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We establish some oscillation criteria for the following certain even order neutral delay differential equations with mixed

nonlinearities: (r (t)

2 072 (1)) +a0(0)]x (1 (0)" x5y 0)+4, ) [ ()] x(m, (0) 44, () [ x(m,0) =

0,t > t,, where z(t) = x(t) + p(t)x(o(t)),n is even integer, and y > a > 8 > 0. Our results generalize and improve some known
results for oscillation of certain even order neutral delay differential equations with mixed nonlinearities.

1. Introduction

In this paper, we are concerned with oscillation behavior of
the certain even order neutral delay differential equations
with mixed nonlinearities:

(r@] o2 @)
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t >t

where z(t) = x(t) + p(t)x(co(t)), n is even integer, and y >
a > B > 0 are constants. r, q; € C([ty, 00),R"), r'(t) > 0,
p, 7; € C([ty,00),R) satisfy that 7;(t) < t,i = 0,1,2, and
there exists a function o € C([¢t,, 00), R), such that o(t) < ¢,
lim, , ,o(t) = co. We assume that there exists a function
TE Cl([to,oo),R), such that 7(t) < 7;(¢),i = 0, 1,2, 7(t) < t,
7'(t) > 0, and lim, _, . ,7(t) = c0.

We will consider the two cases

R |
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J;O rl/o‘—(t)dt < 0. (3)

Recently, there have been a large number of papers
devoted to the oscillation of the delay differential equations;
see [1-8]. Furthermore, there have been a large number of
works on the oscillation of the neutral differential equations,
and we refer the readers to the articles [9-25].

Agarwal and Grace [3] studied the oscillation for func-
tional differential equations of higher order,

(= (t))"‘)' +q (1) f(x(g(®)) =0, @

and established some sufficient conditions for oscillation of
(4).

Sun and Meng [6] examined the oscillation of (1), where
p(t)=0,n=2.

Xu and Xia [7], by means of Riccati transformation
technique, established some oscillation criteria for certain
even order delay differential equations:
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In 2011, Zhang et al. [8] studied the oscillatory behavior
of the following higher-order half-linear delay differential
equation:

(rO D)) ra0F ey =0 t21, ©

where LOO () dt < oo.
0

In 2013, Zhang et al. [23] improved those reported in [8].
Han et al. [9] studied the oscillation of second-order
neutral differential equations:

(royeen|z o7 (t))' +q) f(x(@(®) =0,
7)

where Z(t) = x(t) + p(t)x(t — 1) and & > 0,0 < p(t) < L
Some new oscillation criteria are established for the second-
order nonlinear neutral delay differential equations:

[FOEO+pOx@@]'] +q®) fx@®) =0, ()

where LOO 1/r(t)dt < 00,0 < p(t) < p, < +00.
0
Meng and Xu [19], by using the Riccati transformation
technique and inequalities, considered the oscillation for
even order quasilinear neutral differential equations:

(1’ ) ‘(x O +p@)x(t- 0))(71_1)‘“—1

A+ p 0 x(-)"") ®)
g0 f (<@ (0) =0,

wheret > t,,0 < p(t) < L.
In 2012, Sun et al. [22] considered the oscillation criteria
for even order nonlinear neutral differential equations:

(r""®) +q@) f(x@@) =0,  (10)

where z(t) = x(t) + p(t)x(z(t)), n > 2 is even integer,
and 0 < p(t) < p, < +oo. The results are obtained
when joo 1 (@#)dt = oo or foo r(#)dt < oo. These criteria
obtained in this paper extended and improved some known
results in the literatures.

In 2013, Agarwal et al. [24] considered the oscillation
criteria for even order neutral differential equations:

(x(®) + p () x (7 (1))" +q (1) x (0 (£) = 0. (11)

Some new criteria are established that improve a number of
related results reported in the literature and can be used in
cases where known theorems fail to apply.

In 2014, Zhang et al. [25] study oscillation and asymptotic
behavior of solutions to two classes of higher-order delay

Abstract and Applied Analysis

damped differential equations with p-Laplacian like opera-
tors:

(a (t) 'x("fl) (t)|a71x(”71) (t))l

+7 () @< (1) @)

+q@®) |x(g®)* 'x(g®) =0,

t >t

where o > 0. Some new criteria are presented that improve
the related contributions to the subject.

Clearly, the equations (4)-(12) are special cases of (1).
The purpose of this paper is to extend and improve the
abovementioned oscillation theorems for certain even order
neutral delay differential equations with mixed nonlinearities
(D).

The paper is organized as follows. In the next section,
we present some lemmas which will be used in the fol-
lowing results. In Sections 3 and 4, by developing Riccati
transformations technique and inequalities, some sufficient
conditions for oscillation of all solutions of (1) are established.
In Section 5, we give an example to illustrate Theorem 11.

2. Lemmas

In this section, in order to prove our main results, we need
the following lemmas.

Lemma 1 (see [5]). Let u € C"([ty,00),RY). If u™(t) is
eventually of one sign for all large t, then there exist t, > t,,
for somet, > t,, and an integer |, 0 < | < n, withn + I even for

u(t) > 00rn+1 odd for u™(t) < 0 such thatl > 0 implies
that u®(t) > 0 fort >tk =0,1,...,1 -1, andl < n—-1
implies that (—1)l+ku(k)(t) >0fort>t,k=L1+1,...,n—1

Lemma 2 (see [1], Lemma 2.2.2). If the function u is as in
Lemma 1 and u™ D (6)u™(t) < 0 fort > t,, then, for every
A, 0 < A < 1, there exists a constant M > 0 such that

w(Ae) = M " (), (13)
for all large t.

Lemma 3 (see [1], Lemma 2.2.3). If the function u is as in
Lemma 1 and u™ D (6)u™(t) < 0 fort > t,, lim, _, L u(t) # 0,
then, for every A, 0 < A < 1, such that

A

o Y )], (14)

u(t) > -

for all large t.

Lemma 4 (see [2, 5]). Consider the half-linear differential
equations

(a0« @ ¥ ®) +a@ O x@m =0, 05
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wherea > 0, a, q € C([ty, 00), R"). Then every solution of (15)
is nonoscillatory if and only if there exist a real number T > t,,
and a function v € Cl([to, 00), R), such that

Y () + aa” M @) |y ()| 1 q (1) <0,

(16)
t € [T,00).
Lemma 5. If A and B are nonnegative constants, then
A —yAB" '+ (y-1)B' 20, p>1, 17)

and the equality holds if and only if A = B.

In the next section, by developing Riccati transformations
technique and inequalities, some sufficient conditions for
oscillation of all solutions of (1) are established.

3. Oscillation Criteria for an Oscillating
Function p

In this section, we assume the following.
(H) p is an oscillating function, and lim, _, ., p(¢) = 0.

Lemma 6. Assume that (2) holds. Furthermore, assume that x
is an eventually positive solution of (1), which is bounded and
does not converge to zero. Then there exists t| > t,, such that

V>0 Z"@ <o,

z(t) >0, Z () >0,

Vt >t
(18)

Proof. Since x is an eventually positive solution of (1), there
exists a constant t, > t,, such that x(t) > 0, x(a(¢)) > 0, and
x(7;(t)) > 0,i = 0,1,2, for all t > ¢,. Then, by (1), we have

!

@OV 2 0@E) <0t >t

Furthermore, since x is a bounded solution
and lim, , x(t) + 0, by (H) we know that
lim, , . . p(t)x(c(t)) = O0; then there exists t, > t,, such
that z(t) = x(t) + p(t)x(o(t)) > 0,t > t,. So z is eventually
positive and bounded.

The rest of the proof is similar to that of Meng and Xu [19,
Lemma 2.3], so it is omitted. O

Theorem 7. Assume that (H) and (2) hold. Furthermore,
assume that there exists a constant A, 0 < A < 1, and, for every
constant M > 0, assume that there exists a positive function
p € C'([ty»00), R), for sufficiently large t, > t,, such that

lim sup L (p (8)Q(s)

t— 0o

i r©(p' )" .
(a+ D) (AMp ()2 ()’ ()" |

3
where
Q)= zi“ {% (t) + [k1q, (t)]l/kl (k29> (t)]l/kz} ,
20
BT R ) 20)
T h-e) T (@-p)

Then every bounded solution of (1) is oscillatory or converges
to zero.

Proof. Suppose that (1) has abounded nonoscillatory solution
x. We may assume without loss of generality that there exists a
number ¢, > t,, such that x(t) > 0, x(co(t)) > 0, and x(z(¢)) >
0, for all t > ¢,. Furthermore, we assume that lim, _,  x(t) #
0. Using the definition of z and Lemma 6, we have z(t) > 0,
Z@t) >0,z V%) > 0,and 2"(t) < 0, ¢ > t,. Hence there
exists t, > t, such that

x(t):z(t)—p(t)x(o(t))z%, t>t, (21

From (1) and the above inequality, we obtain

- a1 N 1
(ro " 0)) + a0 O @ @)+ 50, OF @ 0)

1
2O @) <0, 28>0
(22)
Because of z'(t) > 0, by Lemma 2, 2"V (¢) > 0, and 2" (t) <

0, there exists t, > t;, and, for every 0 < A < 1, there exists a
constant M > 0, we have

Z0r@) > M) 2" V) > M2 () 2"V (1),
(23)

for t > t,. We define the function w by

(n=1) &
w(t)=p@)rt) (j()tr(g;> . E>ty, (24)

Then w(t) > 0,t > t,. Next differentiating (24), we get

) )
e ) PO T = oray

W' ) =p (t)r(t) (

r(0) (2" @) (02 A ()

—aldp(t) T (0 (@)
(25)
So by (22) and (23), we obtain
W' (1) < I;T(tt))w(t) —p(®
1 1 »
% (5500 + S50, O (@)
(26)

L e
rpa 02 o) (Z50

A n—-2 ! e
_aAMTT (1) ’f/a(t)w(a Dl gy
(pt)r )



Let

b=k —q2 (GEARCIGIR
(27)

a- klziﬁql )2 (1),

where k; and k, are defined as in Theorem 7. Using the
inequality

M+|—b|2|a|1/‘”|b|”q, p>1, g>1, l+l:1,
P g P g
(28)
we have
LI Pz (¢t L VI (7 (¢)
2—5611()2 T())+2—},CI2()Z 7(t))

1/k, 1/k,

> [k 0 @] [lga 02 @o)

= Zi(x[qul (t)]l/k [k,q, (1) ]1/k2
(29)
so we get
W @<? (( T -p Q)
(30)
aAMT" 2 (1) 7' (1) L@/
—1/0‘ (t) .
(P17 ®)
Let
A (MMM)”L o
(P r®)"
~amy VoD (31)
_ &(MM 2 ()7 () )
yp(t) (p)r )" ’
wherey = (a+1)/a > 1. Applying the inequality in Lemma 5,
we obtain
P (®) 72O @
t) — M— t
o (p)r )"
o+l (32)
r(t)(p' ()
T @+ D (AMp (1) T2 (1) T (1)
Thus, by (30) and (32), we get
w () < - <p(t)Q(t)
(33)

@+ D) (AMp () 2 () T (1))

re) (o' )" >
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Integrating (33) from ¢, to ¢, we have
w(t) <w(t)

t
L

<P (9)Q(s)

(a+ )M (AMp (5) T2 () 7' (5))"

6 (0 )" >ds

(34)
Lett — oo in (34), which leads to a contradiction with (19).
The proof is complete. O

Theorem 8. Assume that (H) and (2) hold, and there exists a
constant A, 0 < A < 1, and, for every constant M > 0, such

that
O\ Y
((/\MT”_Z (t) T’(t)) Kol (t)) (35)

+QM) x| x(t) =

is oscillatory, where Q is defined as in Theorem 7. Then every
bounded solution of (1) is oscillatory or converges to zero.

Proof. Suppose that (1) has abounded nonoscillatory solution
x. We may assume without loss of generality that there exists
t, = t,, such that x(t) > 0, x(a(¢)) > 0, and x(z(t)) > 0, for
all t > t;. Furthermore, we assume that lim, _, . x(¢) # 0. We

define v by
Z(n—l)(t) o (36)
zAt(®) )

Proceeding as in the proof of Theorem 7, for every 0 < A < 1,
there exists M > 0, and we have

aAMT ()T () @ija
(r ()"

V(t)=r(t)<

Y () +Q ) + () <0. (37

That is,
v () +Q(t)

(7’ (t))l/a M (a+1) /e (38)
+ “[<—AMT"2 070 ) ] v (t) <0.

Based on Lemma 4, we obtain that (35) is nonoscillatory,
which leads to a contradiction. The proof is complete. O

Theorem 9. Assume that (H) and (3) hold. Furthermore,
assume that there exists a constant A, 0 < A < 1, and, for every
constant M > 0, assume that there exists a positive function
p € C'([ty, 00), R), such that (19) holds. If, for sufficiently large
t, >t

lim sup L [( (n Az) ) QT (0% (9
1 (39)

]ds=m,

_<(xi 1>M1r1/a (51)8(5)
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where Q and h are defined as in Theorem 7, and 6(t) =
_Loo(l/rl/“(s))ds, then every bounded solution of (1) is
oscillatory or converges to zero.

Proof. Suppose that (1) has abounded nonoscillatory solution
x. We may assume without loss of generality that there exists
t, = t,, such that x(t) > 0, x(a(¢)) > 0, and x(z(t)) > 0, for
all t > ¢,. Then it follows from (1) that

(r(t) | (t)|a_1z(”_l) (t))’SO, t>1,. (40)

Therefore, r(£)|z" P (#)[* 2" V() is a nonincreasing func-
tion on [t,, 00). Consequently, it is easy to conclude that there
exist two possible cases of the sign of 2" V(#). Furthermore,
we assume that lim, _,  x(¢) # 0.

Case 1.1 2" V(t) > 0, for t > t,, then we go back to the proof
of Theorem 7, and we get a contradiction to (19), so we omit
the details.

Case I 2" V(t) < 0, for t > t,. Applying Lemma 1, we get
2" 2(#) > 0. Define the function v by

) (=2 )20 0

(41)
(Z(n—z) (t) )“

t>t

v(t) =

>

1

-1
Then v(t) < 0 for t > t,. Noting that r(£)|z" V(1) 2" (1)
is nonincreasing, we obtain

92"V <"V @), sz ()

Dividing (42) by r'/*(s) and integrating it from t to [ (I > t),
we have

1
(n-2) (n-2) Ja (n-1) 1
z 2 <z 2 (t) + rl (t)z 1 (t) J; rl/“—(s)ds' (43)

Letting I — oo in the above inequality, we get
02"+ 02"V o), (44)
which implies that

(1) 27 (8)
1< Wa(t), t>t), (45)
where § is defined as in Theorem 9. Hence, by (41), we obtain
-1<v@®)8“() <0, t=t,. (46)

Differentiating (41), we have
(r@) (=2 )" 2D (t))'
(Z(n—z) (t))"‘

ar (1) (=270 (1) 2D (1) 2 (1)
(Z(n—Z) (t))(x+1 '

v () =

(47)

5
From (22), we get
1Mﬂs}§%anﬂnm—%%anﬂﬂm
1 Y
% Bz (v (t))] (z(”‘z—)(t))“ (48)

ar (1) (=2 (0)" 20 (1) 2 (1)
(22 (1))*" '

On the other hand, by lim, , ,,z(t) # 0 and Lemma 3, we
obtain

Z(t) > 72202 (1) (49)

(n-2)!

that is, because of z"" ™V < 0,

A " e
zua»zajaf 202" (z (1)
A
>
(n-2)!

forevery0 < A < 1 andt > ¢t,. Then from (41), (48), and (50),
we have

(50)
772 (1) 2" (1),

V0 < [~ 0 - 50 0 )

2 (T (1)

1 —
_2_,,‘12 )" (z (t))] W

ar (1) (=270 )" 20 (0 200 (1)
(Z(”’Z) (t))oc+1

(51)

_ A * a(n-2)
< <(n_1)!>Q(t)T (t)

_ (%9 _ (a+1)/ex
ey O,

where Q is defined as in Theorem 7. Multiplying (51) by §*(t)
and integrating it from ¢, to t, we get

t a—1
8“(t)v(t)—8“(t1)v(t1)+(xj 0 (s)v(s)ds

| rl/a (S)

+ (L )“ r Q(5) "2 (5) 8% (s) ds (52)
(n-2)! t

L% (s) (a+1)/a
fot L P17 (5) (v (s))*™ds < 0.

Let

ad*(s) \ /"
(5rg) v,

) (53)

o o\ -\ Y1
B=<“261®Cw@»1y> .
a+1 ri/a(s) \ ri/a(s)




where y = (a+1)/a > 1. Applying the inequality in Lemma 5,
we obtain
ad* ! (s)
ri/e(s)

ad” (5) a+l)/a
(—v(s))—m<—v(s))‘ Y

(54)

= <ai1>“+lr1/a (sl)a(s)'

Therefore, it follows from (52) that

Fovw+ | () QT 08 @

a \*H! 1 (55)
_(oc+1) rl/“(s)é(s)]ds

<8 (t)v(ty).
From (39) and the above inequality, we get a contradiction to
(46). The proof is complete. O

Theorem 10. Assume that (H) and (3) hold. Furthermore,
assume that there exists a constant A, 0 < A < 1, and for every
constant M > 0 such that (35) is oscillatory. If, for sufficiently
large t| > t,, one has (39), where Q and h are defined as
in Theorem 7 and § is defined as in Theorem 9, then every
bounded solution of (1) is oscillatory or converges to zero.

4. Oscillation Criteria for 0 < p(f) <1

In this section, we assume that 0 < p(t) < L.

Theorem 11. Assume that (2) holds, there exists a constant A,
0 < A < 1, and, for every constant M > 0, there exists a positive
function p € C'([t,, 00), R), such that, for sufficiently larget, >
to

t — 00

lim sup J-t <p (s)Q(s)

_ r(s) (PI (S))Ml ds =00
(a+ D) (AMp ()2 ()7’ (5))* |

where
Q) = (1) {% ) + [k,q, (t)]l/k1 (k29 (t)]l/kz} >

&)= min{l-p(z,(1),1-p(r; (1),1-p(r, 1))},
(57)

and k, and k, are defined as in Theorem 7. Then every solution
of (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x.
Without loss of generality, we may assume that there exists
t, > t,, such that x(t) > 0, x(a(t)) > 0, and x(z(t)) > 0,
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for all t > t,. Similar to the proof of Lemma 2.3 in [19], there
exists t, > t, such that

z(t) >0, Z®>0 2" P®so  Z"@<o,

t>t,.
(58)

From the definition of z, we have
x)=z@t)-p®)x(c(t)2z@)-pt)z(o ()
>(1-p®)z @),

Since lim, _, ., 7(¢) = 00, there exists t, > t5, such that 7(¢) >
ty, t =1y, 80

@)= (1-paE®)z@®), t=t,  (60)
From (1), (59), and (60), we get

t>t, >t

(r® (")) +1- plr ) (0 =° ¢ 1)

+1=p(n ) 1 (02" (x (1)) )
+1-p(n () O ) <0,

t>t,.

For every 0 < A < 1, we define the function

(n=1) &
w(t)ZP(t)r(t)<§(AT(g;> , E>ty (62)

Then w(t) > 0, t > t,. Next differentiating (62), we obtain

z(n—l) () @ , (1’ (t) (Z(”_l) (t))a),
20ty ) * 2% (A (1))

(=" ®)Z O 1)
0

W (1) =p (O)r () (

—alp (t)r(t)
(63)

From (23), (61), and (62), we have

A0
t)

-
< (E(1)qo () +E () q, () 2P (x (1))

z(r(t) ) (64)
z (At (1))

W' (t)

w ()~ p(t)

+& M, (@) <

‘l"Vl—2 (t) T’ (lt/?x w(a+1)/lx (t) ,
(pOr®)

where & is defined as in Theorem 11. Setting
a=k& ©)q, 02 @),
b=kt (1) g, ()2 (T (1)),

- aAM

(65)
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by inequality (28), we get
g2 @) +& 1) g, (1) 2" (x (1))

> (& 1) g, 0 @ @)] ™
(66)
x [l (1) g, (£) 2" (x (1))

=& (1) [k1q, (t)]l/k1 (k2q, (t)]l/k2§

hence,

W (1) < /;T(tt))w(t) —p(H QM)
(67)

()7 (1) @D/

—aAM Ve
(p)r ()

t).

Let

n-2 ! 1/y
A= ((X/\ML)TU)> w (t)
(p () r ()™ ’

_ /(y-1)
B = P’(t) <0¢AM Tn_z (t) T’(t) ) (l/y) h >
yp(®) (p &) r ()"

wherey = (a+1)/a > 1. Applying the inequality in Lemma 5,
we obtain

(68)

p (1) ()T (1)
o) —alM — Lo (¢
p0 T o)
a+l (69)
r(0)(p' (1)
T (a+ DM (AMp (1) T2 (1) T (1)

Thus, by (67) and (69), we get

w'(t)S—<p(t)@

i ro (e ®)"
(a+ D' (AMp (1) T2 (1) 7' (1)) |
(70)

Integrating (70) from t, to ¢, we have

w(t)<w(t)

t J—
—L(MﬂQ@

. r©(p' )" d
@+ D OMp () 2 ()7 () )
(71)

Lettingt — oo in (71), we get a contradiction with (56). This
completes the proof of Theorem 11. O

Remark 12. From Theorem 11, we can obtain different con-
ditions for oscillation of all solutions of (1) with different
choices of p.

Theorem 13. Assume that (3) holds, assume that there exists
a constant A, 0 < A < 1, and, for every constant M > 0,
there exists a positive function p € Cl([to, 00), R), such that,
for sufficiently large t| > t,, (56) holds. If there exists a positive
functionn € Cl([to, 00), R), ﬂ'(t) > 0, such that

J:O <;1 (t)lr 5 j:l ((nA_N;)!T"_Z (s)8(z (s)))lx

1/a
X q(s)@ds) dt = oo,

LT(n@frU)Li(offiﬂgzé(”>a

1/«
X n(s)@ds) dt = oo,

(72)

(73)

where 8 is defined as in Theorem 9 and Q is defined as in
Theorem 11, then every solution of (1) is oscillatory or converges
to zero.

Proof. Suppose that (1) has a nonoscillatory solution x. We
may assume without loss of generality that there exists £, >
ty» such that x(t) > 0, x(o(t)) > 0, x(z(¢t)) > 0, and
z(t) > 0, for all t > t,. Furthermore, we assume that
lim, ,  x(t) # 0. Similar to the proof of Theorem 9, we
find that r(£)|z" Y (¢) Ia_lz(”fl) (t) is a nonincreasing function
on [t;,00) and there exist two possible cases of the sign of
Z70@).

Case . 12" V(t) > 0, for t > t,, then we go back to the proof
of Theorem 11, and we get a contradiction to (56), so we omit
the details.

Case IL. 2"V (t) < 0, for t > t,. Applying Lemma 1, we get
2"2(1) > 0,2'(t) > 00r 272 (t) > 0,2'(t) < 0.
-1
If 27 2(t) > 0, 2'(t) > 0. Since r(t)]z" V)" 2" V()
is nonincreasing, we obtain

r() 270 92" (s)

<r®]" 0|2 @) (74)

<r(t) ]2 ()2 (1),

fors >t > t; that s,

1/a
D (g s ( % ) (=2 ). (75)



Integrating (75) from ¢ to oo, we get

Z(n72) (t) > rl/Ot (t) (_Z(Vlfl) (t)) J~°0 ds > M§ (t) >

ri/e(s)
t>1,
(76)

where M = rl/“(tl)(—z("fl)(tl)). From (49) and the above
inequality, we obtain

zt)>M 728 (1) (77)

(n-2)!

Using (59) and (77) in (1) and noting that Z'(t) > 0, we have

~(ro] O @)
= g0 (1) x* (7 (8) + @, () % (7, (8) + g, () x” (7, (8))
> qo (1) (1= p (7 (1)) 2" (7 ()
+a,0) (1= p(1, )2 (1, (1)
+q, ) (1-p(r, )2 (v, (1)
> E (1) g, (1) 2" (1 (1) + & (1) q, () 2 (x (1))

+& () q, (1) 2" ((1)).
(78)

Setting

a=k& ) g 0w,
b=k& (1) g, 1) 2" (r (1)),

(79)

by inequality (28), we get
F 1) g, O)2F 1)+ (1) g, ()2 (1))
> [k&q, 02 )] " [kEq, 0 2z 1)] " (80)
> £ (1) [kyq, (0] [k, (0] 792" (r (1)

Therefore, combining (77), (78), and (80), we obtain

~(r@ ] @[ (t))’

(81)
_ A B @
> Q" (r (1) > ( M_ 205 (r (t))) Qw.
(n-2)!
Define the function u by
() =n@re ] o 2" 0
(82)

o
>

=@ (-="" )

t>t.
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Then u(t) < 0. Differentiating u(t) and from (81), we find that
u ()= 0)r®(-2""0)"
1 (r© (=" )")

<) (g0 ) x* (1, (0) + g, O (1, 0)  (83)

+q, (t) x" (7, (1)) )

AM n-2 : o)
_ _<mf O3 ®)) 10,

Integrating (83) from ¢, to t, we get

u(®)~ut,)
t S € 7)
= L ( (n/\—Ng)! T8 (S))> 1 (s) Q(s)ds.
Therefore,
—n®r @) (-2"" @)
® (85)
< - J:l ((HA_Ag)!Tn—Z (s)é (t (s))> 7 (s) mds;
that is,
20
< _( 1 Jt ( AM Tn—z (5)6(1- (S))>zx
— \n@®r ) ), \(n-2)! (86)
- 1/a
x n(s)Q(s)ds> .

Integrating the above inequality from ¢, to I (I > t;), we
obtain

2" () - 2" (1)

l 1 ‘ AM n-2 “«
= Jtl <11 t)r () L ((n oyt @ (5))>

1/
X n(s)@ds> dt.

(87)

Letting [ — oo and using (73) in (97), we have

lim; _, ,z" 2 (I) = —co, which is a contradiction with the fact
that 2" 2(¢) > 0.

Ifz"2(#) > 0,2/ (t) < 0. Because of lim, ,  x(t) # 0,

lim, _, . z(t) # 0. By Lemma 3, we obtain (49). Proceeding as
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in the proof of the above, (77) holds. Using (59) and (77) in
(1) and noting that z' () < 0, we have

~(ro e o)
= g0 (1) x* (7 (8) + @, () % (7, (8) + 4, () & (1 (8))
>qo () (1= p (7 (1)))"2" (7, ()
+a,0) (1= p(1, )2 (1, (1)
+q,(6) (1= p (1, (1))'2" (, (1)
> E () g, (1) 2" (1) + EF (1) q, () 2F (1)

+& (1) g, (1) 2" (¢).
(88)

Setting

a = k& ) q )2 1),
b =kt (t)q, (1) 2 (1),

(89)

by inequality (28), we get
F g0 O +8®)q )2 ()
> [k&q, 02 0] g, 02 O] 00
> & (1) [kygy (0] kg, 0]72% ).

Therefore, combining (77), (88), and (90), we obtain

- (r@le" @[ (t))’

AM « o1
>Q(1)z* (1) = ( t"_26(t)> Q).
(n-2)!
Define the function u by
u(®)=nOr® 2" O 2" )
(92)

o
>

=) r®(-z""®), t>t,.
Then
u' ()= Or @) (-2"" 1)
1@ (ro (=" 0))
<) (9 O (1 ®) +q O+ (1, (1) (93)
+q, () %" (7, (1)) )

= _< (n)L—Mz)!

t”‘zé(t)> 1 () Q).

Integrating from t, to t, we get

t( AM

- 2)'sn725(s)> 1(s) Q(s)ds. (94)

u(t)—u(tl)S—J-

t

Therefore,

~n®r® (=" )"

t * (95)
AM -
=" Jtl <ms ' (5)> 1 (s) Q (s)ds;
that is,
)
1 ! AM w2 a
S_<n(t)r(t) L <(n—2)!s S(s)) 6)

o 1/a
X n(s)Q(s)ds) .

Integrating the above inequality from t; to I (I > t;), we
obtain

2" () - 2" (t)

=" Jtl (q(t)lr 0) J: ((;jL—Mz)!Sn_z‘S (s))“ (97)

1/a
x1 (s) @ds> dt.

Letting I — oo and using (73) in (97), we have

lim;_, ooz(”_z) (I) = —00, which is a contradiction with the fact
that z"?(¢) > 0. This completes the proof. O
5. Example

In this section, we will give an example to illustrate
Theorem 11.

Example 1. Consider the even order neutral delay differential
equations with mixed nonlinearities:

<t6|z(”71) (t)|1/2z("71) (t))l + %|x (o (t))|1/2x (1o ()

1 _
+ b @ @) x (3 1) o

+ p% |x (7, )| x (r, (1)) = 0,
t>t,

where z(t) = x(t) + 1/2x(0(t)) and n is even integer.

Set r(t) = 1% p(t) = 1/2, qo(t) = 1/t, q,(t) = b/’
g,(t) = ¢/t y = 2, = 2/3, = 1/2, and O < 2/3. Then (2)
holds, k; = 3,and k, = 3/2.



10

Take p(t) = 1. It is easy to show that

t —_—
lim sup L p(s)Q(s)

t— o0 1

i rs) (o' )"
(a+ 1) (f L) p(s) T2 (s) T (5))"

t 1 3/2
= limsupj (—)
t— 00 ty 2

1 1 1/3 3 1 2/3
X{z*(’m) (5'@) ds = 0o

(99)

Hence, by Theorem 11, every solution of (98) is oscillatory.
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