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We introduce a new family of mappings on [0, +∞) by relaxing the nondecreasing condition on the mappings and by using the
properties of this new family we present some fixed point theorems for 𝛼-𝜓-contractive-type mappings in the setting of complete
metric spaces. By applying our obtained results, we also assure the fixed point theorems in partially ordered complete metric spaces
and as an application of the main results we provide an existence theorem for a nonlinear differential equation.

1. Introduction and Preliminaries

Fixed point theory has fascinatedmany researchers since 1922
with the celebrated Banach fixed point theorem. There exists
a vast literature on the topic field and this is very active
field of research at present. Fixed point theorems are very
important tools for proving the existence and uniqueness
of the solutions to various mathematical models (integral
and partial equations, variational inequalities, etc). It can be
applied to, for example, variational inequalities, optimization,
and approximation theory. The fixed point theory has been
continually studied by many researchers (see, e.g., [1–5]
and references contained therein). It is well known that the
contractive-type conditions are very indispensable in the
study of fixed point theory.The first important result on fixed
points for contractive-type mappings was the well-known
Banach-Caccioppoli theorem which was published in 1922
in [6] and it also appeared in [7]. Later in 1968, Kannan [8]
studied a new type of contractive mappings. Since then, there
have beenmany results related tomappings satisfying various
types of contractive inequalities; we refer to ([9–12] etc.) and
references contained therein.

Recently, Samet et al. [5] introduced a new category
of contractive-type mappings known as 𝛼-𝜓 contractive-
type mappings. The results obtained by Samet et al. [5]

extended and generalized the existing fixed point results in
the literature, in particular the Banach contraction principle.
Salimi et al. [4] and Karapinar and Samet [3] generalized
the 𝛼-𝜓 contractive-type mappings and obtained various
fixed point theorems for this generalized class of contractive
mappings [3, 4].

Most of papers (see, for instance, [3–5] and references
contained therein) have considered the 𝛼-𝜓 contractive-type
mapping for a nondecreasing mapping 𝜓 : [0, +∞) →

[0, +∞) with ∑
∞

𝑛=1
𝜓
𝑛

(𝑡) < ∞ for all 𝑡 ∈ (0, +∞). The
convergence of ∑∞

𝑛=1
𝜓
𝑛

(𝑡) and nondecreasing condition for
𝜓 are restrictive and it is a fact that such a mapping is
differentiable almost everywhere and hence continuous why
was one of our aims to write this paper in order to consider
a family of mappings 𝜓 : [0, +∞) → [0, +∞) by relaxing
nondecreasing condition and the convergence of the series
∑
∞

𝑛=1
𝜓
𝑛

(𝑡). This paper is inspired and motivated by research
works [4, 5]; we will introduce a new family of mappings on
[0, +∞) and prove the fixed point theorems for mappings
using properties of this new family in completemetric spaces.
By applying our obtained results, we also assure the fixed
point theorems in partially ordered complete metric spaces
and give the applications to ordinary differential equations.

In the rest of the paper, we introduce some notations and
definitions that will be used in the sequel.
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Lemma 1 (see [5]). Suppose that 𝜓 : [0, +∞) → [0, +∞). If
𝜓 is nondecreasing, then for each 𝑡 ∈ (0, +∞), lim

𝑛→∞
𝜓
𝑛

(𝑡) =

0 implies that 𝜓(𝑡) < 𝑡.

Remark 2. It is easily seen that if 𝜓 : [0, +∞) → [0, +∞) is
nondecreasing and 𝜓(𝑡) < 𝑡, for all 𝑡 ∈ (0, +∞), then 𝜓(0) =

0.

Definition 3 (see [5]). Let 𝑇 : 𝑋 → 𝑋 and let 𝛼 : 𝑋 × 𝑋 →

[0, +∞). We say that 𝑇 is 𝛼-admissible if, for all 𝑥, 𝑦 ∈ 𝑋,
𝛼(𝑥, 𝑦) ≥ 1 implies 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1.

In 2012, Samet et al. [5] introduced the concept of 𝛼-𝜓-
contractive-type mappings, where 𝜓 ∈ Ψ

1
and

Ψ
1
= {𝜓 : 𝜓 : [0, +∞)

󳨀→ [0, +∞) is nondecreasing with
∞

∑
𝑛=1

𝜓
𝑛

(𝑡) < ∞,

∀𝑡 ∈ (0, +∞)} .

(1)

Definition 4 (see [5]). Let (𝑋, 𝑑) be a metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping. We say that 𝑇 is an 𝛼-𝜓-contractive
mapping if there exist two functions 𝛼 : 𝑋 × 𝑋 → [0, +∞)

and 𝜓 : [0, +∞) → [0, +∞) where 𝜓 ∈ Ψ
1
such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (2)

for all 𝑥, 𝑦 ∈ 𝑋.

In [5], the authors assured the existence of the fixed
point theorems for the mentioned mappings satisfying 𝛼-
admissibility in the complete metric spaces.

Recently, Salimi et al. [4] modified the concept of 𝛼-
admissibility.

Definition 5 (see [4]). Let 𝑇 : 𝑋 → 𝑋 and 𝛼, 𝜂 : 𝑋 × 𝑋 →

[0, +∞). We say that𝑇 is 𝛼-admissible with respect to 𝜂 if, for
all 𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) implies 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 𝜂(𝑇𝑥, 𝑇𝑦).

Remark 6. If we suppose that 𝜂(𝑥, 𝑦) = 1, for all 𝑥, 𝑦 ∈ 𝑋,
Definition 5 is reduced to Definition 3.

Salimi et al. [4] proved the existence of fixed point the-
orems for generalized 𝛼-𝜓-contractive-type mappings where
𝜓 ∈ Ψ

1
.They also assure the fixed point theorems generalized

𝛼-𝜓-contractive-type mappings where 𝜓 is a nondecreasing
continuous mapping and 𝜓(0) = 0.

In this work, we will introduce a new family of mappings
on [0, +∞) without assuming the nondecreasing condition
for𝜓 and prove the fixed point theorems for 𝛼-𝜓-contractive-
type mappings using properties of this new family in com-
plete metric spaces. We will use our result to obtain fixed
point results in partially ordered complete metric spaces and
to give an application to nonlinear differential equations.

2. Main Results

We now introduce a new family Ψ
2
of mappings and prove

the existence of fixed point results for 𝛼-𝜓-contractive-type
mappings where 𝜓 ∈ Ψ

2
.

Denote by Ψ
2
the family of mappings 𝜓 : [0, +∞) →

[0, +∞) such that
(i) 𝜓 is an upper semicontinuous mapping from the

right;
(ii) 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ (0, +∞);
(iii) 𝜓(0) = 0.

Remark 7. By Lemma 1, for each 𝜓 ∈ Ψ
1
, we have 𝜓(𝑡) < 𝑡 for

all 𝑡 ∈ (0, +∞) and by Remark 2 we obtain that 𝜓(0) = 0.

Remark 8. Since every nondecreasing mapping is differen-
tiable almost everywhere (see [13]), we observe that nonde-
creasing condition is closed to continuity and it is restrictive.

Example 9. The floor function 𝑓(𝑥) = ⌊𝑥⌋ is upper semicon-
tinuous function from the right and nondecreasing but is not
continuous.

Example 10. Let 𝜓 : [0, +∞) → [0, +∞) be a mapping
defined by

𝜓 (𝑡) = {
1, 𝑡 = 0;

0, 𝑡 > 0.
(3)

We have that 𝜓 is upper semicontinuous from the right
and 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ (0, +∞). Furthermore, 𝜓 is not
nondecreasing.

Example 11. Let 𝜓 : [0, +∞) → [0, +∞) be a mapping
defined by

𝜓 (𝑡) =
{

{

{

1

2
, 𝑡 ∈ N;

0, otherwise.
(4)

Thus, 𝜓 is upper semicontinuous from the right, 𝜓(𝑡) <

𝑡 for all 𝑡 ∈ (0, +∞) and 𝜓(0) = 0. Moreover, 𝜓 is not
nondecreasing.

We now the prove the existence of the fixed point theorem
for 𝛼-admissible mappings with respect to 𝜂 where 𝜓 ∈ Ψ

2
.

Theorem 12. Let (𝑋, 𝑑) be a complete metric space and 𝜓 ∈

Ψ
2
. Suppose that 𝑇 : 𝑋 → 𝑋 is a mapping satisfying the

following conditions:
(i) 𝑇 is 𝛼-admissible with respect to 𝜂;
(ii) if 𝑥, 𝑦 ∈ 𝑋 and 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦), then 𝑑(𝑇𝑥, 𝑇𝑦) ≤

𝜓(𝑑(𝑥, 𝑦));
(iii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
);

(iv) 𝑇 is continuous or if {𝑥
𝑛
} is a sequence in 𝑋 such that

𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛
, 𝑥
𝑛+1

) for all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 ∈

𝑋 as 𝑛 → ∞, and then 𝛼(𝑥
𝑛
, 𝑥) ≥ 𝜂(𝑥

𝑛
, 𝑥) for all

𝑛 ∈ N.
Then, 𝑇 has a fixed point.
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Proof. Since 𝑥
0
∈ 𝑋, there exists 𝑥

1
such that 𝑥

1
= 𝑇𝑥

0
.

Therefore, we can construct the sequence {𝑥
𝑛
} in𝑋 such that

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, ∀𝑛 ∈ N. (5)

If 𝑥
𝑛+1

= 𝑥
𝑛
, for some 𝑛 ∈ N, then𝑇 has a fixed point. Assume

that 𝑥
𝑛

̸= 𝑥
𝑛+1

for all 𝑛 ∈ N. Since 𝛼(𝑥
0
, 𝑥
1
) = 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥

𝜂(𝑥
0
, 𝑇𝑥
0
) and 𝑇 is 𝛼-admissible with respect to 𝜂, we obtain

that

𝛼 (𝑥
1
, 𝑥
2
) = 𝛼 (𝑇𝑥

0
, 𝑇𝑥
1
) ≥ 𝜂 (𝑇𝑥

0
, 𝑇𝑥
1
) = 𝜂 (𝑥

1
, 𝑥
2
) . (6)

By continuing the process as above, we have

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 𝜂 (𝑥
𝑛
, 𝑥
𝑛+1

) , ∀𝑛 ∈ N. (7)

Applying (ii), we obtain that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) ≤ 𝜓 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) , (8)

for all 𝑛 ∈ N. Since 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ (0, +∞), we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) < 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) , (9)

for all 𝑛 ∈ N. Therefore, {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is a nonincreasing
sequence. It follows that there exists 𝑐 ≥ 0 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑐. (10)

We will prove that 𝑐 = 0. Suppose that 𝑐 > 0. Since 𝜓 is upper
semicontinuous from the right using (9), we have

𝑐 = lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)

≤ lim sup
𝑛→∞

𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) ≤ 𝜓 (𝑐) < 𝑐,

(11)

which is a contradiction. Therefore,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (12)

This implies that for each 𝑘 ∈ N, there exists 𝑛
𝑘
∈ N such that

𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) <
1

2𝑘
. (13)

We obtain that
∞

∑
𝑘=1

𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) < ∞. (14)

Therefore, {𝑥
𝑛𝑘
} is a Cauchy sequence and so converges to

some 𝑥 ∈ 𝑋. By continuity of 𝑇, we have

lim
𝑛→∞

𝑥
𝑛𝑘+1

= lim
𝑛→∞

𝑇𝑥
𝑛𝑘
= 𝑇𝑥. (15)

This implies that 𝑥 is a fixed point of 𝑇. On the other hand,
since

𝛼 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) ≥ 𝜂 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

) , ∀𝑘 ∈ N (16)

and {𝑥
𝑛𝑘
} converges to 𝑥, we obtain that

𝛼 (𝑥
𝑛𝑘
, 𝑥) ≥ 𝜂 (𝑥

𝑛𝑘
, 𝑥) ∀𝑘 ∈ N. (17)

Using (ii), for each 𝑘 ∈ N, we have

𝑑 (𝑇𝑥, 𝑥) ≤ 𝑑 (𝑇𝑥, 𝑇𝑥
𝑛𝑘
) + 𝑑 (𝑇𝑥

𝑛𝑘
, 𝑥)

≤ 𝜓 (𝑑 (𝑥
𝑛𝑘
, 𝑥)) + 𝑑 (𝑥

𝑛𝑘+1
, 𝑥) .

(18)

Since 𝜓 is upper semicontinuous from the right, we obtain
that

lim sup
𝑘→∞

𝜓 (𝑑 (𝑥
𝑛𝑘
, 𝑥)) ≤ 𝜓 (0) = 0. (19)

By taking the limit as 𝑘 → ∞, this yields 𝑑(𝑇𝑥, 𝑥) = 0 and
hence 𝑇𝑥 = 𝑥.

Theorem 13. Suppose all hypotheses of Theorem 12 hold.
Assume that, for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that
𝛼(𝑥, 𝑧) ≥ 𝜂(𝑥, 𝑧) and 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧). Then, 𝑇 has a unique
fixed point.

Proof. Assume that 𝑥 and 𝑦 are two fixed points of 𝑇. This
implies that there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑥, 𝑧) ≥ 𝜂 (𝑥, 𝑧) , 𝛼 (𝑦, 𝑧) ≥ 𝜂 (𝑦, 𝑧) . (20)

Since 𝑇 is 𝛼-admissible with respect to 𝜂, for each 𝑛 ∈ N, we
obtain that

𝛼 (𝑥, 𝑇
𝑛

𝑧) ≥ 𝜂 (𝑥, 𝑇
𝑛

𝑧) , 𝛼 (𝑦, 𝑇
𝑛

𝑧) ≥ 𝜂 (𝑦, 𝑇
𝑛

𝑧) .

(21)

It follows that

𝑑 (𝑥, 𝑇
𝑛+1

𝑧) = 𝑑 (𝑇𝑥, 𝑇
𝑛+1

𝑧) ≤ 𝜓 (𝑑 (𝑥, 𝑇
𝑛

𝑧)) < 𝑑 (𝑥, 𝑇
𝑛

𝑧) .

(22)

Therefore, {𝑑(𝑥, 𝑇𝑛𝑧)} is a nonincreasing sequence and then
converges to some 𝑐 ∈ R. We will show that 𝑐 = 0. Suppose
that 𝑐 > 0. Since 𝜓 is upper semicontinuous from the right,
we have

𝑐 = lim sup
𝑛→∞

𝑑 (𝑥, 𝑇
𝑛+1

𝑧)≤ lim sup
𝑛→∞

𝜓 (𝑑 (𝑥, 𝑇
𝑛

𝑧)) ≤ 𝜓 (𝑐) < 𝑐,

(23)

which is a contradiction. It follows that

lim
𝑛→∞

𝑑 (𝑥, 𝑇
𝑛

𝑧) = 0. (24)

Similarly, by the same argument, we can prove that

lim
𝑛→∞

𝑑 (𝑦, 𝑇
𝑛

𝑧) = 0. (25)

Since the limit of the sequence is unique, we have 𝑥 = 𝑦.

ApplyingTheorems 12 and 13, we immediately obtain the
following result.

Corollary 14. Let (𝑋, 𝑑) be a complete metric space and 𝜓 ∈

Ψ
2
. Suppose that 𝑇 : 𝑋 → 𝑋 is an 𝛼-𝜓-contractive mapping

satisfying the following conditions:

(i) 𝑇 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;
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(iii) 𝑇 is continuous or if {𝑥
𝑛
} is a sequence in 𝑋 such that

𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all 𝑛 ∈ N and 𝑥
𝑛

→ 𝑥 ∈ 𝑋 as
𝑛 → ∞, and then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N;

(iv) for all𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 1

and 𝛼(𝑦, 𝑧) ≥ 1.
Then, 𝑇 has a unique fixed point.

Bhaskar and Lakshmikantham [9] introduced the defini-
tion of coupled fixed points.

Definition 15 (see [9]). Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a given
mapping. We say that (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is a coupled fixed point
of 𝐹 if

𝐹 (𝑥, 𝑦) = 𝑥, 𝐹 (𝑦, 𝑥) = 𝑦. (26)

Remark 16. Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a given mapping. Define
the mapping 𝑇 : 𝑋 × 𝑋 → 𝑋 × 𝑋 by

𝑇 (𝑥, 𝑦) = (𝐹 (𝑥, 𝑦) , 𝐹 (𝑦, 𝑥)) ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑋. (27)

Therefore, (𝑥, 𝑦) is a coupled fixed point of 𝐹 if and only if
(𝑥, 𝑦) is a fixed point of 𝑇.

By using the analogous proof appeared in [5], we obtain
the coupled fixed point results assuming 𝜓 ∈ Ψ

2
.

Theorem 17. Let (𝑋, 𝑑) be a complete metric space and 𝐹 :

𝑋 × 𝑋 → 𝑋 be a given mapping. Suppose that there exist
𝜓 ∈ Ψ

2
and a function 𝛼 : 𝑋

2

× 𝑋
2

→ [0, +∞) such that

𝛼 ((𝑥, 𝑦) , (𝑢, V)) 𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V))

≤
1

2
𝜓 (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)) ,

(28)

for all (𝑥, 𝑦), (𝑢, V) ∈ 𝑋. Suppose that,
(i) for all (𝑥, 𝑦), (𝑢, V) ∈ 𝑋 × 𝑋, one has

𝛼 ((𝑥, 𝑦) , (𝑢, V)) ≥ 1

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝛼 ((𝐹 (𝑥, 𝑦) , 𝐹 (𝑦, 𝑥)) , (𝐹 (𝑢, V) , 𝐹 (V, 𝑢))) ≥ 1;

(29)

(ii) there exists (𝑥
0
, 𝑦
0
) ∈ 𝑋 × 𝑋 such that

𝛼 ((𝑥
0
, 𝑦
0
) , (𝐹 (𝑥

0
, 𝑦
0
) , 𝐹 (𝑦

0
, 𝑥
0
))) ≥ 1,

𝛼 ((𝐹 (𝑦
0
, 𝑥
0
) , 𝐹 (𝑥

0
, 𝑦
0
)) , (𝑦

0
, 𝑥
0
)) ≥ 1;

(30)

(iii) 𝐹 is continuous.
Then, 𝐹 has a coupled fixed point.

Theorem 18. Let (𝑋, 𝑑) be a complete metric space and 𝐹 :

𝑋 × 𝑋 → 𝑋 be a given mapping. Suppose that there exist
𝜓 ∈ Ψ

2
and a function 𝛼 : 𝑋

2

× 𝑋
2

→ [0, +∞) such that

𝛼 ((𝑥, 𝑦) , (𝑢, V)) 𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V))

≤
1

2
𝜓 (𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)) ,

(31)

for all (𝑥, 𝑦), (𝑢, V) ∈ 𝑋 × 𝑋. Suppose that,

(i) for all (𝑥, 𝑦), (𝑢, V) ∈ 𝑋 × 𝑋, we have

𝛼 ((𝑥, 𝑦) , (𝑢, V)) ≥ 1

󳨐⇒ 𝛼 ((𝐹 (𝑥, 𝑦) , 𝐹 (𝑦, 𝑥)) , (𝐹 (𝑢, V) , 𝐹 (V, 𝑢))) ≥ 1;

(32)

(ii) there exists (𝑥
0
, 𝑦
0
) ∈ 𝑋 × 𝑋 such that

𝛼 ((𝑥
0
, 𝑦
0
) , (𝐹 (𝑥

0
, 𝑦
0
) , 𝐹 (𝑦

0
, 𝑥
0
))) ≥ 1,

𝛼 ((𝐹 (𝑦
0
, 𝑥
0
) , 𝐹 (𝑥

0
, 𝑦
0
)) , (𝑦

0
, 𝑥
0
)) ≥ 1;

(33)

(iii) if {𝑥
𝑛
} and {𝑦

𝑛
} are sequences in𝑋 such that

𝛼 ((𝑥
𝑛
, 𝑦
𝑛
) , (𝑥
𝑛+1

, 𝑦
𝑛+1

)) ≥ 1,

𝛼 ((𝑦
𝑛+1

, 𝑥
𝑛+1

) , (𝑦
𝑛
, 𝑥
𝑛
)) ≥ 1,

𝑥
𝑛
󳨀→ 𝑥 ∈ 𝑋, 𝑦

𝑛
󳨀→ 𝑦 ∈ 𝑋 as 𝑛 󳨀→ ∞,

(34)

then

𝛼 ((𝑥
𝑛
, 𝑦
𝑛
) , (𝑥, 𝑦)) ≥ 1, 𝛼 ((𝑦, 𝑥) , (𝑦

𝑛
, 𝑥
𝑛
)) ≥ 1 ∀𝑛 ∈ N.

(35)

Then, 𝐹 has a coupled fixed point.

Theorem 19. Suppose that all hypotheses ofTheorem 17 (resp.,
Theorem 18) hold. Assume that, for all (𝑥, 𝑦), (𝑢, V) ∈ 𝑋 × 𝑋,
there exists (𝑧

1
, 𝑧
2
) ∈ 𝑋 × 𝑋 such that

𝛼 ((𝑥, 𝑦) , (𝑧
1
, 𝑧
2
)) ≥ 1, 𝛼 ((𝑧

2
, 𝑧
1
) , (𝑦, 𝑥)) ≥ 1,

𝛼 ((𝑢, V) , (𝑧
1
, 𝑧
2
)) ≥ 1, 𝛼 ((𝑧

2
, 𝑧
1
) , (V, 𝑢)) ≥ 1.

(36)

Then, 𝐹 has a unique coupled fixed point.

3. Consequences

We now prove the fixed point theorems in complete metric
spaces andpartially ordered completemetric spaces using our
obtained results.

Theorem 20 (Banach [6]). Let (𝑋, 𝑑) be a complete metric
space and 𝑇 : 𝑋 → 𝑋 be a mapping satisfying

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , (37)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑘 ∈ [0, 1). Then, 𝑇 has a unique fixed
point.

Proof. Let 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) be mappings defined by

𝛼 (𝑥, 𝑦) = 1, 𝜂 (𝑥, 𝑦) = 1 ∀𝑥, 𝑦 ∈ 𝑋. (38)

It follows that 𝑇 is 𝛼-admissible with respect to 𝜂. Suppose
that 𝜓 : [0, +∞) → [0, +∞) defined by 𝜓(𝑡) = 𝑘𝑡 for all
𝑡 ∈ [0, +∞). This implies that 𝜓 is upper semicontinuous
from the right, 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ (0, +∞) and 𝜓(0) = 0.
Furthermore, we can see that all assumptions in Theorem 13
are now satisfied. This completes the proof.
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Theorem21 (Ran and Reurings [14]). Let (𝑋, ≼) be a partially
ordered set and suppose that there exists a metric 𝑑 in 𝑋 such
that the metric space (𝑋, 𝑑) is complete. Let 𝑇 : 𝑋 → 𝑋 be
a continuous and nondecreasing mapping with respect to ≼.
Assume that the following conditions hold:

(i) there exists 𝑘 ∈ [0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘(𝑑(𝑥, 𝑦))

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≼ 𝑦;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
;

(iii) 𝑇 is continuous.

Then, 𝑇 has a fixed point.

Proof. Suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) are mappings
defined by

𝛼 (𝑥, 𝑦) = {
1, 𝑥 ≼ 𝑦;

0, otherwise,

𝜂 (𝑥, 𝑦) =
{

{

{

1

2
, 𝑥 ≼ 𝑦;

2, otherwise.

(39)

Let 𝑥, 𝑦 ∈ 𝑋 such that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦). This implies that
𝑥 ≼ 𝑦. Since 𝑇 is nondecreasing with respect to ≼, we obtain
that 𝑇𝑥 ≼ 𝑇𝑦. Therefore, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 𝜂(𝑇𝑥, 𝑇𝑦). It follows
that 𝑇 is 𝛼-admissible with respect to 𝜂. Define a mapping
𝜓 : [0, +∞) → [0, +∞) defined by 𝜓(𝑡) = 𝑘𝑡 for all 𝑡 ∈

[0, +∞). We can see that 𝜓 ∈ Ψ
2
. For each 𝑥, 𝑦 ∈ 𝑋 with

𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦), we obtain that 𝑥 ≼ 𝑦 and this yields

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘 (𝑑 (𝑥, 𝑦)) = 𝜓 (𝑑 (𝑥, 𝑦)) . (40)

By using (ii), we have 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 𝜂(𝑥

0
, 𝑇𝑥
0
). Hence, all

assumptions inTheorem 12 are now satisfied.Thus, we obtain
the desired result.

Theorem 22 (Nieto and Rodŕıguez-López [12]). Let (𝑋, ≼) be
a partially ordered set and suppose that there exists a metric 𝑑
in𝑋 such that the metric space (𝑋, 𝑑) is complete. Let𝑇 : 𝑋 →

𝑋 be a nondecreasing mapping with respect to ≼. Assume that
the following conditions hold:

(i) there exists 𝑘 ∈ [0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘(𝑑(𝑥, 𝑦))

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≼ 𝑦;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
≼ 𝑇𝑥
0
;

(iii) if {𝑥
𝑛
} is a nondecreasing sequence in𝑋 such that𝑥

𝑛
→

𝑥 as 𝑛 → ∞, then 𝑥
𝑛
≼ 𝑥 for all 𝑛 ∈ N.

Then, 𝑇 has a fixed point.

Proof. Suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) and 𝜓 :

[0, +∞) → [0, +∞) are mappings defined as in the proof
ofTheorem 21. Assume that {𝑥

𝑛
} is a sequence in𝑋 such that

𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 𝜂(𝑥
𝑛
, 𝑥
𝑛+1

) for all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as

𝑛 → ∞. This implies that 𝑥
𝑛
≼ 𝑥
𝑛+1

for all 𝑛 ∈ N. Using (iii),
this yield 𝑥

𝑛
≼ 𝑥 for all 𝑛 ∈ N. Therefore, 𝛼(𝑥

𝑛
, 𝑥) ≥ 𝜂(𝑥

𝑛
, 𝑥)

for all 𝑛 ∈ N. Hence, all assumptions in Theorem 12 are now
satisfied. Thus, we obtain the desired result.

Theorem 23. Suppose that all hypotheses ofTheorem 21 (resp.,
Theorem 22) hold. Assume that, for all 𝑥, 𝑦 ∈ 𝑋, there exists
𝑧 ∈ 𝑋 such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧. Then 𝑇 has a unique fixed
point.

Proof. Suppose that 𝛼, 𝜂 : 𝑋 × 𝑋 → [0, +∞) and 𝜓 :

[0, +∞) → [0, +∞) are mappings defined as in the proof
ofTheorem 21. Let 𝑥, 𝑦 ∈ 𝑋. It follows that there exists 𝑧 ∈ 𝑋

such that 𝑥 ≼ 𝑧 and 𝑦 ≼ 𝑧. Therefore, 𝛼(𝑥, 𝑧) ≥ 𝜂(𝑥, 𝑧) and
𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧). Hence, all assumptions in Theorem 13 are
now satisfied. So, the proof is complete.

4. Applications to Ordinary
Differential Equations

The following ordinary differential equation is taken from
Samet et al. [5].

Denote by 𝐶([0, 1]) the set of all continuous functions
defined on [0, 1] and let 𝑑 : 𝐶([0, 1]) × 𝐶([0, 1]) → R be
defined by

𝑑 (𝑥, 𝑦) =
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩∞ = max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 . (41)

It is well known that (𝐶([0, 1]), 𝑑) is a complete metric space.
Let us consider the two-point boundary value problem of the
second-order differential equation:

−
𝑑
2

𝑥

𝑑𝑡2
= 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] ;

𝑥 (0) = 𝑥 (1) = 0,

(42)

where 𝑓 : [0, 1] ×R → R is continuous.The Green function
associated to (42) is defined by

𝐺 (𝑡, 𝑠) = {
𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1;

𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.
(43)

Assume that the following conditions hold:

(i) there exists a function 𝜙 : R2 → R such that, for all
𝑡 ∈ [0, 1], for all 𝑎, 𝑏 ∈ R with 𝜙(𝑎, 𝑏) ≥ 0, we have

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑎) − 𝑓 (𝑡, 𝑏)
󵄨󵄨󵄨󵄨 ≤ 8𝜓( max

𝑎,𝑏∈R,𝜙(𝑎,𝑏)≥0
|𝑎 − 𝑏|) , (44)

where 𝜓 ∈ Ψ
2
;

(ii) there exists 𝑥
0
∈ 𝐶([0, 1]) such that, for all 𝑡 ∈ [0, 1],

we have

𝜙(𝑥
0
(𝑡) , ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠) ≥ 0; (45)

(iii) for all 𝑡 ∈ [0, 1], for all 𝑥, 𝑦 ∈ 𝐶([0, 1]),

𝜙 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 0

implies 𝜙(∫
1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

∫
1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠) ≥ 0;

(46)
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(iv) if {𝑥
𝑛
} is a sequence in 𝐶([0, 1]) such that 𝑥

𝑛
→ 𝑥 ∈

𝐶([0, 1]) and 𝜙(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 0, for all 𝑛 ∈ N, then
𝜙(𝑥
𝑛
, 𝑥) ≥ 0 for all 𝑛 ∈ N.

We now prove that existence of a solution of the mentioned
second-order differential equation. The idea of proving the
following theorem is taken from [5] but is slightly different.

Theorem 24. Under assumptions (i)–(iv), (42) has a solution
in 𝐶
2

([0, 1]).

Proof. It is well known that 𝑥 ∈ 𝐶
2

([0, 1]) is a solution of
(42) is equivalent to 𝑥 ∈ 𝐶([0, 1]) is a solution of the integral
equation (see [5])

𝑥 (𝑡) = ∫
1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 ∀𝑡 ∈ [0, 1] . (47)

Let 𝑇 : 𝐶([0, 1]) → 𝐶([0, 1]) be a mapping defined by

𝑇𝑥 (𝑡) = ∫
1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 ∀𝑡 ∈ [0, 1] . (48)

Suppose that 𝑥, 𝑦 ∈ 𝐶([0, 1]) such that 𝜙(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 for
all 𝑡 ∈ [0, 1]. By applying (i), we obtain that

󵄨󵄨󵄨󵄨𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
1

0

𝐺 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 8 (∫
1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠) (𝜓 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩∞))

≤ 8( sup
𝑡∈[0,1]

∫
1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠) (𝜓 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩∞)) .

(49)

Since ∫1
0

𝐺(𝑡, 𝑠)𝑑𝑠 = −(𝑡
2

/2) + (𝑡/2), for all 𝑡 ∈ [0, 1], we have
sup
𝑡∈[0,1]

∫
1

0

𝐺(𝑡, 𝑠)𝑑𝑠 = 1/8. It follows that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩∞ ≤ 𝜓 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩∞) , (50)

for each 𝑥, 𝑦 ∈ 𝐶([0, 1]), such that 𝜙(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 for all
𝑡 ∈ [0, 1].

Let 𝛼, 𝜂 : 𝐶([0, 1]) × 𝐶([0, 1]) → [0,∞) be mappings
defined by

𝛼 (𝑥, 𝑦) = {
1, 𝜙 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 0, 𝑡 ∈ [0, 1] ;

0, otherwise,

𝜂 (𝑥, 𝑦) =
{

{

{

1

2
, 𝜙 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 0, 𝑡 ∈ [0, 1] ;

2, otherwise.

(51)

Let 𝑥, 𝑦 ∈ 𝐶([0, 1]) such that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦). This implies
that 𝜙(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 for all 𝑡 ∈ [0, 1]. Therefore,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩∞ ≤ 𝜓 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩∞) . (52)

Furthermore, if 𝑥, 𝑦 ∈ 𝐶([0, 1]) such that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦),
then by using (iii) we have

𝜙 (𝑇𝑥 (𝑡) , 𝑇𝑦 (𝑡)) ≥ 0

and this yields 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 𝜂 (𝑇𝑥, 𝑇𝑦) .
(53)

It follows that𝑇 is𝛼-admissible with respect to 𝜂. By (ii), there
exists 𝑥

0
∈ 𝐶([0, 1]) such that

𝛼 (𝑥
0
, 𝑇𝑥
0
) ≥ 𝜂 (𝑥

0
, 𝑇𝑥
0
) . (54)

Applying Theorem 12, we obtain that 𝑇 has a fixed point in
𝐶([0, 1]); say 𝑥. Hence, 𝑥 is a solution of (42).

Corollary 25. Assume that the following conditions hold:

(i) 𝑓 : [0, 1] × R → [0,∞) is continuous and nonde-
creasing;

(ii) for all 𝑡 ∈ [0, 1], for all 𝑎, 𝑏 ∈ R with 𝑎 ≤ 𝑏, one has

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑎) − 𝑓 (𝑡, 𝑏)
󵄨󵄨󵄨󵄨 ≤ 8𝜓( max

𝑎,𝑏∈R,𝑎≤𝑏
|𝑎 − 𝑏|) , (55)

where 𝜓 ∈ Ψ
2
;

(iii) there exists 𝑥
0
∈ 𝐶([0, 1]) such that, for all 𝑡 ∈ [0, 1],

one has

𝑥
0
(𝑡) ≤ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠. (56)

Then, (42) has a unique solution in 𝐶
2

([0, 1]).

Proof. Define a mapping 𝜙 : R2 → R by

𝜙 (𝑎, 𝑏) = 𝑏 − 𝑎 ∀𝑎, 𝑏 ∈ R. (57)

By the analogous proof, as inTheorem 24, we obtain that (42)
has at least one solution. Since, for each 𝑥, 𝑦 ∈ 𝐶([0, 1]), there
exists a mapping 𝑧 = max{𝑥, 𝑦} such that 𝛼(𝑥, 𝑧) ≥ 𝜂(𝑥, 𝑧)

and 𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧). This implies that the solution of (42) is
unique byTheorem 13.
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