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Sufficient conditions are obtained for the global attractivity of the following integrodifferential model of mutualism: 𝑑𝑁
1
(𝑡)/𝑑𝑡 =

𝑟
1
𝑁
1
(𝑡)[((𝐾

1
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0
𝐽
2
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2
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∞

0
𝐽
2
(𝑠)𝑁
2
(𝑡 − 𝑠)𝑑𝑠))−𝑁

1
(𝑡)], 𝑑𝑁

2
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2
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1
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(𝑡)], where 𝑟

𝑖
, 𝐾
𝑖
, and 𝛼

𝑖
, 𝑖 = 1, 2, are all positive constants. Consider 𝛼

𝑖
> 𝐾
𝑖
, 𝑖 = 1, 2. Consider

𝐽
𝑖
∈ 𝐶([0, +∞), [0, +∞)) and ∫∞

0
𝐽
𝑖
(𝑠)𝑑𝑠 = 1, 𝑖 = 1, 2. Our result shows that conditions which ensure the permanence of the

system are enough to ensure the global stability of the system. The result not only improves but also complements some existing
ones.

1. Introduction

Mutualism, one of the most important relationships in the
theory of ecology, however, was pointed out by Murray as
follows [1]: “this area has not been as widely sutdied as the
others even though its importance is comparable to that of
predator-prey and competition interactions.”

Traditional two species Lotka-Volterra take the form

𝑑𝑁
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𝐾
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2

𝐾
2
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21

𝑁
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𝐾
2

) .

(1)

Murray [1] gave detail analysis of the phase trajectories for
the above system. He also pointed out that the system has
certain drawback; one is the sensitivity between unbounded
growth and a finite positive steady state.Despite the drawback
of the system, since it is the most simple model on the
mutualism, scholars incorporated delays to the above system
and proposed the following system:

𝑑𝑥
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= 𝑥
1
(𝑡) [𝑟
1
− 𝑎
11
𝑥
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(2)

Chen et al. [2] had given two examples to show that under the
assumption 𝑎

11
𝑎
22
> 𝑎
12
𝑎
21
, a condition which could ensure

the global stability of the system without delay, the system
still admits unbounded solution. He and Gopalsamy [3] and
Mukherjee [4] tried to investigate the persistent and stability
property of the nonautonomous case of above system; how-
ever, in their main results, in addition to condition 𝑎

11
𝑎
22
>

𝑎
12
𝑎
21
, they further assumed that the density of one of the

species should be bounded from above, such an assumption
is by no means easy to verify. To overcome this difficulty,
Lu et al. [5, 6] and Nakata and Muroya [7] tried to give
restriction on the coefficients of the system or restriction on
the delay of the system, and some interesting results about the
permanence of Lotka-Volterra type mutualism system with
delay were obtained. Liu et al. [8] and Lu [9] also investigated
the positive periodic solution of the Lotka-Volterra type
mutualism model.

On the other hand, stimulated by the functional response
of the predator-prey system,Wright [10] proposed the follow-
ing two species mutualism model:

𝑑𝑁
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] .

(3)
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Obviously, the model could be revised as follows:

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝑟
1
𝑁[

𝐾
1
+ 𝛼
1
𝑀
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(4)

where 𝛼
1
= 𝐾
1
+ 𝑎
1
𝑇
ℎ1
, 𝛼
2
= 𝐾
2
+ 𝑎
2
𝑇
ℎ2
, and one could easily

see that 𝛼
𝑖
> 𝐾
𝑖
, 𝑖 = 1, 2.

It is well known that in a more realistic model the delay
effect should be an average over past populations.This results
in an equation with a distributed delay or an infinite delay.
Based on the model (4), Gopalsamy [11] further proposed the
following two species mutualism model:
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]
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(5)

However, the author did not investigate the dynamic behav-
iors of the system.

Recently, Li and Xu [12] proposed and studied the follow-
ing nonautonomous case of the system (5):
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− 𝑁
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,

(6)

where 𝑟
𝑖
, 𝐾
𝑖
, 𝛼
𝑖
, and 𝜎

𝑖
, 𝑖 = 1, 2, are continuous functions

bounded above and below by positive constants. Consider
𝛼
𝑖
> 𝐾
𝑖
, 𝑖 = 1, 2. Consider 𝐽

𝑖
∈ 𝐶([0, +∞), [0, +∞)) and

∫
∞

0
𝐽
𝑖
(𝑠)𝑑𝑠 = 1, 𝑖 = 1, 2. Under the assumption that 𝑟

𝑖
,

𝐾
𝑖
, and 𝛼

𝑖
, 𝑖 = 1, 2, are continuous periodic functions with

common period 𝜔. 𝛼
𝑖
> 𝐾
𝑖
, 𝑖 = 1, 2, 𝐽

𝑖
∈ 𝐶([0, +∞), [0, +∞))

and ∫∞
0
𝐽
𝑖
(𝑠)𝑑𝑠 = 1, 𝑖 = 1, 2. By applying the coincidence

degree theory, they showed that system (6) admits at least one
positive 𝜔-periodic solution. Chen and You [13] argued that
the general nonautonomous case ismore suitable. Concerned
with the persistent property of the system (6), by applying an
integral inequality (see Lemma 3 in the next section), they
obtained the following result.

TheoremA. The system (6) is always permanent.That is, there
exist constants 𝑚

𝑖
,𝑀
𝑖
, 𝑖 = 1, 2, which are independent of the

solution of the system (6), such that

𝑚
𝑖
≤ lim inf
𝑡→+∞

𝑁
𝑖
(𝑡) ≤ lim sup

𝑡→+∞

𝑁
𝑖
(𝑡) ≤ 𝑀

𝑖
, 𝑖 = 1, 2. (7)

Such a result is a roughly one, since it only tells us
that the solution is finally bounded above and below by
positive constants and there is no fine description of the stable
or unstable property of the solution, for example, whether
the delay of the system could induce the Hopf bifurcation
to period solution or not? Does the system admit some
kind of chaotic behaviors? Is it difficult to obtain sufficient
conditions which ensure the global attractivity of the positive
solution? Indeed, to the best of the authors’ knowledge, to
this day, still no scholars investigate the stability property
of the system (6), which is one of the most important
topics in the study of population dynamics. Noting that
system (6) is nonautonomous one and for such kind of
system, generally speaking, by constructing some suitable
Lyapunov functional, one could always obtain some sufficient
conditions which ensure the stability of the system; however,
the condition is not easy to verify [14]. This motivated us to
investigate the stability property of the system (5).

From the point of view of biology, in the sequel, we will
consider (5) together with the initial conditions

𝑁
𝑖
(𝑠) = 𝜙

𝑖
(𝑠) , 𝑠 ∈ (−∞, 0] , 𝑖 = 1, 2, (8)

where 𝜙
𝑖
∈ 𝐵𝐶
+ and

𝐵𝐶
+
= {𝜙 ∈ 𝐶 ((−∞, 0] , [0, +∞)) :

𝜙 (0) > 0, 𝜙 be bounded} ,

𝑖 = 1, 2.

(9)

From [15], system (5) has a unique positive solution
(𝑁
1
(𝑡),𝑁
2
(𝑡)) satisfying the initial condition (8).

The aimof this paper is, by further developing the analysis
technique of Chen and You [13] and de Oca and Vivas [16]
and using the differential inequality theory, to obtain a set of
sufficient conditions to ensure the global attractivity of the
system (5). More precisely, we will prove the following result.

Theorem 1. System (5) admits a unique positive equilibrium
(𝑁
∗

1
, 𝑁
∗

2
), which is globally attractive; that is, for any positive

solution (𝑁
1
(𝑡),𝑁
2
(𝑡)) of system (5) with the initial condition

(8), one has

lim
𝑡→+∞

𝑁
𝑖
(𝑡) = 𝑁

∗

𝑖
, 𝑖 = 1, 2. (10)

We will prove this theorem in the next section and then
give a brief discussion in Section 3. For more works on the
mutualism or cooperation system, one could refer to [12–15,
17–21] and the references cited therein.

2. Proof of the Main Result

Now let us state several lemmas which will be useful in the
proving of main result.
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Lemma 2. System (5) admits a unique positive equilibrium
(𝑁
∗

1
, 𝑁
∗

2
).

Proof. The positive equilibrium of the system (5) satisfies the
following equation:

𝐾
1
+ 𝛼
1
𝑁
2

1 + 𝑁
2

− 𝑁
1
= 0,

𝐾
2
+ 𝛼
2
𝑁
1

1 + 𝑁
1

− 𝑁
2
= 0.

(11)

System (11) admits a unique positive solution (𝑁
∗

1
, 𝑁
∗

2
),

where

𝑁
∗

1
=

−𝐴
2
+ √𝐴2

2
− 4𝐴
1
𝐴
3

2𝐴
1

,

𝑁
∗

2
=

−𝐵
2
+ √𝐵2
2
− 4𝐵
1
𝐵
3

2𝐵
1

,

𝐴
1
= 1 + 𝛼

2
,

𝐴
2
= 𝐾
2
− 𝐾
1
− 𝛼
2
𝛼
1
+ 1,

𝐴
3
= −𝛼
1
𝐾
2
− 𝐾
1
,

𝐵
1
= 1 + 𝛼

1
,

𝐵
2
= 𝐾
1
− 𝐾
2
− 𝛼
1
𝛼
2
+ 1,

𝐵
3
= −𝐾
2
− 𝛼
2
𝐾
1
.

(12)

This ends the proof of Lemma 2.

Following Lemma 3 is Lemma 3 of de Oca and Vivas [16].

Lemma 3. Let 𝑥 : 𝑅 → 𝑅 be a bounded nonnegative
continuous function, and let 𝑘 : [0, +∞) → (0, +∞) be a
continuous kernel such that ∫∞

0
𝑘(𝑠)𝑑𝑠 = 1. Then

lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim inf
𝑡→+∞

∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠

≤ lim sup
𝑡→+∞

∫

𝑡

−∞

𝑘 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠

≤ lim sup
𝑡→+∞

𝑥 (𝑡) .

(13)

As a direct corollary of Lemma 2.2 of Chen [22], we have
the following lemma.

Lemma 4. If 𝑎 > 0, 𝑏 > 0, and �̇� ≥ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and
𝑥(0) > 0, one has

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑏

𝑎
. (14)

If 𝑎 > 0, 𝑏 > 0 and �̇� ≤ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and 𝑥(0) > 0,
one has

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑏

𝑎
. (15)

Now we are in the position of proving the main result of
this paper.

Proof of Theorem 1. Let (𝑁
1
(𝑡),𝑁
2
(𝑡)) be any positive solu-

tion of the system (5) with initial condition (8). Similarly to
the analysis of (11)–(17) in [13], from the first equation of the
system (5) it follows that

𝑑𝑁
1
(𝑡)

𝑑𝑡
≤ 𝑁
1
(𝑡) [𝑟
1
(𝐾
1
+ 𝛼
1
) − 𝑟
1
𝑁
1
(𝑡)] . (16)

Thus, as a direct corollary of Lemma 4, according to (16), one
has

lim sup
𝑡→+∞

𝑁
1
(𝑡) ≤ 𝐾

1
+ 𝛼
1
, (17)

and so, from Lemma 3 we have

lim sup
𝑡→+∞

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 ≤ 𝐾

1
+ 𝛼
1
. (18)

Hence, for enough small 𝜀 > 0, it follows from (17) and (18)
that there exists a 𝑇

1
> 0 such that

𝑁
1
(𝑡) < 𝐾

1
+ 𝛼
1
+ 𝜀

def
= 𝑀
(1)

1
,

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 = ∫

𝑡

−∞

𝐽
1
(𝑡 − 𝑠)𝑁

1
(𝑠) 𝑑𝑠

≤ 𝐾
1
+ 𝛼
1
+ 𝜀

def
= 𝑀
(1)

1
for 𝑡 > 𝑇

1
.

(19)

Similarly, for above 𝜀 > 0, it follows from the second equation
of the system (5) that there exists a 𝑇

1
> 𝑇


1
such that

𝑁
2
(𝑡) < 𝐾

2
+ 𝛼
2
+ 𝜀

def
= 𝑀
(1)

2
,

∫

∞

0

𝐽
2
(𝑠)𝑁
2
(𝑡 − 𝑠) 𝑑𝑠 < 𝐾

2
+ 𝛼
2
+ 𝜀

def
= 𝑀
(1)

2

for 𝑡 > 𝑇
1
.

(20)

Noting that the function 𝑔
1
(𝑥) = ((𝐾

1
+ 𝛼
1
𝑥)/(1 + 𝑥)) (𝛼

1
>

𝐾
1
, 𝑥 ≥ 0) is a strictly increasing function, hence, (20)

together with the first equation of the system (5) implies

𝑑𝑁
1
(𝑡)

𝑑𝑡
< 𝑁
1
(𝑡) [

𝑟
1
(𝐾
1
+ 𝛼
1
𝑀
(1)

2
)

1 +𝑀
(1)

2

− 𝑟
1
𝑁
1
(𝑡)]

for 𝑡 > 𝑇
1
.

(21)

Therefore, by Lemma 4, we have

lim sup
𝑡→+∞

𝑁
1
(𝑡) ≤

𝐾
1
+ 𝛼
1
𝑀
(1)

2

1 +𝑀
(1)

2

. (22)

Thus, from Lemma 3 we have

lim sup
𝑡→+∞

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 ≤

𝐾
1
+ 𝛼
1
𝑀
(1)

2

1 +𝑀
(1)

2

. (23)
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That is, for 𝜀 > 0 defined by (19), there exists a 𝑇
2
> 𝑇
1
such

that

𝑁
1
(𝑡) <

𝐾
1
+ 𝛼
1
𝑀
(1)

2

1 +𝑀
(1)

2

+
𝜀

2

def
= 𝑀
(2)

1
> 0,

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 <

𝐾
1
+ 𝛼
1
𝑀
(1)

2

1 +𝑀
(1)

2

+
𝜀

2

def
= 𝑀
(2)

1
> 0

for 𝑡 > 𝑇
2
.

(24)

Similarly to the analysis of (22)–(24), from (19) and the
second equation of the system (5), there exists a 𝑇

2
> 𝑇


2
such

that

𝑁
2
(𝑡) <

𝐾
2
+ 𝛼
2
𝑀
(1)

1

1 +𝑀
(1)

1

+
𝜀

2

def
= 𝑀
(2)

2
> 0,

∫

∞

0

𝐽
2
(𝑠)𝑁
2
(𝑡 − 𝑠) 𝑑𝑠 <

𝐾
2
+ 𝛼
2
𝑀
(1)

1

1 +𝑀
(1)

1

+
𝜀

2

def
= 𝑀
(2)

2
> 0

for 𝑡 > 𝑇
2
.

(25)

Since the function 𝑔
1
(𝑥) = ((𝐾

1
+ 𝛼
1
𝑥)/(1 + 𝑥)) (𝛼

1
> 𝐾
1
,

𝑥 ≥ 0) is a strictly increasing function, one could easily see
that 𝑔(𝑥) ≥ 𝑔(0) = 𝐾

1
, and so, from the first equation of the

system (5), it follows that

𝑑𝑁
1
(𝑡)

𝑑𝑡
≥ 𝑁
1
(𝑡) [𝑟
1
𝐾
1
− 𝑟
1
𝑁
1
(𝑡)] . (26)

Thus, as a direct corollary of Lemma 4, according to (25), one
has

lim inf
𝑡→+∞

𝑁
1
(𝑡) ≥ 𝐾

1
, (27)

and so, from Lemma 3, we have

lim inf
𝑡→+∞

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 ≥ 𝐾

1
. (28)

Hence, for enough small 𝜀 > 0 (𝜀 < (1/2)min{𝐾
1
, 𝐾
2
}), it

follows from (27) and (28) that there exists a 𝑇
3
> 0 such that

𝑁
1
(𝑡) > 𝐾

1
− 𝜀

def
= 𝑚
(1)

1
,

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 ≥ 𝐾

1
− 𝜀

def
= 𝑚
(1)

1

for 𝑡 > 𝑇
3
.

(29)

Similarly, for above 𝜀 > 0, it follows from the second equation
of the system (5) that there exists a 𝑇

3
> 𝑇


3
such that

𝑁
2
(𝑡) > 𝐾

2
− 𝜀

def
= 𝑚
(1)

2
,

∫

∞

0

𝐽
2
(𝑠)𝑁
2
(𝑡 − 𝑠) 𝑑𝑠 > 𝐾

2
− 𝜀

def
= 𝑚
(1)

2

for 𝑡 > 𝑇
3
.

(30)

Noting that the function 𝑔
1
(𝑥) = ((𝐾

1
+ 𝛼
1
𝑥)/(1 + 𝑥)) (𝛼

1
>

𝐾
1
) is a strictly increasing function, hence, (30) together with

the first equation of the system (5) implies

𝑑𝑁
1
(𝑡)

𝑑𝑡
> 𝑁
1
(𝑡) [

𝑟
1
(𝐾
1
+ 𝛼
1
𝑚
(1)

2
)

1 + 𝑚
(1)

2

− 𝑟
1
𝑁
1
(𝑡)]

for 𝑡 > 𝑇
3
.

(31)

Therefore, by Lemma 4, we have

lim inf
𝑡→+∞

𝑁
1
(𝑡) ≥

𝐾
1
+ 𝛼
1
𝑚
(1)

2

1 + 𝑚
(1)

2

. (32)

Thus, from Lemma 3 we have

lim inf
𝑡→+∞

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 ≥

𝐾
1
+ 𝛼
1
𝑚
(1)

2

1 + 𝑚
(1)

2

. (33)

That is, there exists a 𝑇
4
> 𝑇
3
such that

𝑁
1
(𝑡) >

𝐾
1
+ 𝛼
1
𝑚
(1)

2

1 + 𝑚
(1)

2

−
𝜀

2

def
= 𝑚
(2)

1
> 0,

∫

∞

0

𝐽
1
(𝑠)𝑁
1
(𝑡 − 𝑠) 𝑑𝑠 >

𝐾
1
+ 𝛼
1
𝑚
(1)

2

1 + 𝑚
(1)

2

−
𝜀

2

def
= 𝑚
(2)

1
> 0

for 𝑡 > 𝑇
4
.

(34)

Similarly to the analysis of (32)–(34), from (28) and the
second equation of the system (5), there exists a 𝑇

4
> 𝑇


4
such

that

𝑁
2
(𝑡) >

𝐾
2
+ 𝛼
2
𝑚
(1)

1

1 + 𝑚
(1)

1

−
𝜀

2

def
= 𝑚
(2)

2
> 0,

∫

∞

0

𝐽
2
(𝑠)𝑁
2
(𝑡 − 𝑠) 𝑑𝑠 >

𝐾
2
+ 𝛼
2
𝑚
(1)

1

1 + 𝑚
(1)

1

−
𝜀

2

def
= 𝑚
(2)

2
> 0

for 𝑡 > 𝑇
4
.

(35)

One could easily see that

𝑀
(2)

1
=
𝐾
1
+ 𝛼
1
𝑀
(1)

2

1 +𝑀
(1)

2

+
𝜀

2
< 𝐾
1
+ 𝛼
1
+ 𝜀 = 𝑀

(1)

1
;

𝑀
(2)

2
=
𝐾
2
+ 𝛼
2
𝑀
(1)

1

1 +𝑀
(1)

1

+
𝜀

2
< 𝐾
2
+ 𝛼
2
+ 𝜀 = 𝑀

(1)

2
;

𝑚
(2)

1
=
𝐾
1
+ 𝛼
1
𝑚
(1)

2

1 + 𝑚
(1)

2

−
𝜀

2
> 𝐾
1
− 𝜀 = 𝑚

(1)

1
;

𝑚
(2)

2
=
𝐾
2
+ 𝛼
2
𝑚
(1)

1

1 + 𝑚
(1)

1

−
𝜀

2
> 𝐾
2
− 𝜀 = 𝑚

(1)

2
.

(36)
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Repeating the above procedure, we get four sequences𝑀(𝑛)
𝑖
,

𝑚
(𝑛)

𝑖
, 𝑖 = 1, 2, 𝑛 = 1, 2, . . ., such that for 𝑛 ≥ 2

𝑀
(𝑛)

1
=
𝐾
1
+ 𝛼
1
𝑀
(𝑛−1)

2

1 +𝑀
(𝑛−1)

2

+
𝜀

𝑛
;

𝑀
(𝑛)

2
=
𝐾
2
+ 𝛼
2
𝑀
(𝑛−1)

1

1 +𝑀
(𝑛−1)

1

+
𝜀

𝑛
;

𝑚
(𝑛)

1
=
𝐾
1
+ 𝛼
1
𝑚
(𝑛−1)

2

1 + 𝑚
(𝑛−1)

2

−
𝜀

𝑛
;

𝑚
(𝑛)

2
=
𝐾
2
+ 𝛼
2
𝑚
(𝑛−1)

1

1 + 𝑚
(𝑛−1)

1

−
𝜀

𝑛
.

(37)

Obviously,

𝑚
(𝑛)

𝑖
< 𝑁
𝑖
(𝑡) < 𝑀

(𝑛)

𝑖
, for 𝑡 ≥ 𝑇

2𝑛
, 𝑖 = 1, 2. (38)

We claim that sequences 𝑀(𝑛)
𝑖
, 𝑖 = 1, 2 are nonincreasing

and sequences𝑚(𝑛)
𝑖
, 𝑖 = 1, 2 are nondecreasing. To prove this

claim, we will carry out by induction. Firstly, from (36) we
have

𝑀
(2)

𝑖
< 𝑀
(1)

𝑖
, 𝑚
(2)

𝑖
> 𝑚
(1)

𝑖
, 𝑖 = 1, 2. (39)

Let us assume now that our claim is true for 𝑛; that is,

𝑀
(𝑛)

𝑖
< 𝑀
(𝑛−1)

𝑖
, 𝑚
(𝑛)

𝑖
> 𝑚
(𝑛−1)

𝑖
, 𝑖 = 1, 2. (40)

Again from the strict increasing of the function𝑔
𝑖
(𝑥) = ((𝐾

𝑖
+

𝛼
𝑖
𝑥)/(1 + 𝑥)) (𝛼

𝑖
> 𝐾
𝑖
, 𝑖 = 1, 2), we immediately obtain

𝑀
(𝑛+1)

1
=
𝐾
1
+ 𝛼
1
𝑀
(𝑛)

2

1 +𝑀
(𝑛)

2

+
𝜀

𝑛 + 1

<
𝐾
1
+ 𝛼
1
𝑀
(𝑛−1)

2

1 +𝑀
(𝑛−1)

2

+
𝜀

𝑛
= 𝑀
(𝑛)

1
;

𝑀
(𝑛+1)

2
=
𝐾
2
+ 𝛼
2
𝑀
(𝑛)

1

1 +𝑀
(𝑛)

1

+
𝜀

𝑛 + 1

<
𝐾
2
+ 𝛼
2
𝑀
(𝑛−1)

1

1 +𝑀
(𝑛−1)

1

+
𝜀

𝑛
= 𝑀
(𝑛)

2
;

𝑚
(𝑛+1)

1
=
𝐾
1
+ 𝛼
1
𝑚
(𝑛)

2

1 + 𝑚
(𝑛)

2

−
𝜀

𝑛 + 1

>
𝐾
1
+ 𝛼
1
𝑚
(𝑛−1)

2

1 + 𝑚
(𝑛−1)

2

−
𝜀

𝑛
= 𝑚
(𝑛)

1
;

𝑚
(𝑛+1)

2
=
𝐾
2
+ 𝛼
2
𝑚
(𝑛)

1

1 + 𝑚
(𝑛)

1

−
𝜀

𝑛 + 1

>
𝐾
2
+ 𝛼
2
𝑚
(𝑛−1)

1

1 + 𝑚
(𝑛−1)

1

−
𝜀

𝑛
= 𝑚
(𝑛)

2
.

(41)

Therefore,

lim
𝑡→+∞

𝑀
(𝑛)

𝑖
= 𝑁
𝑖
, lim
𝑡→+∞

𝑚
(𝑛)

𝑖
= 𝑁
𝑖
, 𝑖 = 1, 2. (42)

Letting 𝑛 → +∞ in (37), we obtain

𝑁
1
=
𝐾
1
+ 𝛼
1
𝑁
2

1 + 𝑁
2

, 𝑁
2
=
𝐾
2
+ 𝛼
2
𝑁
1

1 + 𝑁
1

,

𝑁
1
=
𝐾
1
+ 𝛼
1
𝑁
2

1 + 𝑁
2

, 𝑁
2
=
𝐾
2
+ 𝛼
2
𝑁
1

1 + 𝑁
1

(43)

and (43) shows that (𝑁
1
, 𝑁
2
) and (𝑁

1
, 𝑁
2
) are solutions

of (11). By Lemma 2, (11) has a unique positive solution
𝐸
∗
(𝑁
∗

1
, 𝑁
∗

2
). Hence, we conclude that

𝑁
𝑖
= 𝑁
𝑖
= 𝑁
∗

𝑖
, 𝑖 = 1, 2; (44)

that is,

lim
𝑡→+∞

𝑁
𝑖
(𝑡) = 𝑁

∗

𝑖
𝑖 = 1, 2. (45)

Thus, the unique interior equilibrium 𝐸
∗
(𝑁
∗

1
, 𝑁
∗

2
) is globally

attractive. This completes the proof of Theorem 1.

3. Discussion

As was pointed out in the introduction section, for Lotka-
Volterra type mutualism system, conditions which ensure
the globally stability of the system are not so easily verified
[3, 4]. In this paper, we study the stability property of the
integrodifferential model of mutualism (5). By applying the
iterative technique, we obtain a set of sufficient conditions
which guarantee the global attractivity of the coexistence
equilibrium. Our result (Theorem 1) shows that the condi-
tions which ensure the permanence of the system are enough
to ensure the global attractivity of the system.Thenewfinding
of this paper is that we found the iterative bound of the
solution, such a finding is not detected by Chen and You [13].
Based on this finding, it is possible to obtain the subtle result
about the stability of the system. We mention here that we
did not consider the delay in the intraspecific competition;
whether such kind of delay could induce bifurcation or not is
still unknown; we leave this for future study.
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