
− 1)
𝑝
𝑑𝑠

=

𝑒
𝑝𝜆𝑇

− 1

𝑝𝜆(𝑒
𝜆𝑇
− 1)
𝑝
.

(48)

As the function 𝜙(𝑥) is increasing and 𝛼 ≤ (𝑝𝜆(𝑒𝜆𝑇 − 1)𝑝/
𝑇
𝑝−1
(𝑒
𝑝𝜆𝑇

− 1))
1/𝑝, from (47) we obtain

𝑑 (𝐹𝑢, 𝐹V) ≤ 𝛼max
𝑡∈𝐼

[(∫

𝑇

0

𝐺(𝑡, 𝑠)
𝑝
𝑑𝑠)

1/𝑝

× (∫

𝑇

0

𝜙(|𝑢 (𝑠) − V (𝑠)|)𝑞𝑑𝑠)
1/𝑞

]

≤ 𝛼(

𝑒
𝑝𝜆𝑇

− 1

𝑝𝜆(𝑒
𝜆𝑇
− 1)
𝑝
)

1/𝑝

(∫

𝑇

0

𝜙(‖𝑢 − V‖)𝑞𝑑𝑠)
1/𝑞

= 𝛼 ⋅ (

𝑒
𝑝𝜆𝑇

− 1

𝑝𝜆(𝑒
𝜆𝑇
− 1)
𝑝
)

1/𝑝

⋅ 𝑇
1/𝑞
⋅ 𝜙 (‖𝑢 − V‖)

≤ (

𝑝𝜆(𝑒
𝜆𝑇
− 1)

𝑝

𝑇
𝑝−1
(𝑒
𝑝𝜆𝑇

− 1)

)

1/𝑝

⋅ (

𝑒
𝑝𝜆𝑇

− 1

𝑝𝜆(𝑒
𝜆𝑇
− 1)
𝑝
)

1/𝑝

⋅ 𝑇
1/𝑞
⋅ 𝜙 (𝑑 (𝑢, V))
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= 𝜙 (𝑑 (𝑢, V)) =
𝜙 (𝑑 (𝑢, V))
𝑑 (𝑢, V)

⋅ 𝑑 (𝑢, V)

= 𝛽 (𝑑 (𝑢, V)) 𝑑 (𝑢, V) .
(49)

FromCorollary 13, we deduce that𝐹 has a unique fixed point.

FromTheorem 18, we obtain the following result whenwe
take 𝑝 = 2.

Corollary 19. Consider problem (1) with 𝑓 continuous and
suppose that there exist 𝜆, 𝛼 > 0 with

𝛼 ≤ (

2𝜆 (𝑒
𝜆𝑇
− 1)

𝑇 (𝑒
𝜆𝑇
+ 1)

)

1/2

(50)

such that for 𝑥, 𝑦 ∈ R
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦) + 𝜆𝑦 − [𝑓 (𝑡, 𝑥) + 𝜆𝑥]

󵄨
󵄨
󵄨
󵄨
≤ 𝛼𝜙 (

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨
) , (51)

where 𝜙 ∈ A. Then there exists a unique solution for (1).

Remark 20. From [6, Remark 3.3], we see that if 𝜙 ∈ A, then
𝜑(𝑥) = √𝑥𝜙(𝑥) ∈ A. The condition (8) of Theorem 3 implies
the condition (51) of Corollary 19. In addition, Corollary 19
need not assume the existence of a lower solution for (1).Thus
Corollary 19 is an improvement of Theorem 3.

Remark 21. We easily check that 𝜙(𝑥) = √ln(𝑥2 + 1) and
𝜙(𝑥) = √𝑥

2
/(𝑥
2
+ 1) are inA. Therefore the condition of [8,

Theorem 3.1], [11, Theorem 25], or [7, Theorem 3.2] implies
the condition (51) of Corollary 19. In addition, Corollary 19
need not assume the existence of a lower solution for (1).
Thus Corollary 19 is an improvement of [8, Theorem 3.1], [11,
Theorem 25], and [7, Theorem 3.2].
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