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We establish some oscillation criteria for the following certain even order neutral delay differential equations with mixed

nonlinearities: (𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡))
󸀠

+𝑞0(𝑡)󵄨󵄨󵄨󵄨(𝑥 (𝜏0 (𝑡))
󵄨󵄨󵄨󵄨
𝛼−1𝑥(𝜏0(𝑡))+𝑞1 (𝑡) 󵄨󵄨󵄨󵄨(𝑥(𝜏1(𝑡))󵄨󵄨󵄨󵄨

𝛽−1𝑥(𝜏1(𝑡))+𝑞2 (𝑡) 󵄨󵄨󵄨󵄨(𝑥(𝜏2(𝑡))󵄨󵄨󵄨󵄨
𝛾−1𝑥(𝜏2(𝑡)) =

0, 𝑡 ≥ 𝑡0, where 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜎(𝑡)), 𝑛 is even integer, and 𝛾 > 𝛼 > 𝛽 > 0. Our results generalize and improve some known
results for oscillation of certain even order neutral delay differential equations with mixed nonlinearities.

1. Introduction

In this paper, we are concerned with oscillation behavior of
the certain even order neutral delay differential equations
with mixed nonlinearities:

(𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡))
󸀠

+ 𝑞0 (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝜏0 (𝑡))
󵄨󵄨󵄨󵄨
𝛼−1𝑥 (𝜏0 (𝑡))

+ 𝑞1 (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝜏1 (𝑡))
󵄨󵄨󵄨󵄨
𝛽−1𝑥 (𝜏1 (𝑡))

+ 𝑞2 (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝜏2 (𝑡))
󵄨󵄨󵄨󵄨
𝛾−1𝑥 (𝜏2 (𝑡)) = 0,

𝑡 ≥ 𝑡0,

(1)

where 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜎(𝑡)), 𝑛 is even integer, and 𝛾 >
𝛼 > 𝛽 > 0 are constants. 𝑟, 𝑞𝑖 ∈ 𝐶([𝑡0,∞), 𝑅+), 𝑟󸀠(𝑡) ≥ 0,
𝑝, 𝜏𝑖 ∈ 𝐶([𝑡0,∞), 𝑅) satisfy that 𝜏𝑖(𝑡) ≤ 𝑡, 𝑖 = 0, 1, 2, and
there exists a function 𝜎 ∈ 𝐶([𝑡0,∞), 𝑅), such that 𝜎(𝑡) ≤ 𝑡,
lim𝑡→∞𝜎(𝑡) = ∞. We assume that there exists a function
𝜏 ∈ 𝐶1([𝑡0,∞), 𝑅), such that 𝜏(𝑡) ≤ 𝜏𝑖(𝑡), 𝑖 = 0, 1, 2, 𝜏(𝑡) ≤ 𝑡,
𝜏󸀠(𝑡) > 0, and lim𝑡→∞𝜏(𝑡) = ∞.

We will consider the two cases

∫
∞

𝑡
0

1
𝑟1/𝛼 (𝑡)𝑑𝑡 = ∞, (2)

∫
∞

𝑡
0

1
𝑟1/𝛼 (𝑡)𝑑𝑡 < ∞. (3)

Recently, there have been a large number of papers
devoted to the oscillation of the delay differential equations;
see [1–8]. Furthermore, there have been a large number of
works on the oscillation of the neutral differential equations,
and we refer the readers to the articles [9–25].

Agarwal and Grace [3] studied the oscillation for func-
tional differential equations of higher order,

((𝑥(𝑛−1) (𝑡))𝛼)
󸀠

+ 𝑞 (𝑡) 𝑓 (𝑥 (𝑔 (𝑡))) = 0, (4)

and established some sufficient conditions for oscillation of
(4).

Sun and Meng [6] examined the oscillation of (1), where
𝑝(𝑡) = 0, 𝑛 = 2.

Xu and Xia [7], by means of Riccati transformation
technique, established some oscillation criteria for certain
even order delay differential equations:

(󵄨󵄨󵄨󵄨󵄨(𝑥 (𝑡))
(𝑛−1)󵄨󵄨󵄨󵄨󵄨
𝛼−1(𝑥 (𝑡))(𝑛−1))

󸀠

+ 𝐹 (𝑡, 𝑥 (𝑔 (𝑡))) = 0. (5)
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In 2011, Zhang et al. [8] studied the oscillatory behavior
of the following higher-order half-linear delay differential
equation:

(𝑟 (𝑡) (𝑥(𝑛−1) (𝑡))𝛼)
󸀠

+ 𝑞 (𝑡) 𝑥𝛽 (𝜏 (𝑡)) = 0, 𝑡 ≥ 𝑡0, (6)

where ∫∞
𝑡
0

𝑟−(1/𝛼)(𝑡)𝑑𝑡 < ∞.
In 2013, Zhang et al. [23] improved those reported in [8].
Han et al. [9] studied the oscillation of second-order

neutral differential equations:

(𝑟 (𝑡) 𝜓 (𝑥 (𝑡)) 󵄨󵄨󵄨󵄨󵄨𝑍
󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨
𝛼−1𝑍󸀠 (𝑡))

󸀠

+ 𝑞 (𝑡) 𝑓 (𝑥 (𝜎 (𝑡))) = 0,
(7)

where 𝑍(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝑡 − 𝜏) and 𝛼 > 0, 0 ≤ 𝑝(𝑡) < 1.
Some new oscillation criteria are established for the second-
order nonlinear neutral delay differential equations:

[𝑟 (𝑡) [𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡))]󸀠]󸀠 + 𝑞 (𝑡) 𝑓 (𝑥 (𝜎 (𝑡))) = 0, (8)

where ∫∞
𝑡
0

1/𝑟(𝑡)𝑑𝑡 < ∞, 0 ≤ 𝑝(𝑡) ≤ 𝑝0 < +∞.
Meng and Xu [19], by using the Riccati transformation

technique and inequalities, considered the oscillation for
even order quasilinear neutral differential equations:

(𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨󵄨(𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜎))
(𝑛−1)󵄨󵄨󵄨󵄨󵄨󵄨
𝛼−1

×(𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜎))(𝑛−1))
󸀠

+ 𝑞 (𝑡) 𝑓 (𝑥 (𝜎 (𝑡))) = 0,

(9)

where 𝑡 ≥ 𝑡0, 0 ≤ 𝑝(𝑡) < 1.
In 2012, Sun et al. [22] considered the oscillation criteria

for even order nonlinear neutral differential equations:

(𝑟 (𝑡) 𝑧(𝑛−1) (𝑡))󸀠 + 𝑞 (𝑡) 𝑓 (𝑥 (𝜎 (𝑡))) = 0, (10)

where 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)), 𝑛 ≥ 2 is even integer,
and 0 ≤ 𝑝(𝑡) ≤ 𝑝0 < +∞. The results are obtained
when ∫∞ 𝑟−1(𝑡)𝑑𝑡 = ∞ or ∫∞ 𝑟−1(𝑡)𝑑𝑡 < ∞. These criteria
obtained in this paper extended and improved some known
results in the literatures.

In 2013, Agarwal et al. [24] considered the oscillation
criteria for even order neutral differential equations:

(𝑥(𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)))𝑛 + 𝑞 (𝑡) 𝑥 (𝜎 (𝑡)) = 0. (11)

Some new criteria are established that improve a number of
related results reported in the literature and can be used in
cases where known theorems fail to apply.

In 2014, Zhang et al. [25] study oscillation and asymptotic
behavior of solutions to two classes of higher-order delay

damped differential equations with 𝑝-Laplacian like opera-
tors:

(𝑎 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑥
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑥(𝑛−1) (𝑡))
󸀠

+ 𝑟 (𝑡) |𝑥(𝑡)|𝛼−1𝑥(𝑛−1) (𝑡)

+ 𝑞 (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝑔 (𝑡))
󵄨󵄨󵄨󵄨
𝛼−1𝑥 (𝑔 (𝑡)) = 0,

𝑡 ≥ 𝑡0,

(12)

where 𝛼 > 0. Some new criteria are presented that improve
the related contributions to the subject.

Clearly, the equations (4)–(12) are special cases of (1).
The purpose of this paper is to extend and improve the
abovementioned oscillation theorems for certain even order
neutral delay differential equations withmixed nonlinearities
(1).

The paper is organized as follows. In the next section,
we present some lemmas which will be used in the fol-
lowing results. In Sections 3 and 4, by developing Riccati
transformations technique and inequalities, some sufficient
conditions for oscillation of all solutions of (1) are established.
In Section 5, we give an example to illustrate Theorem 11.

2. Lemmas

In this section, in order to prove our main results, we need
the following lemmas.

Lemma 1 (see [5]). Let 𝑢 ∈ 𝐶𝑛([𝑡0,∞), 𝑅+). If 𝑢(𝑛)(𝑡) is
eventually of one sign for all large 𝑡, then there exist 𝑡𝑥 > 𝑡1,
for some 𝑡1 > 𝑡0, and an integer 𝑙, 0 ≤ 𝑙 ≤ 𝑛, with 𝑛 + 𝑙 even for
𝑢(𝑛)(𝑡) ≥ 0 or 𝑛 + 𝑙 odd for 𝑢(𝑛)(𝑡) ≤ 0 such that 𝑙 > 0 implies
that 𝑢(𝑘)(𝑡) > 0 for 𝑡 > 𝑡𝑥, 𝑘 = 0, 1, . . . , 𝑙 − 1, and 𝑙 ≤ 𝑛 − 1
implies that (−1)𝑙+𝑘𝑢(𝑘)(𝑡) > 0 for 𝑡 > 𝑡𝑥, 𝑘 = 𝑙, 𝑙 + 1, . . . , 𝑛 − 1.

Lemma 2 (see [1], Lemma 2.2.2). If the function 𝑢 is as in
Lemma 1 and 𝑢(𝑛−1)(𝑡)𝑢(𝑛)(𝑡) ≤ 0 for 𝑡 > 𝑡𝑥, then, for every
𝜆, 0 < 𝜆 < 1, there exists a constant𝑀 > 0 such that

𝑢 (𝜆𝑡) ≥ 𝑀𝑡𝑛−1 󵄨󵄨󵄨󵄨󵄨𝑢
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨 , (13)

for all large 𝑡.

Lemma 3 (see [1], Lemma 2.2.3). If the function 𝑢 is as in
Lemma 1 and 𝑢(𝑛−1)(𝑡)𝑢(𝑛)(𝑡) ≤ 0 for 𝑡 > 𝑡𝑥, lim𝑡→∞𝑢(𝑡) ̸= 0,
then, for every 𝜆, 0 < 𝜆 < 1, such that

𝑢 (𝑡) ≥ 𝜆
(𝑛 − 1)! 𝑡

𝑛−1 󵄨󵄨󵄨󵄨󵄨𝑢
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨 , (14)

for all large 𝑡.

Lemma 4 (see [2, 5]). Consider the half-linear differential
equations

(𝑎 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑥
󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨
𝛼−1𝑥󸀠 (𝑡))

󸀠

+ 𝑞 (𝑡) |𝑥 (𝑡)|𝛼−1𝑥 (𝑡) = 0, (15)
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where 𝛼 > 0, 𝑎, 𝑞 ∈ 𝐶([𝑡0,∞), 𝑅+). Then every solution of (15)
is nonoscillatory if and only if there exist a real number 𝑇 ≥ 𝑡0
and a function ] ∈ 𝐶1([𝑡0,∞), 𝑅), such that

]󸀠 (𝑡) + 𝛼𝑎−(1/𝛼) (𝑡) |] (𝑡)|(𝛼+1)/𝛼 + 𝑞 (𝑡) ≤ 0,
𝑡 ∈ [𝑇,∞) .

(16)

Lemma 5. If 𝐴 and 𝐵 are nonnegative constants, then

𝐴𝛾 − 𝛾𝐴𝐵𝛾−1 + (𝛾 − 1) 𝐵𝛾 ≥ 0, 𝛾 > 1, (17)

and the equality holds if and only if 𝐴 = 𝐵.

In the next section, by developing Riccati transformations
technique and inequalities, some sufficient conditions for
oscillation of all solutions of (1) are established.

3. Oscillation Criteria for an Oscillating
Function 𝑝

In this section, we assume the following.
(H) 𝑝 is an oscillating function, and lim𝑡→∞𝑝(𝑡) = 0.

Lemma 6. Assume that (2) holds. Furthermore, assume that 𝑥
is an eventually positive solution of (1), which is bounded and
does not converge to zero. Then there exists 𝑡1 ≥ 𝑡0, such that

𝑧 (𝑡) > 0, 𝑧󸀠 (𝑡) > 0, 𝑧(𝑛−1) (𝑡) > 0, 𝑧(𝑛) (𝑡) ≤ 0,
∀𝑡 ≥ 𝑡1.

(18)

Proof. Since 𝑥 is an eventually positive solution of (1), there
exists a constant 𝑡1 ≥ 𝑡0, such that 𝑥(𝑡) > 0, 𝑥(𝜎(𝑡)) > 0, and
𝑥(𝜏𝑖(𝑡)) > 0, 𝑖 = 0, 1, 2, for all 𝑡 ≥ 𝑡1. Then, by (1), we have
(𝑟(𝑡)|𝑧(𝑛−1)(𝑡)|𝛼−1𝑧(𝑛−1)(𝑡))

󸀠

≤ 0, 𝑡 ≥ 𝑡1.
Furthermore, since 𝑥 is a bounded solution

and lim𝑡→∞𝑥(𝑡) ̸= 0, by (H) we know that
lim𝑡→∞𝑝(𝑡)𝑥(𝜎(𝑡)) = 0; then there exists 𝑡2 ≥ 𝑡1, such
that 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜎(𝑡)) > 0, 𝑡 ≥ 𝑡2. So 𝑧 is eventually
positive and bounded.

The rest of the proof is similar to that of Meng and Xu [19,
Lemma 2.3], so it is omitted.

Theorem 7. Assume that (H) and (2) hold. Furthermore,
assume that there exists a constant 𝜆, 0 < 𝜆 < 1, and, for every
constant 𝑀 > 0, assume that there exists a positive function
𝜌 ∈ 𝐶1([𝑡0,∞), 𝑅), for sufficiently large 𝑡1 ≥ 𝑡0, such that

lim sup
𝑡→∞

∫
𝑡

𝑡
1

(𝜌 (𝑠)𝑄 (𝑠)

−
𝑟 (𝑠) (𝜌󸀠 (𝑠))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑠) 𝜏𝑛−2 (𝑠) 𝜏󸀠 (𝑠))𝛼)𝑑𝑠 = ∞,

(19)

where

𝑄 (𝑡) := 1
2𝛼 {𝑞0 (𝑡) + [𝑘1𝑞1 (𝑡)]

1/𝑘
1[𝑘2𝑞2 (𝑡)]1/𝑘2} ,

𝑘1 :=
(𝛾 − 𝛽)
(𝛾 − 𝛼) , 𝑘2 :=

(𝛾 − 𝛽)
(𝛼 − 𝛽) .

(20)

Then every bounded solution of (1) is oscillatory or converges
to zero.

Proof. Suppose that (1) has a boundednonoscillatory solution
𝑥.Wemay assumewithout loss of generality that there exists a
number 𝑡1 ≥ 𝑡0, such that 𝑥(𝑡) > 0, 𝑥(𝜎(𝑡)) > 0, and 𝑥(𝜏(𝑡)) >
0, for all 𝑡 ≥ 𝑡1. Furthermore, we assume that lim𝑡→∞𝑥(𝑡) ̸=
0. Using the definition of 𝑧 and Lemma 6, we have 𝑧(𝑡) > 0,
𝑧󸀠(𝑡) > 0, 𝑧(𝑛−1)(𝑡) > 0, and 𝑧(𝑛)(𝑡) ≤ 0, 𝑡 ≥ 𝑡1. Hence there
exists 𝑡2 ≥ 𝑡1, such that

𝑥 (𝑡) = 𝑧 (𝑡) − 𝑝 (𝑡) 𝑥 (𝜎 (𝑡)) ≥ 𝑧 (𝑡)
2 , 𝑡 ≥ 𝑡2. (21)

From (1) and the above inequality, we obtain

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)
󸀠

+ 1
2𝛼 𝑞0 (𝑡) 𝑧

𝛼 (𝜏 (𝑡)) + 1
2𝛽 𝑞1 (𝑡) 𝑧

𝛽 (𝜏 (𝑡))

+ 1
2𝛾 𝑞2 (𝑡) 𝑧

𝛾 (𝜏 (𝑡)) ≤ 0, 𝑡 ≥ 𝑡3 ≥ 𝑡2.
(22)

Because of 𝑧󸀠(𝑡) > 0, by Lemma 2, 𝑧(𝑛−1)(𝑡) > 0, and 𝑧(𝑛)(𝑡) ≤
0, there exists 𝑡4 ≥ 𝑡3, and, for every 0 < 𝜆 < 1, there exists a
constant𝑀 > 0, we have

𝑧󸀠 (𝜆𝜏 (𝑡)) ≥ 𝑀𝜏𝑛−2 (𝑡) 𝑧(𝑛−1)𝜏 (𝑡) ≥ 𝑀𝜏𝑛−2 (𝑡) 𝑧(𝑛−1) (𝑡) ,
(23)

for 𝑡 ≥ 𝑡4. We define the function 𝜔 by

𝜔 (𝑡) = 𝜌 (𝑡) 𝑟 (𝑡) (𝑧
(𝑛−1)(𝑡)
𝑧(𝜆𝜏(𝑡)))

𝛼

, 𝑡 ≥ 𝑡4. (24)

Then 𝜔(𝑡) > 0, 𝑡 ≥ 𝑡4. Next differentiating (24), we get

𝜔󸀠 (𝑡) = 𝜌󸀠 (𝑡) 𝑟 (𝑡) ( 𝑧(𝑛−1)(𝑡)
𝑧 (𝜆𝜏 (𝑡)))

𝛼

+ 𝜌 (𝑡)
(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)󸀠

𝑧𝛼 (𝜆𝜏 (𝑡))

− 𝛼𝜆𝜌 (𝑡)
𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼𝜏󸀠 (𝑡) 𝑧󸀠 (𝜆𝜏 (𝑡))

𝑧𝛼+1 (𝜆𝜏 (𝑡)) .
(25)

So by (22) and (23), we obtain

𝜔󸀠 (𝑡) ≤ 𝜌󸀠 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝜌 (𝑡)

× ( 12𝛼 𝑞0 (𝑡) +
1
2𝛽 𝑞1 (𝑡) 𝑧

𝛽−𝛼 (𝜏 (𝑡))

+ 1
2𝛾 𝑞2 (𝑡) 𝑧

𝛾−𝛼 (𝜏 (𝑡))) ( 𝑧 (𝜏 (𝑡))
𝑧 (𝜆𝜏 (𝑡)))

𝛼

− 𝛼𝜆𝑀𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

𝜔(𝛼+1)/𝛼 (𝑡) .

(26)
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Let

𝑎 = 𝑘1
1
2𝛽 𝑞1 (𝑡) 𝑧

𝛽−𝛼 (𝜏 (𝑡)) , 𝑏 = 𝑘2
1
2𝛾 𝑞2 (𝑡) 𝑧

𝛾−𝛼 (𝜏 (𝑡)) ,
(27)

where 𝑘1 and 𝑘2 are defined as in Theorem 7. Using the
inequality

|𝑎|
𝑝 + |𝑏|

𝑞 ≥ |𝑎|1/𝑝|𝑏|1/𝑞, 𝑝 > 1, 𝑞 > 1, 1
𝑝 + 1

𝑞 = 1,
(28)

we have

1
2𝛽 𝑞1 (𝑡) 𝑧

𝛽−𝛼 (𝜏 (𝑡)) + 1
2𝛾 𝑞2 (𝑡) 𝑧

𝛾−𝛼 (𝜏 (𝑡))

≥ [𝑘1
1
2𝛽 𝑞1 (𝑡) 𝑧

𝛽−𝛼 (𝜏 (𝑡))]
1/𝑘
1

[𝑘2
1
2𝛾 𝑞2 (𝑡) 𝑧

𝛾−𝛼 (𝜏 (𝑡))]
1/𝑘
2

= 1
2𝛼 [𝑘1𝑞1 (𝑡)]

1/𝑘
1[𝑘2𝑞2 (𝑡)]1/𝑘2 ,

(29)

so we get

𝜔󸀠 (𝑡) ≤ 𝜌󸀠 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝜌 (𝑡) 𝑄 (𝑡)

− 𝛼𝜆𝑀𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

𝜔(𝛼+1)/𝛼 (𝑡) .
(30)

Let

𝐴 = (𝛼𝜆𝑀 𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

)
1/𝛾

𝜔 (𝑡) ,

𝐵 = ( 𝜌󸀠(𝑡)
𝛾𝜌(𝑡)(𝛼𝜆𝑀

𝜏𝑛−2 (𝑡) 𝜏󸀠(𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

)
−(1/𝛾)

)
1/(𝛾−1)

,

(31)

where 𝛾 = (𝛼+1)/𝛼 > 1. Applying the inequality in Lemma 5,
we obtain

𝜌󸀠 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝛼𝜆𝑀

𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

𝜔𝛾 (𝑡)

≤
𝑟 (𝑡) (𝜌󸀠 (𝑡))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑡) 𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡))𝛼 .

(32)

Thus, by (30) and (32), we get

𝜔󸀠 (𝑡) ≤ −(𝜌 (𝑡) 𝑄 (𝑡)

−
𝑟 (𝑡) (𝜌󸀠 (𝑡))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑡) 𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡))𝛼) .

(33)

Integrating (33) from 𝑡1 to 𝑡, we have
𝜔 (𝑡) ≤ 𝜔 (𝑡1)

− ∫
𝑡

𝑡
1

(𝜌 (𝑠)𝑄 (𝑠)

−
𝑟 (𝑠) (𝜌󸀠 (𝑠))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑠) 𝜏𝑛−2 (𝑠) 𝜏󸀠 (𝑠))𝛼)𝑑𝑠.

(34)
Let 𝑡 → ∞ in (34), which leads to a contradiction with (19).
The proof is complete.

Theorem 8. Assume that (H) and (2) hold, and there exists a
constant 𝜆, 0 < 𝜆 < 1, and, for every constant 𝑀 > 0, such
that

(( (𝑟 (𝑡))1/𝛼
𝜆𝑀𝜏𝑛−2 (𝑡) 𝜏󸀠(𝑡))

𝛼󵄨󵄨󵄨󵄨󵄨𝑥
󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨
𝛼−1𝑥󸀠(𝑡))

󸀠

+ 𝑄 (𝑡) |𝑥 (𝑡)|𝛼−1𝑥 (𝑡) = 0,
(35)

is oscillatory, where 𝑄 is defined as in Theorem 7. Then every
bounded solution of (1) is oscillatory or converges to zero.

Proof. Suppose that (1) has a boundednonoscillatory solution
𝑥. We may assume without loss of generality that there exists
𝑡1 ≥ 𝑡0, such that 𝑥(𝑡) > 0, 𝑥(𝜎(𝑡)) > 0, and 𝑥(𝜏(𝑡)) > 0, for
all 𝑡 ≥ 𝑡1. Furthermore, we assume that lim𝑡→∞𝑥(𝑡) ̸= 0. We
define ] by

] (𝑡) = 𝑟 (𝑡) (𝑧
(𝑛−1)(𝑡)
𝑧(𝜆𝜏(𝑡)))

𝛼

. (36)

Proceeding as in the proof ofTheorem 7, for every 0 < 𝜆 < 1,
there exists𝑀 > 0, and we have

]󸀠 (𝑡) + 𝑄 (t) + 𝛼𝜆𝑀𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝑟 (𝑡))1/𝛼

](𝛼+1)/𝛼 (𝑡) ≤ 0. (37)

That is,
]󸀠 (𝑡) + 𝑄 (𝑡)

+ 𝛼[( (𝑟 (𝑡))1/𝛼
𝜆𝑀𝜏𝑛−2 (𝑡) 𝜏󸀠(𝑡))

𝛼

]
−(1/𝛼)

](𝛼+1)/𝛼 (𝑡) ≤ 0.
(38)

Based on Lemma 4, we obtain that (35) is nonoscillatory,
which leads to a contradiction. The proof is complete.

Theorem 9. Assume that (H) and (3) hold. Furthermore,
assume that there exists a constant 𝜆, 0 < 𝜆 < 1, and, for every
constant 𝑀 > 0, assume that there exists a positive function
𝜌 ∈ 𝐶1([𝑡0,∞), 𝑅), such that (19) holds. If, for sufficiently large
𝑡1 ≥ 𝑡0,

lim sup
𝑡→∞

∫
𝑡

𝑡
1

[( 𝜆
(𝑛 − 2)!)

𝛼

𝑄 (𝑠) 𝜏𝛼(𝑛−2) (𝑠) 𝛿𝛼 (𝑠)

−( 𝛼
𝛼 + 1)

𝛼+1 1
𝑟1/𝛼 (𝑠) 𝛿 (𝑠)] 𝑑𝑠 = ∞,

(39)
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where 𝑄 and ℎ are defined as in Theorem 7, and 𝛿(𝑡) =
∫∞
𝑡
(1/𝑟1/𝛼(𝑠))𝑑𝑠, then every bounded solution of (1) is

oscillatory or converges to zero.

Proof. Suppose that (1) has a boundednonoscillatory solution
𝑥. We may assume without loss of generality that there exists
𝑡1 ≥ 𝑡0, such that 𝑥(𝑡) > 0, 𝑥(𝜎(𝑡)) > 0, and 𝑥(𝜏(𝑡)) > 0, for
all 𝑡 ≥ 𝑡1. Then it follows from (1) that

(𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡))
󸀠

≤ 0, 𝑡 ≥ 𝑡1. (40)

Therefore, 𝑟(𝑡)|𝑧(𝑛−1)(𝑡)|𝛼−1𝑧(𝑛−1)(𝑡) is a nonincreasing func-
tion on [𝑡1,∞). Consequently, it is easy to conclude that there
exist two possible cases of the sign of 𝑧(𝑛−1)(𝑡). Furthermore,
we assume that lim𝑡→∞𝑥(𝑡) ̸= 0.

Case I. If 𝑧(𝑛−1)(𝑡) > 0, for 𝑡 ≥ 𝑡1, then we go back to the proof
of Theorem 7, and we get a contradiction to (19), so we omit
the details.

Case II. 𝑧(𝑛−1)(𝑡) < 0, for 𝑡 ≥ 𝑡1. Applying Lemma 1, we get
𝑧(𝑛−2)(𝑡) > 0. Define the function 𝜐 by

𝜐 (𝑡) =
𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼−1𝑧(𝑛−1) (𝑡)

(𝑧(𝑛−2) (𝑡))𝛼 , 𝑡 ≥ 𝑡1. (41)

Then 𝜐(𝑡) < 0 for 𝑡 ≥ 𝑡1. Noting that 𝑟(𝑡)|𝑧(𝑛−1)(𝑡)|
𝛼−1𝑧(𝑛−1)(𝑡)

is nonincreasing, we obtain

𝑟1/𝛼 (𝑠) 𝑧(𝑛−1) (𝑠) ≤ 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡) , 𝑠 ≥ 𝑡. (42)

Dividing (42) by 𝑟1/𝛼(𝑠) and integrating it from 𝑡 to 𝑙 (𝑙 ≥ 𝑡),
we have

𝑧(𝑛−2) (𝑙) ≤ 𝑧(𝑛−2) (𝑡) + 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡) ∫
𝑙

𝑡

1
𝑟1/𝛼 (𝑠)𝑑𝑠. (43)

Letting 𝑙 → ∞ in the above inequality, we get

0 ≤ 𝑧(𝑛−2) (𝑡) + 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡) 𝛿 (𝑡) , (44)

which implies that

−1 ≤ 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡)
𝑧(𝑛−2) (𝑡) 𝛿 (𝑡) , 𝑡 ≥ 𝑡1, (45)

where 𝛿 is defined as inTheorem 9. Hence, by (41), we obtain

−1 ≤ 𝜐 (𝑡) 𝛿𝛼 (𝑡) ≤ 0, 𝑡 ≥ 𝑡1. (46)

Differentiating (41), we have

𝜐󸀠 (𝑡) =
(𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼−1𝑧(𝑛−1) (𝑡))

󸀠

(𝑧(𝑛−2) (𝑡))𝛼

−
𝛼𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼−1𝑧(𝑛−1) (𝑡) 𝑧(𝑛−1) (𝑡)

(𝑧(𝑛−2) (𝑡))𝛼+1
.

(47)

From (22), we get

𝜐󸀠 (𝑡) ≤ [− 1
2𝛼 𝑞0 (𝑡) 𝑧

𝛼 (𝜏 (𝑡)) − 1
2𝛽 𝑞1 (𝑡) 𝑧

𝛽 (𝜏 (𝑡))

− 1
2𝛾 𝑞2 (𝑡) 𝑧

𝛾 (𝜏 (𝑡))] 1
(𝑧(𝑛−2) (𝑡))𝛼

−
𝛼𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼−1𝑧(𝑛−1) (𝑡) 𝑧(𝑛−1) (𝑡)

(𝑧(𝑛−2) (𝑡))𝛼+1
.

(48)

On the other hand, by lim𝑡→∞𝑧(𝑡) ̸= 0 and Lemma 3, we
obtain

𝑧 (𝑡) ≥ 𝜆
(𝑛 − 2)! 𝑡

𝑛−2𝑧(𝑛−2) (𝑡) ; (49)

that is, because of 𝑧(𝑛−1) < 0,

𝑧 (𝜏 (𝑡)) ≥ 𝜆
(𝑛 − 2)!𝜏

𝑛−2 (𝑡) 𝑧(𝑛−2) (𝜏 (𝑡))

≥ 𝜆
(𝑛 − 2)!𝜏

𝑛−2 (𝑡) 𝑧(𝑛−2) (𝑡) ,
(50)

for every 0 < 𝜆 < 1 and 𝑡 ≥ 𝑡1. Then from (41), (48), and (50),
we have

𝜐󸀠 (𝑡) ≤ [− 1
2𝛼 𝑞0 (𝑡) −

1
2𝛽 𝑞1 (𝑡) 𝑧

𝛽−𝛼 (𝜏 (𝑡))

− 1
2𝛾 𝑞2 (𝑡) 𝑧

𝛾−𝛼 (𝜏 (𝑡))] 𝑧𝛼 (𝜏 (𝑡))
(𝑧(𝑛−2) (𝑡))𝛼

−
𝛼𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼−1𝑧(𝑛−1) (𝑡) 𝑧(𝑛−1) (𝑡)

(𝑧(𝑛−2) (𝑡))𝛼+1

≤ −( 𝜆
(𝑛 − 1)!)

𝛼

𝑄 (𝑡) 𝜏𝛼(𝑛−2) (𝑡)

− 𝛼
𝑟1/𝛼 (𝑡) (−𝜐 (𝑡))

(𝛼+1)/𝛼,

(51)

where𝑄 is defined as inTheorem 7. Multiplying (51) by 𝛿𝛼(𝑡)
and integrating it from 𝑡1 to 𝑡, we get

𝛿𝛼 (𝑡) 𝜐 (𝑡) − 𝛿𝛼 (𝑡1) 𝜐 (𝑡1) + 𝛼∫
𝑡

𝑡
1

𝛿𝛼−1 (𝑠)
𝑟1/𝛼 (𝑠) 𝜐 (𝑠) 𝑑𝑠

+ ( 𝜆
(𝑛 − 2)!)

𝛼

∫
𝑡

𝑡
1

𝑄 (𝑠) 𝜏𝛼(𝑛−2) (𝑠) 𝛿𝛼 (𝑠) 𝑑𝑠

+ 𝛼∫
𝑡

𝑡
1

𝛿𝛼 (𝑠)
𝑟1/𝛼 (𝑠) (−𝜐 (𝑠))

(𝛼+1)/𝛼𝑑𝑠 ≤ 0.

(52)

Let

𝐴 = (𝛼𝛿
𝛼(𝑠)

𝑟1/𝛼(𝑠))
1/𝛾

(−𝜐 (𝑠)) ,

𝐵 = ( 𝛼2
𝛼 + 1

𝛿𝛼−1(𝑠)
𝑟1/𝛼(𝑠) (

𝛼𝛿𝛼(𝑠)
𝑟1/𝛼(𝑠))

−(1/𝛾)

)
1/(𝛾−1)

,
(53)
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where 𝛾 = (𝛼+1)/𝛼 > 1. Applying the inequality in Lemma 5,
we obtain

𝛼𝛿𝛼−1 (𝑠)
𝑟1/𝛼 (𝑠) (−𝜐 (𝑠)) − 𝛼𝛿𝛼 (𝑠)

𝑟1/𝛼 (𝑠) (−𝜐 (𝑠))
(𝛼+1)/𝛼

≤ ( 𝛼
𝛼 + 1)

𝛼+1 1
r1/𝛼 (𝑠) 𝛿 (𝑠) .

(54)

Therefore, it follows from (52) that

𝛿𝛼 (𝑡) 𝜐 (𝑡) + ∫
𝑡

𝑡
1

[( 𝜆
(𝑛 − 2)!)

𝛼

𝑄 (𝑠) 𝜏𝛼(𝑛−2) (𝑠) 𝛿𝛼 (𝑠)

−( 𝛼
𝛼 + 1)

𝛼+1 1
𝑟1/𝛼 (𝑠) 𝛿 (𝑠)] 𝑑𝑠

≤ 𝛿𝛼 (𝑡1) 𝜐 (𝑡1) .

(55)

From (39) and the above inequality, we get a contradiction to
(46). The proof is complete.

Theorem 10. Assume that (H) and (3) hold. Furthermore,
assume that there exists a constant 𝜆, 0 < 𝜆 < 1, and for every
constant𝑀 > 0 such that (35) is oscillatory. If, for sufficiently
large 𝑡1 ≥ 𝑡0, one has (39), where 𝑄 and ℎ are defined as
in Theorem 7 and 𝛿 is defined as in Theorem 9, then every
bounded solution of (1) is oscillatory or converges to zero.

4. Oscillation Criteria for 0 ≤ 𝑝 (𝑡) < 1
In this section, we assume that 0 ≤ 𝑝(𝑡) < 1.

Theorem 11. Assume that (2) holds, there exists a constant 𝜆,
0 < 𝜆 < 1, and, for every constant𝑀 > 0, there exists a positive
function𝜌 ∈ 𝐶1([𝑡0,∞), 𝑅), such that, for sufficiently large 𝑡1 ≥
𝑡0,

lim sup
𝑡→∞

∫
𝑡

𝑡
1

(𝜌 (𝑠)𝑄(𝑠)

−
𝑟 (𝑠) (𝜌󸀠 (𝑠))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑠) 𝜏𝑛−2 (𝑠) 𝜏󸀠 (𝑠))𝛼)𝑑𝑠 = ∞,

(56)

where

𝑄(𝑡) = 𝜉𝛼 (𝑡) {𝑞0 (𝑡) + [𝑘1𝑞1 (𝑡)]1/𝑘1[𝑘2𝑞2 (𝑡)]1/𝑘2} ,

𝜉 (𝑡) = min {1 − 𝑝 (𝜏0 (𝑡)) , 1 − 𝑝 (𝜏1 (𝑡)) , 1 − 𝑝 (𝜏2 (𝑡))} ,
(57)

and 𝑘1 and 𝑘2 are defined as inTheorem 7.Then every solution
of (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution 𝑥.
Without loss of generality, we may assume that there exists
𝑡1 ≥ 𝑡0, such that 𝑥(𝑡) > 0, 𝑥(𝜎(𝑡)) > 0, and 𝑥(𝜏(𝑡)) > 0,

for all 𝑡 ≥ 𝑡1. Similar to the proof of Lemma 2.3 in [19], there
exists 𝑡2 ≥ 𝑡1, such that

𝑧 (𝑡) > 0, 𝑧󸀠 (𝑡) > 0, 𝑧(𝑛−1) (𝑡) > 0, 𝑧(𝑛) (𝑡) ≤ 0,
𝑡 ≥ 𝑡2.
(58)

From the definition of 𝑧, we have
𝑥 (𝑡) = 𝑧 (𝑡) − 𝑝 (𝑡) 𝑥 (𝜎 (𝑡)) ≥ 𝑧 (𝑡) − 𝑝 (𝑡) 𝑧 (𝜎 (𝑡))

≥ (1 − 𝑝 (𝑡)) 𝑧 (𝑡) , 𝑡 ≥ 𝑡3 ≥ 𝑡2.
(59)

Since lim𝑡→∞𝜏(𝑡) = ∞, there exists 𝑡4 ≥ 𝑡3, such that 𝜏(𝑡) ≥
𝑡4, 𝑡 ≥ 𝑡4, so

𝑥 (𝜏 (𝑡)) ≥ (1 − 𝑝 (𝜏 (𝑡))) 𝑧 (𝜏 (𝑡)) , 𝑡 ≥ 𝑡4. (60)

From (1), (59), and (60), we get

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)
󸀠

+ 1 − 𝑝(𝜏0 (𝑡))𝛼𝑞0 (𝑡) 𝑧𝛼 (𝜏 (𝑡))

+ 1 − 𝑝(𝜏1 (𝑡))𝛽𝑞1 (𝑡) 𝑧𝛽 (𝜏 (𝑡))

+ 1 − 𝑝(𝜏2 (𝑡))𝛾𝑞2 (𝑡) 𝑧𝛾 (𝜏 (𝑡)) ≤ 0,
𝑡 ≥ 𝑡4.

(61)

For every 0 < 𝜆 < 1, we define the function

𝜔 (𝑡) = 𝜌 (𝑡) 𝑟 (𝑡) (𝑧
(𝑛−1)(𝑡)
𝑧(𝜆𝜏(𝑡)))

𝛼

, 𝑡 ≥ 𝑡4. (62)

Then 𝜔(𝑡) > 0, 𝑡 ≥ 𝑡4. Next differentiating (62), we obtain

𝜔󸀠 (𝑡) = 𝜌󸀠 (𝑡) 𝑟 (𝑡) ( 𝑧
(𝑛−1) (𝑡)
𝑧 (𝜆𝜏 (𝑡)))

𝛼

+ 𝜌 (𝑡)
(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)󸀠

𝑧𝛼 (𝜆𝜏 (𝑡))

− 𝛼𝜆𝜌 (𝑡) 𝑟 (𝑡)
(𝑧(𝑛−1) (𝑡))𝛼𝑧󸀠 (𝜆𝜏 (𝑡))

𝑧𝛼+1 (𝜆𝜏 (𝑡)) .
(63)

From (23), (61), and (62), we have

𝜔󸀠 (𝑡) ≤ 𝜌󸀠 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝜌 (𝑡)

× (𝜉𝛼 (𝑡) 𝑞0 (𝑡) + 𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽−𝛼 (𝜏 (𝑡))

+ 𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾−𝛼 (𝜏 (𝑡)) ) (
𝑧 (𝜏 (𝑡))
𝑧 (𝜆𝜏 (𝑡)))

𝛼

− 𝛼𝜆𝑀 𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

𝜔(𝛼+1)/𝛼 (𝑡) ,

(64)

where 𝜉 is defined as in Theorem 11. Setting

𝑎 = 𝑘1𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽−𝛼 (𝜏 (𝑡)) ,

𝑏 = 𝑘2𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾−𝛼 (𝜏 (𝑡)) ,
(65)
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by inequality (28), we get

𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽−𝛼 (𝜏 (𝑡)) + 𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾−𝛼 (𝜏 (𝑡))

≥ [𝑘1𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽−𝛼 (𝜏 (𝑡))]
1/𝑘
1

× [𝑘2𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾−𝛼 (𝜏 (𝑡))]
1/𝑘
2

= 𝜉𝛼 (𝑡) [𝑘1𝑞1 (𝑡)]1/𝑘1[𝑘2𝑞2 (𝑡)]1/𝑘2 ;

(66)

hence,

𝜔󸀠 (𝑡) ≤ 𝜌󸀠 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝜌 (𝑡) 𝑄(𝑡)

− 𝛼𝜆𝑀 𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

𝜔(𝛼+1)/𝛼 (𝑡) .
(67)

Let

𝐴 = (𝛼𝜆𝑀 𝜏𝑛−2 (𝑡) 𝜏󸀠(𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

)
1/𝛾

𝜔 (𝑡) ,

𝐵 = ( 𝜌󸀠(𝑡)
𝛾𝜌(𝑡)(𝛼𝜆𝑀

𝜏𝑛−2 (𝑡) 𝜏󸀠(𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

)
−(1/𝛾)

)
1/(𝛾−1)

,

(68)

where 𝛾 = (𝛼+1)/𝛼 > 1. Applying the inequality in Lemma 5,
we obtain

𝜌󸀠 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝛼𝜆𝑀

𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡)
(𝜌 (𝑡) 𝑟 (𝑡))1/𝛼

𝜔𝛾 (𝑡)

≤
𝑟 (𝑡) (𝜌󸀠 (𝑡))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑡) 𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡))𝛼 .

(69)

Thus, by (67) and (69), we get

𝜔󸀠 (𝑡) ≤ −(𝜌 (𝑡) 𝑄(𝑡)

−
𝑟 (𝑡) (𝜌󸀠 (𝑡))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑡) 𝜏𝑛−2 (𝑡) 𝜏󸀠 (𝑡))𝛼) .

(70)

Integrating (70) from 𝑡1 to 𝑡, we have
𝜔 (𝑡) ≤ 𝜔 (𝑡1)

− ∫
𝑡

𝑡
1

(𝜌 (𝑠)𝑄 (𝑠)

−
𝑟 (𝑠) (𝜌󸀠 (𝑠))𝛼+1

(𝛼 + 1)𝛼+1(𝜆𝑀𝜌 (𝑠) 𝜏𝑛−2 (𝑠) 𝜏󸀠 (𝑠))𝛼)𝑑𝑠.

(71)

Letting 𝑡 → ∞ in (71), we get a contradiction with (56).This
completes the proof of Theorem 11.

Remark 12. From Theorem 11, we can obtain different con-
ditions for oscillation of all solutions of (1) with different
choices of 𝜌.

Theorem 13. Assume that (3) holds, assume that there exists
a constant 𝜆, 0 < 𝜆 < 1, and, for every constant 𝑀 > 0,
there exists a positive function 𝜌 ∈ 𝐶1([𝑡0,∞), 𝑅), such that,
for sufficiently large 𝑡1 ≥ 𝑡0, (56) holds. If there exists a positive
function 𝜂 ∈ 𝐶1([𝑡0,∞), 𝑅), 𝜂󸀠(𝑡) ≥ 0, such that

∫
∞

𝑡
1

( 1
𝜂 (𝑡) 𝑟 (𝑡) ∫

𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)!𝜏

𝑛−2 (𝑠) 𝛿 (𝜏 (𝑠)))
𝛼

× 𝜂(𝑠)𝑄(𝑠)𝑑𝑠)
1/𝛼

𝑑𝑡 = ∞,
(72)

∫
∞

𝑡
1

( 1
𝜂 (𝑡) 𝑟 (𝑡) ∫

𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)! 𝑠

𝑛−2𝛿 (𝑠))
𝛼

× 𝜂(𝑠)𝑄(𝑠)𝑑𝑠)
1/𝛼

𝑑𝑡 = ∞,
(73)

where 𝛿 is defined as in Theorem 9 and 𝑄 is defined as in
Theorem 11, then every solution of (1) is oscillatory or converges
to zero.

Proof. Suppose that (1) has a nonoscillatory solution 𝑥. We
may assume without loss of generality that there exists 𝑡1 ≥
𝑡0, such that 𝑥(𝑡) > 0, 𝑥(𝜎(𝑡)) > 0, 𝑥(𝜏(𝑡)) > 0, and
𝑧(𝑡) > 0, for all 𝑡 ≥ 𝑡1. Furthermore, we assume that
lim𝑡→∞𝑥(𝑡) ̸= 0. Similar to the proof of Theorem 9, we
find that 𝑟(𝑡)|𝑧(𝑛−1)(𝑡)|𝛼−1𝑧(𝑛−1)(𝑡) is a nonincreasing function
on [𝑡1,∞) and there exist two possible cases of the sign of
𝑧(𝑛−1)(𝑡).

Case I. If 𝑧(𝑛−1)(𝑡) > 0, for 𝑡 ≥ 𝑡1, then we go back to the proof
ofTheorem 11, and we get a contradiction to (56), so we omit
the details.

Case II. 𝑧(𝑛−1)(𝑡) < 0, for 𝑡 ≥ 𝑡1. Applying Lemma 1, we get
𝑧(𝑛−2)(𝑡) > 0, 𝑧󸀠(𝑡) > 0 or 𝑧(𝑛−2)(𝑡) > 0, 𝑧󸀠(𝑡) < 0.

If 𝑧(𝑛−2)(𝑡) > 0, 𝑧󸀠(𝑡) > 0. Since 𝑟(𝑡)|𝑧(𝑛−1)(𝑡)|𝛼−1𝑧(𝑛−1)(𝑡)
is nonincreasing, we obtain

𝑟 (𝑠) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑠)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑠)

≤ 𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡)

≤ 𝑟 (𝑡1)
󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡1)

󵄨󵄨󵄨󵄨󵄨
𝛼−1𝑧(𝑛−1) (𝑡1) ,

(74)

for 𝑠 ≥ 𝑡 ≥ 𝑡1; that is,

−𝑧(𝑛−1) (𝑠) ≥ (𝑟(𝑡)𝑟(𝑠))
1/𝛼

(−𝑧(𝑛−1) (𝑡)) . (75)
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Integrating (75) from 𝑡 to∞, we get

𝑧(𝑛−2) (𝑡) ≥ 𝑟1/𝛼 (𝑡) (−𝑧(𝑛−1) (𝑡)) ∫
∞

𝑡

1
𝑟1/𝛼 (𝑠)𝑑𝑠 ≥ 𝑀𝛿 (𝑡) ,

𝑡 ≥ 𝑡1,
(76)

where 𝑀 = 𝑟1/𝛼(𝑡1)(−𝑧(𝑛−1)(𝑡1)). From (49) and the above
inequality, we obtain

𝑧 (𝑡) ≥ 𝑀 𝜆
(𝑛 − 2)! 𝑡

𝑛−2𝛿 (𝑡) . (77)

Using (59) and (77) in (1) and noting that 𝑧󸀠(𝑡) > 0, we have

− (𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡))
󸀠

= 𝑞0 (𝑡) 𝑥𝛼 (𝜏0 (𝑡)) + 𝑞1 (𝑡) 𝑥𝛽 (𝜏1 (𝑡)) + 𝑞2 (𝑡) 𝑥𝛾 (𝜏2 (𝑡))

≥ 𝑞0 (𝑡) (1 − 𝑝 (𝜏0 (𝑡)))𝛼𝑧𝛼 (𝜏0 (𝑡))

+ 𝑞1 (𝑡) (1 − 𝑝 (𝜏1 (𝑡)))𝛽𝑧𝛽 (𝜏1 (𝑡))

+ 𝑞2 (𝑡) (1 − 𝑝 (𝜏2 (𝑡)))𝛾𝑧𝛾 (𝜏2 (𝑡))

≥ 𝜉𝛼 (𝑡) 𝑞0 (𝑡) 𝑧𝛼 (𝜏 (𝑡)) + 𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽 (𝜏 (𝑡))
+ 𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾 (𝜏 (𝑡)) .

(78)

Setting

𝑎 = 𝑘1𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽 (𝜏 (𝑡)) ,
𝑏 = 𝑘2𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾 (𝜏 (𝑡)) ,

(79)

by inequality (28), we get

𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽 (𝜏 (𝑡)) + 𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾 (𝜏 (𝑡))

≥ [𝑘1𝜉𝛽𝑞1 (𝑡) 𝑧𝛽 (𝜏 (𝑡))]
1/𝑘
1[𝑘2𝜉𝛾𝑞2 (𝑡) 𝑧𝛾 (𝜏 (𝑡))]1/𝑘2

≥ 𝜉𝛼 (𝑡) [𝑘1𝑞1 (𝑡)]1/𝑘1[𝑘2𝑞2 (𝑡)]1/𝑘2𝑧𝛼 (𝜏 (𝑡)) .

(80)

Therefore, combining (77), (78), and (80), we obtain

− (𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡))
󸀠

≥ 𝑄(𝑡)𝑧𝛼 (𝜏 (𝑡)) ≥ ( 𝜆𝑀
(𝑛 − 2)!𝜏

𝑛−2 (𝑡) 𝛿 (𝜏 (𝑡)))
𝛼

𝑄(𝑡).
(81)

Define the function 𝑢 by

𝑢 (𝑡) = 𝜂 (𝑡) 𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡)

= −𝜂 (𝑡) 𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼, 𝑡 ≥ 𝑡1.
(82)

Then 𝑢(𝑡) < 0. Differentiating 𝑢(𝑡) and from (81), we find that

𝑢󸀠 (𝑡) = −𝜂󸀠 (𝑡) 𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼

− 𝜂 (𝑡) (𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼)
󸀠

≤ −𝜂 (𝑡) (𝑞0 (𝑡) 𝑥𝛼 (𝜏0 (𝑡)) + 𝑞1 (𝑡) 𝑥𝛽 (𝜏1 (𝑡))

+𝑞2 (𝑡) 𝑥𝛾 (𝜏2 (𝑡)) )

≤ −( 𝜆𝑀
(𝑛 − 2)!𝜏

𝑛−2 (𝑡) 𝛿 (𝜏 (𝑡)))
𝛼

𝜂 (𝑡) 𝑄(𝑡).

(83)

Integrating (83) from 𝑡1 to 𝑡, we get

𝑢 (𝑡) − 𝑢 (𝑡1)

≤ −∫
𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)!𝜏

𝑛−2 (𝑠) 𝛿 (𝜏 (𝑠)))
𝛼

𝜂 (𝑠) 𝑄(𝑠)𝑑𝑠.
(84)

Therefore,

− 𝜂 (𝑡) 𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼

≤ −∫
𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)!𝜏

𝑛−2 (𝑠) 𝛿 (𝜏 (𝑠)))
𝛼

𝜂 (𝑠) 𝑄 (𝑠)𝑑𝑠;
(85)

that is,

𝑧(𝑛−1) (𝑡)

≤ −( 1
𝜂 (𝑡) 𝑟 (𝑡) ∫

𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)!𝜏

𝑛−2 (𝑠) 𝛿 (𝜏 (𝑠)))
𝛼

× 𝜂 (𝑠) 𝑄 (𝑠)𝑑𝑠)
1/𝛼

.

(86)

Integrating the above inequality from 𝑡1 to 𝑙 (𝑙 > 𝑡1), we
obtain

𝑧(𝑛−2) (𝑙) − 𝑧(𝑛−2) (𝑡1)

≤ −∫
𝑙

𝑡
1

( 1
𝜂 (𝑡) 𝑟 (𝑡) ∫

𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)!𝜏

𝑛−2 (𝑠) 𝛿 (𝜏 (𝑠)))
𝛼

× 𝜂(𝑠)𝑄(𝑠)𝑑𝑠)
1/𝛼

𝑑𝑡.
(87)

Letting 𝑙 → ∞ and using (73) in (97), we have
lim𝑙→∞𝑧(𝑛−2)(𝑙) = −∞, which is a contradiction with the fact
that 𝑧(𝑛−2)(𝑡) > 0.

If 𝑧(𝑛−2)(𝑡) > 0, 𝑧󸀠(𝑡) < 0. Because of lim𝑡→∞𝑥(𝑡) ̸= 0,
lim𝑡→∞𝑧(𝑡) ̸= 0. By Lemma 3, we obtain (49). Proceeding as
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in the proof of the above, (77) holds. Using (59) and (77) in
(1) and noting that 𝑧󸀠(𝑡) < 0, we have

− (𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡))
󸀠

= 𝑞0 (𝑡) 𝑥𝛼 (𝜏0 (𝑡)) + 𝑞1 (𝑡) 𝑥𝛽 (𝜏1 (𝑡)) + 𝑞2 (𝑡) 𝑥𝛾 (𝜏2 (𝑡))

≥ 𝑞0 (𝑡) (1 − 𝑝 (𝜏0 (𝑡)))𝛼𝑧𝛼 (𝜏0 (𝑡))

+ 𝑞1 (𝑡) (1 − 𝑝 (𝜏1 (𝑡)))𝛽𝑧𝛽 (𝜏1 (𝑡))

+ 𝑞2 (𝑡) (1 − 𝑝 (𝜏2 (𝑡)))𝛾𝑧𝛾 (𝜏2 (𝑡))

≥ 𝜉𝛼 (𝑡) 𝑞0 (𝑡) 𝑧𝛼 (𝑡) + 𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽 (𝑡)
+ 𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾 (𝑡) .

(88)

Setting

𝑎1 = 𝑘1𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽 (𝑡) ,
𝑏1 = 𝑘2𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾 (𝑡) ,

(89)

by inequality (28), we get

𝜉𝛽 (𝑡) 𝑞1 (𝑡) 𝑧𝛽 (𝑡) + 𝜉𝛾 (𝑡) 𝑞2 (𝑡) 𝑧𝛾 (𝑡)

≥ [𝑘1𝜉𝛽𝑞1 (𝑡) 𝑧𝛽 (𝑡)]
1/𝑘
1[𝑘2𝜉𝛾𝑞2 (𝑡) 𝑧𝛾 (𝑡)]1/𝑘2

≥ 𝜉𝛼 (𝑡) [𝑘1𝑞1 (𝑡)]1/𝑘1[𝑘2𝑞2 (𝑡)]1/𝑘2𝑧𝛼 (𝑡) .

(90)

Therefore, combining (77), (88), and (90), we obtain

− (𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡))
󸀠

≥ 𝑄(𝑡)𝑧𝛼 (𝑡) ≥ ( 𝜆𝑀
(𝑛 − 2)! 𝑡

𝑛−2𝛿 (𝑡))
𝛼

𝑄(𝑡).
(91)

Define the function 𝑢 by

𝑢 (𝑡) = 𝜂 (𝑡) 𝑟 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

𝛼−1𝑧(𝑛−1) (𝑡)

= −𝜂 (𝑡) 𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼, 𝑡 ≥ 𝑡1.
(92)

Then

𝑢󸀠 (𝑡) = −𝜂󸀠 (𝑡) 𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼

− 𝜂 (𝑡) (𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼)
󸀠

≤ −𝜂 (𝑡) (𝑞0 (𝑡) 𝑥𝛼 (𝜏0 (𝑡)) + 𝑞1 (𝑡) 𝑥𝛽 (𝜏1 (𝑡))

+𝑞2 (𝑡) 𝑥𝛾 (𝜏2 (𝑡)) )

≤ −( 𝜆𝑀
(𝑛 − 2)! 𝑡

𝑛−2𝛿 (𝑡))
𝛼

𝜂 (𝑡) 𝑄(𝑡).

(93)

Integrating from 𝑡1 to 𝑡, we get

𝑢 (𝑡) − 𝑢 (𝑡1) ≤ −∫
𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)! 𝑠

𝑛−2𝛿 (𝑠))
𝛼

𝜂 (𝑠) 𝑄(𝑠)𝑑𝑠. (94)

Therefore,

− 𝜂 (𝑡) 𝑟 (𝑡) (−𝑧(𝑛−1) (𝑡))𝛼

≤ −∫
𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)! 𝑠

𝑛−2𝛿 (𝑠))
𝛼

𝜂 (𝑠) 𝑄 (𝑠)𝑑𝑠;
(95)

that is,

𝑧(𝑛−1) (𝑡)

≤ −( 1
𝜂 (𝑡) 𝑟 (𝑡) ∫

𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)! 𝑠

𝑛−2𝛿 (𝑠))
𝛼

× 𝜂(𝑠)𝑄(𝑠)𝑑𝑠)
1/𝛼

.

(96)

Integrating the above inequality from 𝑡1 to 𝑙 (𝑙 > 𝑡1), we
obtain

𝑧(𝑛−2) (𝑙) − 𝑧(𝑛−2) (𝑡1)

≤ −∫
𝑙

𝑡
1

( 1
𝜂 (𝑡) r (𝑡) ∫

𝑡

𝑡
1

( 𝜆𝑀
(𝑛 − 2)! 𝑠

𝑛−2𝛿 (𝑠))
𝛼

× 𝜂 (𝑠) 𝑄 (𝑠)𝑑𝑠)
1/𝛼

𝑑𝑡.

(97)

Letting 𝑙 → ∞ and using (73) in (97), we have
lim𝑙→∞𝑧(𝑛−2)(𝑙) = −∞, which is a contradiction with the fact
that 𝑧(𝑛−2)(𝑡) > 0. This completes the proof.

5. Example

In this section, we will give an example to illustrate
Theorem 11.

Example 1. Consider the even order neutral delay differential
equations with mixed nonlinearities:

(𝑡𝜃󵄨󵄨󵄨󵄨󵄨𝑧
(𝑛−1) (𝑡)󵄨󵄨󵄨󵄨󵄨

1/2𝑧(𝑛−1) (𝑡))
󸀠

+ 1
𝑡
󵄨󵄨󵄨󵄨𝑥 (𝜏0 (𝑡))

󵄨󵄨󵄨󵄨
1/2𝑥 (𝜏0 (𝑡))

+ 1
𝑡3/2

󵄨󵄨󵄨󵄨𝑥 (𝜏1 (𝑡))
󵄨󵄨󵄨󵄨
−(1/2)𝑥 (𝜏1 (𝑡))

+ 1
𝑡3/4

󵄨󵄨󵄨󵄨𝑥 (𝜏2 (𝑡))
󵄨󵄨󵄨󵄨 𝑥 (𝜏2 (𝑡)) = 0,

𝑡 ≥ 𝑡0,

(98)

where 𝑧(𝑡) = 𝑥(𝑡) + 1/2𝑥(𝜎(𝑡)) and 𝑛 is even integer.
Set 𝑟(𝑡) = 𝑡𝜃, 𝑝(𝑡) = 1/2, 𝑞0(𝑡) = 1/𝑡, 𝑞1(𝑡) = 𝑏/𝑡3/2,

𝑞2(𝑡) = 𝑐/𝑡3/4, 𝛾 = 2, 𝛼 = 2/3, 𝛽 = 1/2, and 𝜃 ≤ 2/3. Then (2)
holds, 𝑘1 = 3, and 𝑘2 = 3/2.
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Take 𝜌(𝑡) = 1. It is easy to show that

lim sup
𝑡→∞

∫
𝑡

𝑡
1

(𝜌 (𝑠)𝑄(𝑠)

−
𝑟 (𝑠) (𝜌󸀠 (𝑠))𝛼+1

(𝛼 + 1)𝛼+1(𝑓 (𝑛, 𝜆) 𝜌 (𝑠) 𝜏𝑛−2 (𝑠) 𝜏󸀠 (𝑠))𝛼)𝑑𝑠

= lim sup
𝑡→∞

∫
𝑡

𝑡
1

(12)
3/2

× {1𝑡 + (3 ⋅
1
𝑡3/2 )
1/3

(32 ⋅
1
𝑡3/4 )
2/3

}𝑑𝑠 = ∞.
(99)

Hence, by Theorem 11, every solution of (98) is oscillatory.
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