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The main purpose of this paper is to study the periodicity and global asymptotic stability of a generalized Lotka-Volterra’s
competition system with delays. Some sufficient conditions are established for the existence and stability of periodic solution of
such nonlinear differential equations. The approaches are based on Mawhin’s coincidence degree theory, matrix spectral theory,
and Lyapunov functional.

1. Introduction and Motivation

In the past few decades, differential equations have been
used in the study of population dynamics, ecology and
epidemiology, malaria transmission, and so forth (see, e.g.,
[1–10]). One of the rudimentary population systems is the
nonautonomous 𝑛-species competitive model:

̇𝑦
𝑖 (

𝑡) = 𝑦
𝑖 (

𝑡)
[

[

𝑏
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑦

𝑗 (𝑡)
]

]

, 𝑖 = 1, 2, . . . , 𝑛.

(1)

Based on Mawhin’s coincidence degree theory, spectral the-
ory, and novel estimation techniques for the priori bounds of
unknown solutions to the equation 𝐿𝑥 = 𝜆𝑁𝑥, Xia and Han
[8] studied the existence and stability of periodic solution for
(1). But model (1) is doubted by Gilpin and Ayala [11], they
thought that the model is not reasonable enough. In order to
fit data in the experiments conducted in Ayala et al. [12] and
to yield significantlymore accurate results on the competitive

model, Chen [13] proposed a more complicated model as
follows:

̇𝑦
𝑖 (

𝑡) = 𝑦
𝑖 (

𝑡)
[

[

𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑦

𝛼𝑖𝑗

𝑗
(𝑡)

]

]

, 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝛼
𝑖
provides a nonlinear measure of intraspecific

interference and 𝛼
𝑖𝑗

provides a measure of interspecific
interference. Chen studied the permanence of (2) by average
method. For the sake of convenience, in what follows, the
new factor introduced by Gilpin and Ayala is called Gilpin-
Ayala effect. On the other hand, many scholars think that the
delayed models are more realistic. Because time delays may
lead to oscillation, bifurcation, chaos, and instability which
may be harmful to a system. In fact, May [14] has shown that
if a time delay is incorporated into the resource limitation
of the logistic equation, then it has destabilizing effect on
the stability of the system (also see Cooke and Grossman
[15]). But sometimes, the delays may be harmless under some
restriction and this is more important in some sense (e.g.,
see [16]). A very basic and important ecological problem in
the study of multispecies population dynamics concerns the
global existence and global asymptotic stability of positive
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periodic solutions. It is doubted whether the existence and
stability of periodic solutions can be affected by the delays or
Gilpin-Ayala effect. For this reason, in the present paper, we
consider the Gilpin-Ayala type delayed system as follows:

̇𝑦
𝑖 (

𝑡) = 𝑦
𝑖 (

𝑡)
[

[

𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑦

𝛼𝑖𝑗

𝑗
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑦

𝛽𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
)
]

]

, 𝑖 = 1, 2, . . . , 𝑛,

(3)

where 𝑦
𝑖
is the population density of the 𝑖th species; 𝑟

𝑖

is the intrinsic exponential growth rate of the 𝑖th species;
𝑎
𝑖𝑗
, 𝑏

𝑖𝑗
measure the amount of competition between the

𝑖th species and the 𝑗th species (𝑖 ̸= 𝑗); and 𝛼
𝑖𝑗
, 𝛽

𝑖𝑗
provide

a nonlinear measure of intraspecific interference. For the
point of biological view, the coefficients are assumed to be
continuous 𝜔-periodic functions; we always assume that 𝑟

𝑖
,

𝑎
𝑖𝑗
, 𝑏

𝑖𝑗
, 𝜏

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, are nonnegative and 𝑎

𝑖𝑖
, 𝑏

𝑖𝑖
are

strictly positive. And system (3) is supplemented with the
initial condition

𝑦
𝑖 (

𝑠) = 𝜙
𝑖 (

𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝜙
𝑖 (

0) > 0, 𝑖 = 1, 2, . . . , 𝑛,

(4)

where 𝜏 = max
1≤𝑖≤𝑛

{𝜏
𝑖𝑗
}, 𝜙 = (𝜙

1
, . . . , 𝜙

𝑛
) ∈ BC([−𝜏, 0],R𝑛

+
),

and BC is the set of all bounded continuous functions from
[−𝜏, 0] into R𝑛

+
. It is easy to see that for such given initial

value condition, the corresponding solution of (3) remains
positive for all 𝑡 ≥ 0. The purpose of this paper is to obtain
some new and interesting criteria for the existence and global
asymptotic stability of periodic solution of system (3).

The structure of this paper is as follows. In Section 2, some
new and interesting sufficient conditions for the existence
of periodic solution of system (3) are obtained. Section 3 is
devoted to examining the stability of this periodic solution.
In Section 4, some corollaries and discussion are presented.
Finally, some examples and their simulations are given to
show the effectiveness and feasibility of our results.

2. Existence of Periodic Solutions

In this section, we will obtain some sufficient conditions for
the existence of periodic solution of system (3).

2.1. Preliminaries on the Matrix Theory and Degree Theory.
For convenience, we introduce some notations, definitions,
and lemmas. If 𝑓(𝑡) is a continuous 𝜔-periodic function
defined on R, denote

𝑓 = min
𝑡∈[0,𝜔]





𝑓 (𝑡)





, 𝑓 = max

𝑡∈[0,𝜔]





𝑓 (𝑡)





,

𝑚 (𝑓) =

1

𝜔

∫

𝜔

0

𝑓 (𝑡) 𝑑𝑡.

(5)

We use 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛 to denote a column vector,
D = (𝑑

𝑖𝑗
)
𝑛×𝑛

is an 𝑛 × 𝑛 matrix,D𝑇 denotes the transpose of

D, and 𝐸
𝑛
is the identity matrix of size 𝑛. A matrix or vector

D > 0 (resp.,D ≥ 0) means that all entries ofD are positive
(resp., nonnegative). For matrices or vectorsD and 𝐸,D > 𝐸

(resp.,D ≥ 𝐸) means thatD − 𝐸 > 0 (resp.,D − 𝐸 ≥ 0). We
also denote the spectral radius of the matrixD by 𝜌(D).

If V = (V
1
, V

2
, . . . , V

𝑛
)
𝑇

∈ R𝑛, then we have a choice of
vector norms in R𝑛; for instance, ‖V‖

1
, ‖V‖

2
, and ‖V‖

∞
are the

commonly used norms, where

‖V‖1 =

𝑛

∑

𝑗=1





V
𝑖





,

‖V‖2 =

{

{

{

𝑛

∑

𝑗=1





V
𝑖






2
}

}

}

1/2

,

‖V‖∞ = max
1≤𝑖≤𝑛





V
𝑖





.

(6)

We recall the following norms of matrices induced by respec-
tive vector norms. For instance, if A = (𝑎

𝑖𝑗
)
𝑛×𝑛

, the norm of
the matrix ‖A‖ induced by a vector norm ‖ ⋅ ‖ is defined by

‖A‖𝑝
= sup

V∈R𝑛,V ̸= 0

‖AV‖𝑝
‖V‖𝑝

= sup
‖V‖𝑝=1

‖AV‖𝑝 = sup
‖V‖𝑝≤1

‖AV‖𝑝. (7)

In particular one can show that ‖A‖
1

= max
1≤𝑗≤𝑛

∑
𝑛

𝑖=1
|𝑎

𝑖𝑗
|

(column norm) and ‖A‖
2

= [𝜆max(A
𝑇A)]

1/2
= [max .

eigenvalue of (A𝑇A)]
1/2, ‖A‖

∞
= max

1≤𝑖≤𝑛
∑

𝑛

𝑗=1
|𝑎

𝑖𝑗
| (row

norm).

Definition 1 (see [17, 18]). Let 𝑋, 𝑍 be normed real Banach
spaces, let 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑍 be a linear mapping, and
let 𝑁 : 𝑋 → 𝑍 be a continuous mapping. The mapping 𝐿

is called a Fredholm mapping of index zero if dimKer 𝐿 =

codim Im 𝐿 < +∞ and Im 𝐿 is closed in 𝑍. If 𝐿 is a Fredholm
mapping of index zero and there exist continuous projectors
𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑍 → 𝑍 such that Im𝑃 = Ker 𝐿 and
Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄), it follows that 𝐿 | dom 𝐿 ∩Ker𝑃 :

(𝐼 − 𝑃)𝑋 → Im 𝐿 is invertible. We denote the inverse of that
map by𝐾

𝑃
. IfΩ is an open bounded subset of𝑋, themapping

𝑁 will be called 𝐿-compact on Ω if 𝑄𝑁(Ω) is bounded and
𝐾

𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact. Since Im𝑄 is isomorphic

to Ker 𝐿, there exists an isomorphism 𝐽 : Im𝑄 → Ker 𝐿.

Definition 2 (see [17, 18]). Let Ω ⊂ R𝑛 be open and bounded,
𝑓 ∈ 𝐶

1
(Ω,R𝑛

) ∩ 𝐶(Ω,R𝑛
), and 𝑦 ∈ R𝑛

/𝑓(𝜕Ω ∪ 𝑁
𝑓
); that is,

𝑦 is a regular value of 𝑓. Here, 𝑁
𝑓

= {𝑥 ∈ Ω : 𝐽
𝑓
(𝑥) = 0},

the critical set of 𝑓, and 𝐽
𝑓
is the Jacobian of 𝑓 at 𝑥. Then the

degree deg{𝑓, Ω, 𝑦} is defined by

deg {𝑓, Ω, 𝑦} = ∑

𝑥∈𝑓
−1
(𝑦)

sgn 𝐽
𝑓 (𝑥) (8)

with the agreement that ∑ 𝜙 = 0. For more details about
degree theory, the reader is referred to [18].
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Lemma 3 (continuation theorem [17]). LetΩ ⊂ 𝑋 be an open
and bounded set. Let 𝐿 be a Fredholm mapping of index zero
and let 𝑁 be 𝐿-compact on Ω (i.e., 𝑄𝑁(Ω) is bounded and
𝐾

𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact). Assume,

(i) for each 𝜆 ∈ (0, 1), 𝑥 ∈ 𝜕Ω ∩ Dom𝐿 and 𝐿𝑥 ̸= 𝜆𝑁𝑥;
(ii) for each 𝑥 ∈ 𝜕Ω ∩Ker 𝐿, 𝑄𝑁𝑥 ̸= 0 and deg{𝐽𝑄𝑁, Ω ∩

Ker 𝐿, 0} ̸= 0.

Then 𝐿𝑥 = 𝑁𝑥 has at least one solution in Ω ∩ Dom𝐿.

Definition 4 (see [19, 20]). A real 𝑛 × 𝑛 matrix A = (𝑎
𝑖𝑗
) is

said to be an 𝑀-matrix if 𝑎
𝑖𝑗

≤ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗, and
A−1

≥ 0.

Lemma 5 (see [19, 20]). Let A ≥ 0 be an 𝑛 × 𝑛 matrix and
𝜌(A) < 1; then (𝐸

𝑛
− A)

−1
≥ 0, where 𝐸

𝑛
denotes the identity

matrix of size 𝑛.

In what follows, we will introduce some function spaces
and their norms, which are valid throughout this paper.
Denote

𝑋 = {𝑥 (𝑡) = (𝑥
1 (𝑡) , 𝑥

2 (𝑡) , . . . , 𝑥
𝑛 (𝑡))

𝑇

∈ 𝐶
1

(R,R𝑛
) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡) ∀𝑡 ∈ R} ,

𝑍 = {𝑥 (𝑡) = (𝑥
1 (𝑡) , 𝑥

2 (𝑡) , . . . , 𝑥
𝑛 (𝑡))

𝑇

∈ 𝐶 (R,R𝑛
) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡) ∀𝑡 ∈ R} .

(9)

And, the norms are given by




𝑥
𝑖 (

𝑡)



0

= max
𝑡∈[0,𝜔]





𝑥
𝑖 (

𝑡)




,





𝑥
𝑖 (

𝑡)



1

=




𝑥
𝑖 (

𝑡)



0

+




�̇�
𝑖 (

𝑡)



0

𝑖 = 1, 2, . . . , 𝑛,

‖𝑥 (𝑡)‖0
= max

1≤𝑖≤𝑛

{




𝑥
𝑖 (

𝑡)



0

} ,

‖𝑥(𝑡)‖1
= ‖𝑥(𝑡)‖0

+ ‖�̇�(𝑡)‖0
= max

1≤𝑖≤𝑛

{




𝑥
𝑖 (

𝑡)



1

} .

(10)

Obviously, 𝑋 and 𝑍, respectively, endowed with the norms
‖ ⋅ ‖

1
and ‖ ⋅ ‖

0
are Banach spaces.

2.2. Result on the Existence of Periodic Solutions

Theorem 6. Assume that the following conditions hold:

(H
1
) the system of algebraic equations

𝑓 (𝑢) := (𝑚(𝑟
𝑖
) −

𝑛

∑

𝑗=1

𝑚(𝑎
𝑖𝑗
)𝑢

𝛼𝑖𝑗

𝑗
−

𝑛

∑

𝑗=1

𝑚(𝑏
𝑖𝑗
)𝑢

𝛽𝑖𝑗

𝑗
)

𝑛×1

= 0

(11)

has finite solutions (𝑢
∗

1
, 𝑢

∗

2
, . . . , 𝑢

∗

𝑛
)
𝑇

∈ R𝑛

+
with 𝑢

∗

𝑖
> 0

and ∑
𝑢
∗ sgn 𝐽

𝑓
(𝑢

∗
) ̸= 0;

(H
2
) 𝛼

𝑗𝑖
≤ 𝛼

𝑖𝑖
, 𝛽

𝑗𝑖
≤ 𝛼

𝑖𝑖
(𝑗 ̸= 𝑖), 𝛼

𝑖𝑖
= 𝛽

𝑖𝑖
, 𝜏

𝑖𝑖
≡ 0, 𝑖, 𝑗 =

1, 2, . . . , 𝑛;

(H
3
) 𝜌(K) < 1, whereK = (Γ

𝑖𝑗
)
𝑛×𝑛

and

Γ
𝑖𝑗

=

{
{
{

{
{
{

{

0, 𝑖 = 𝑗,

(𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗
)

(𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

)

, 𝑖 ̸= 𝑗.

(12)

Then system (3) has at least one positive 𝜔-periodic solution.

Proof. Note that every solution 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . ,

𝑦
𝑛
(𝑡))

𝑇 of system (3) with the initial value condition is
positive. Make the change of variables

𝑦
𝑖 (

𝑡) = 𝑒
𝑥𝑖(𝑡)

, 𝑖 = 1, 2, . . . , 𝑛. (13)

Then system (3) is the same as

�̇�
𝑖 (

𝑡) = 𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)
, 𝑖 = 1, 2, . . . , 𝑛.

(14)

Obviously, system (3) that has at least one𝜔-periodic solution
is equivalent to system (14) that has at least one 𝜔-periodic
solution. To proveTheorem 6, ourmain tasks are to construct
the operators (i.e., 𝐿,𝑁, 𝑃, and𝑄) appearing in Lemma 3 and
to find an appropriate open setΩ satisfying conditions (i) and
(ii) in Lemma 3. To this end, we proceed with three steps.

Step 1. In this step, we intend to construct the operators
appearing in Lemma 3 and verify that they satisfy the condi-
tions of Lemma 3. For any𝑥(𝑡) ∈ 𝑋, in view of the periodicity,
it is easy to check that

Δ
𝑖 (

𝑥, 𝑡) = 𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)
∈ 𝑍.

(15)

And define the operators 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑍 and 𝑁 :

𝑋 → 𝑍 as follows:

𝑋 ∋ 𝑥 (𝑡) → (𝐿𝑥) (𝑡) =

𝑑𝑥 (𝑡)

𝑑𝑡

∈ 𝑍,

𝑋 ∋ 𝑥 (𝑡) → (𝑁𝑥) (𝑡)

= ((𝑁𝑥)
1
(𝑡), (𝑁𝑥)2

(𝑡), . . . , (𝑁𝑥)
𝑛 (𝑡))

𝑇
∈ 𝑍,

(16)

where

(𝑁𝑥)𝑖 (
𝑡) = Δ

𝑖 (
𝑥, 𝑡) , 𝑖 = 1, 2, . . . , 𝑛. (17)
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Define, respectively, the projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑍 →

𝑍 by

𝑃𝑥 (𝑡) =

1

𝜔

∫

𝜔

0

𝑥 (𝑡) 𝑑𝑡, 𝑄𝑧 (𝑡) =

1

𝜔

∫

𝜔

0

𝑧 (𝑡) 𝑑𝑡,

𝑥 ∈ 𝑋, 𝑧 ∈ 𝑍.

(18)

It can be found that the domain of 𝐿 in𝑋 is actually the whole
space, and

Ker 𝐿 = {𝑥 (𝑡) ∈ 𝑋 | 𝐿𝑥 (𝑡) = 0, i.e., �̇� (𝑡) = 0} = R𝑛
,

Im 𝐿 = {𝑧 (𝑡) ∈ 𝑍 | ∫

𝜔

0

𝑧 (𝑡) 𝑑𝑡 = 0} is closed in 𝑍.

(19)

Moreover, 𝑃, 𝑄 are continuous operators such that

Im𝑃 = R𝑛
= Ker 𝐿, Im 𝐿 = Ker𝑄 = Im (𝐼 − 𝑄) ,

dim Ker 𝐿 = codim Im 𝐿 = 𝑛 < +∞.

(20)

It follows that 𝐿 is a Fredholm mapping of index zero.
Furthermore, the generalized inverse (to 𝐿) 𝐾

𝑃
: Im 𝐿 →

Dom𝐿 ∩ Ker𝑃 exists, which is given by

𝐾
𝑃

(𝑦) = ∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 𝑑𝑡. (21)

Then 𝑄𝑁 : 𝑋 → 𝑍 and 𝐾
𝑃
(𝐼 − 𝑄)𝑁 : 𝑋 → 𝑋 are defined

by

𝑄𝑁𝑥 = (

1

𝜔

∫

𝜔

0

Δ
1 (𝑥, 𝑡) 𝑑𝑡,

1

𝜔

∫

𝜔

0

Δ
2 (𝑥, 𝑡) 𝑑𝑡, . . . ,

1

𝜔

∫

𝜔

0

Δ
𝑛
(𝑥, 𝑡)𝑑𝑡)

𝑇

,

𝐾
𝑃 (𝐼 − 𝑄) 𝑁𝑥 = (Ψ

1 (𝑥, 𝑡) , Ψ
2 (𝑥, 𝑡) , . . . , Ψ

𝑛 (𝑥, 𝑡))
𝑇
,

(22)

where

Ψ
𝑘 (𝑥, 𝑡) = ∫

𝑡

0

Δ
𝑘 (𝑥, 𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

Δ
𝑘 (𝑥, 𝑠) 𝑑𝑠 𝑑𝑡

− (

𝑡

𝜔

−

1

2

) ∫

𝜔

0

Δ
𝑘 (𝑥, 𝑠) 𝑑𝑠, 𝑘 = 1, 2, . . . , 𝑛.

(23)

Clearly, 𝑄𝑁 and 𝐾
𝑃
(𝐼 − 𝑄)𝑁 are continuous. Now we turn to

show the fact that for any open bounded set Ω ⊂ 𝑋, denoted
by

Ω = {𝑥 (𝑡) ∈ 𝑋 |




𝑥
𝑖 (

𝑡)



1

=




𝑥
𝑖 (

𝑡)



0

+




�̇�
𝑖 (

𝑡)



0

< ℎ
𝑖
} ,

(24)

the mapping 𝑁 is 𝐿-compact on Ω. Here, the constants ℎ
𝑖

are independent of the choice of 𝑥(𝑡). In view of Definition 1,
to show the above fact, it suffices to show that 𝑄𝑁(Ω) is
bounded and 𝐾

𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact. We first

arrive at




(𝑄𝑁𝑥)𝑖




0

=










1

𝜔

∫

𝜔

0

Δ
𝑖 (

𝑥, 𝑡) 𝑑𝑡








0

≤




Δ

𝑖 (
𝑥, 𝑡)




0

:= 𝑀
𝑖
,

∀𝑥 ∈ Ω,

(25)

which implies that 𝑄𝑁(Ω) is bounded in the space (𝑍, ‖ ⋅ ‖
0
).

Secondly, we will show that (𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥) (Ω) is relatively

compact in the space (𝑋, ‖ ⋅ ‖
1
). In fact, it follows from (22)

that

(𝐾
𝑃 (𝐼 − 𝑄) 𝑁𝑥)


= (Ψ



1
(𝑥, 𝑡) , Ψ



2
(𝑥, 𝑡) , . . . , Ψ



𝑛
(𝑥, 𝑡))

𝑇

,

(26)

where  = 𝑑/𝑑𝑡 and

Ψ


𝑘
(𝑥, 𝑡) = Δ

𝑘 (𝑥, 𝑡) −

1

𝜔

∫

𝜔

0

Δ
𝑘 (𝑥, 𝑠) 𝑑𝑠, 𝑘 = 1, 2, . . . , 𝑛.

(27)

This, combining with (22), gives




(𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)
𝑖
(𝑡)




1

=




(𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)
𝑖
(𝑡)




0

+






(𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)


𝑖
(𝑡)





0

≤ 𝑀
𝑖
𝜔 +

1

2

𝑀
𝑖
𝜔 +

1

2

𝑀
𝑖
𝜔

+ 𝑀
𝑖
+ 𝑀

𝑖
= 2 (𝜔 + 1) 𝑀

𝑖
,

(28)

which implies that 𝐾
𝑃
(𝐼 − 𝑄)𝑁(Ω) is bound in the space

(𝑋, ‖ ⋅ ‖
1
).

On the other hand, we prove that (𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥) (Ω) is

equicontinuous. In view of uniform continuity of 𝑟
𝑖
, 𝑎

𝑖𝑗
, and

𝑏
𝑖𝑗
, for any 𝜀 > 0, there exists 𝛿

1
> 0 such that, for any 𝑡, 𝑠 ∈ R,

provided that |𝑡 − 𝑠| < 𝛿
1
, we have





𝑟
𝑖 (

𝑡) − 𝑟
𝑖 (

𝑠)





< 𝜀,






𝑎
𝑖𝑗 (𝑡) − 𝑎

𝑖𝑗 (𝑠)







< 𝜀,






𝑏
𝑖𝑗 (𝑡) − 𝑏

𝑖𝑗 (𝑠)







< 𝜀.

(29)

Since any 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇
∈ Ω is equicontin-

uous, for the same 𝜀, there exists 0 < 𝛿
2

≤ 𝛿
1
such that, for

any 𝑡, 𝑠 ∈ R, provided that |𝑡 − 𝑠| < 𝛿
2
, we have





𝑥
𝑖 (

𝑡) − 𝑥
𝑖 (

𝑠)



0

< 𝜀. (30)

It follows from (29) and (30) that




Δ

𝑖 (
𝑥 (𝑡) , 𝑡) − Δ

𝑖 (
𝑥 (𝑠) , 𝑠)




0

=













𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡)
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)

− 𝑟
𝑖 (

𝑠) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑠) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑠)
+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑠) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑠−𝜏𝑖𝑗)











0

≤




𝑟
𝑖 (

𝑡) − 𝑟
𝑖 (

𝑠)



0

+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗 (𝑡) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡)
− 𝑎

𝑖𝑗 (𝑠) 𝑒
𝛼𝑖𝑗𝑥𝑗(𝑠)





0

+

𝑛

∑

𝑗=1






𝑏
𝑖𝑗 (𝑡) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)
− 𝑏

𝑖𝑗 (𝑠) 𝑒
𝛽𝑖𝑗𝑥𝑗(𝑠−𝜏𝑖𝑗)





0
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≤




𝑟
𝑖 (

𝑡) − 𝑟
𝑖 (

𝑠)




+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗 (𝑡)





0






𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡)

− 𝑒
𝛼𝑖𝑗𝑥𝑗(𝑠)





0

+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗 (𝑡) − 𝑎

𝑖𝑗 (𝑠)





0






𝑒
𝛼𝑖𝑗𝑥𝑗(𝑠)





0

+

𝑛

∑

𝑗=1






𝑏
𝑖𝑗 (𝑡)





0






𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)

− 𝑒
𝛽𝑖𝑗𝑥𝑗(𝑠−𝜏𝑖𝑗)





0

+

𝑛

∑

𝑗=1






𝑏
𝑖𝑗 (𝑡) − 𝑏

𝑖𝑗 (𝑠)





0






𝑒
𝛽𝑖𝑗𝑥𝑗(𝑠−𝜏𝑖𝑗)





0

< 𝜀 +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑒
𝛼𝑖𝑗ℎ𝑗 



𝑥
𝑖 (

𝑡) − 𝑥
𝑖 (

𝑠)



0

+

𝑛

∑

𝑗=1

𝑒
𝛼𝑖𝑗ℎ𝑗

𝜀

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝛽𝑖𝑗ℎ𝑗






𝑥
𝑖
(𝑡 − 𝜏

𝑖𝑗
) − 𝑥

𝑖
(𝑠 − 𝜏

𝑖𝑗
)





0

+

𝑛

∑

𝑗=1

𝑒
𝛽𝑖𝑗ℎ𝑗

𝜀

< 𝜀 +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑒
𝛼𝑖𝑗ℎ𝑗

𝜀 +

𝑛

∑

𝑗=1

𝑒
𝛼𝑖𝑗ℎ𝑗

𝜀 +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝛽𝑖𝑗ℎ𝑗

𝜀 +

𝑛

∑

𝑗=1

𝑒
𝛽𝑖𝑗ℎ𝑗

𝜀

=
[

[

1 +

𝑛

∑

𝑗=1

(1 + 𝑎
𝑖𝑗
) 𝑒

𝛼𝑖𝑗ℎ𝑗
+

𝑛

∑

𝑗=1

(1 + 𝑏
𝑖𝑗
) 𝑒

𝛽𝑖𝑗ℎ𝑗]

]

𝜀.

(31)

Thus, it follows from (26) that






(𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)


𝑖
(𝑡) − (𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)


𝑖
(𝑠)





0

=




Δ

𝑖 (
𝑥 (𝑡) , 𝑡) − Δ

𝑖 (
𝑥 (𝑠) , 𝑠)




0

<
[

[

1 +

𝑛

∑

𝑗=1

(1 + 𝑎
𝑖𝑗
) 𝑒

𝛼𝑖𝑗ℎ𝑗
+

𝑛

∑

𝑗=1

(1 + 𝑏
𝑖𝑗
) 𝑒

𝛽𝑖𝑗ℎ𝑗]

]

𝜀.

(32)

On the other hand, the mean value theorem together with
(26) gives





𝐾

𝑃
(𝐼 − 𝑄)𝑁𝑥)

𝑖
(𝑡) − (𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)
𝑖
(𝑠)




0

=






(𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)


𝑖
(𝜉)





0

|𝑡 − 𝑠| ≤ 2𝑀
𝑖 |

𝑡 − 𝑠| ,

(33)

where 𝜉 lies between 𝑡 and 𝑠. Taking 𝛿 = min{𝜀/2𝑀
𝑖
, 𝛿

2
}, it

follows from (32) and (33) that |𝑡 − 𝑠| < 𝛿 implies

|(𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥)

𝑖
(𝑡) − (𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)
𝑖 (

𝑠)



1

= |(𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥)

𝑖
(𝑡) − (𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)
𝑖 (

𝑠)



0

+






(𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)


𝑖
(𝑡) − (𝐾

𝑃 (𝐼 − 𝑄) 𝑁𝑥)


𝑖
(𝑠)





0

=
[

[

1 +

𝑛

∑

𝑗=1

(1 + 𝑎
𝑖𝑗
) 𝑒

𝛼𝑖𝑗ℎ𝑗
+

𝑛

∑

𝑗=1

(1 + 𝑏
𝑖𝑗
) 𝑒

𝛽𝑖𝑗ℎ𝑗]

]

𝜀 + 2𝑀
𝑖
𝛿

<
[

[

1 +

𝑛

∑

𝑗=1

(1 + 𝑎
𝑖𝑗
) 𝑒

𝛼𝑖𝑗ℎ𝑗
+

𝑛

∑

𝑗=1

(1 + 𝑏
𝑖𝑗
) 𝑒

𝛽𝑖𝑗ℎ𝑗]

]

𝜀 + 𝜀

:= �̃�𝜀,

(34)

which implies that (𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥)(Ω) is equicontinuous.

Therefore, by the generalized Arzela-Ascoli theorem, we
have that (𝐾

𝑃
(𝐼−𝑄)𝑁𝑥)(Ω) is relatively compact in the space

(𝑋, ‖ ⋅ ‖
1
). The proof of this step is complete.

Step 2. In this step, we are in a position to search for
appropriate open bounded subsets Ω satisfying condition
(i) of Lemma 3. Specifically, our aim is to search for an
appropriate ℎ

𝑖
defined by Ω in Step 1 such that Ω satisfies

condition (i) of Lemma 3. To this end, assume that 𝑥(𝑡) ∈ 𝑋

is a solution of the equation 𝐿𝑥 = 𝜆𝑁𝑥 for each 𝜆 ∈ (0, 1);
that is,

�̇�
𝑖 (

𝑡) = 𝜆
[

[

𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡)
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(35)

Since 𝑥(𝑡) ∈ 𝑋, each 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, as components of

𝑥(𝑡), is continuously differentiable and 𝜔-periodic. In view of
continuity and periodicity, there exists 𝑡

𝑖
∈ [0, 𝜔] such that

𝑥
𝑖
(𝑡
𝑖
) = max

𝑡∈[0,𝜔]
|𝑥

𝑖
(𝑡)|, 𝑖 = 1, 2, . . . , 𝑛. Accordingly, �̇�

𝑖
(𝑡
𝑖
) =

0 and we arrive at

𝑟
𝑖
(𝑡

𝑖
) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

(𝑡
𝑖
) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗

(𝑡
𝑖
) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)
= 0,

𝑖 = 1, 2, . . . , 𝑛.

(36)

That is,

𝑎
𝑖𝑖

(𝑡
𝑖
) 𝑒

𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)
+ 𝑏

𝑖𝑖
(𝑡

𝑖
) 𝑒

𝛽𝑖𝑖𝑥𝑖(𝑡𝑖−𝜏𝑖𝑖)

= 𝑟
𝑖
(𝑡

𝑖
) −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗

(𝑡
𝑖
) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)

−

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗

(𝑡
𝑖
) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)
, 𝑖 = 1, 2, . . . 𝑛.

(37)

Noticing that 𝑥
𝑗
(𝑡
𝑗
) = max

𝑡∈[0,𝜔]
|𝑥

𝑗
(𝑡)| implies

𝑥
𝑗
(𝑡

𝑖
) ≤ 𝑥

𝑗
(𝑡

𝑗
) , 𝑥

𝑗
(𝑡

𝑖
− 𝜏

𝑖𝑗
) ≤ 𝑥

𝑗
(𝑡

𝑗
) . (38)

It follows from (H
2
) and (37) that

𝑎
𝑖𝑖
𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)

+ 𝑏
𝑖𝑖
𝑒
𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)

≤






𝑎
𝑖𝑖

(𝑡
𝑖
) 𝑒

𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)
+ 𝑏

𝑖𝑖
(𝑡

𝑖
) 𝑒

𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)






≤






𝑎
𝑖𝑖

(𝑡
𝑖
) 𝑒

𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)
+ 𝑏

𝑖𝑖
(𝑡

𝑖
) 𝑒

𝛽𝑖𝑖𝑥𝑖(𝑡𝑖−𝜏𝑖𝑖)
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=













𝑟
𝑖
(𝑡

𝑖
) −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗

(𝑡
𝑖
) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)

−

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗

(𝑡
𝑖
) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)













≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡𝑖)

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗
𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑖−𝜏𝑖𝑗)

≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗
𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡𝑗−𝜏𝑖𝑗)

≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗
𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)

= 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗
) 𝑒

𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)
.

(39)

Here we used (H
2
). Letting (𝑎

𝑖𝑖
+𝑏

𝑖𝑖
)𝑒

𝛼𝑖𝑖𝑥𝑖(𝑡𝑖)
= 𝑧

𝑖
(𝑡
𝑖
), it follows

from (39) that

𝑧
𝑖
(𝑡

𝑖
) ≤ 𝑟

𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗
) (𝑎

𝑗𝑗
+ 𝑏

𝑗𝑗
)

−1

𝑧
𝑗
(𝑡

𝑗
) (40)

or

𝑧
𝑖
(𝑡

𝑖
) −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

𝑧
𝑗
(𝑡

𝑗
) ≤ 𝑟

𝑖
, (41)

which implies

(

(

(

(

(

(

(

(

(

(

(

1 −

𝑎
12

+ 𝑏
12

𝑎
22

+ 𝑏
22

⋅ ⋅ ⋅ −

𝑎
1𝑛

+ 𝑏
1𝑛

𝑎
𝑛𝑛

+ 𝑏
𝑛𝑛

−

𝑎
21

+ 𝑏
21

𝑎
11

+ 𝑏
11

1 . . . −

𝑎
2𝑛

+ 𝑏
2𝑛

𝑎
𝑛𝑛

+ 𝑏
𝑛𝑛

. . . ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−

𝑎
𝑛1

+ 𝑏
𝑛1

𝑎
11

+ 𝑏
11

−

𝑎
𝑛2

+ 𝑏
𝑛2

𝑎
22

+ 𝑏
22

⋅ ⋅ ⋅ 1

)

)

)

)

)

)

)

)

)

)

)

× (

𝑧
1

(𝑡
1
)

𝑧
2

(𝑡
2
)

⋅ ⋅ ⋅

𝑧
𝑛

(𝑡
𝑛
)

) ≤ (

𝑟
1

𝑟
2

. . .

𝑟
𝑛

) .

(42)

Set 𝐷 = (𝐷
1
, 𝐷

2
, . . . , 𝐷

𝑛
)
𝑇

= (𝑟
1
, 𝑟

2
, . . . , 𝑟

𝑛
)
𝑇. It follows from

(42) that

(𝐸 − K) (𝑧
1

(𝑡
1
) , 𝑧

2
(𝑡

2
) , . . . , 𝑧

𝑛
(𝑡

𝑛
))

𝑇
≤ 𝐷. (43)

In view of 𝜌(K) < 1 and Lemma 5, (𝐸
𝑛

− K)
−1

≥ 0. Let

𝐻 = (
̃
ℎ
1
,
̃
ℎ
2
, . . . ,

̃
ℎ
𝑛
)

𝑇

:= (𝐸 − K)
−1

𝐷 ≥ 0. (44)

Then it follows from (43) and (44) that

(𝑧
1

(𝑡
1
) , 𝑧

2
(𝑡

2
) , . . . , 𝑧

𝑛
(𝑡

𝑛
))

𝑇
≤ 𝐻,

or 𝑧
𝑖
(𝑡

𝑖
) ≤

̃
ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑛

(45)

which implies





𝑥
𝑖 (

𝑡)



0

= max
𝑡∈[0,𝜔]





𝑥
𝑖 (

𝑡)





= 𝑥
𝑖
(𝑡

𝑖
) ≤

1

𝛼
𝑖𝑖

ln
̃
ℎ
𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

,

𝑖 = 1, 2, . . . , 𝑛.

(46)

On the other hand, it follows from (44) that

(𝐸 − K) 𝐻 = 𝐷, or 𝐻 = K𝐻 + 𝐷,

that is ̃
ℎ
𝑖
=

𝑛

∑

𝑗=1

Γ
𝑖𝑗
̃
ℎ
𝑗

+ 𝐷
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(47)

Estimating (2), by using (45) and (47), we have





�̇�
𝑖 (

𝑡)



0

= 𝜆













𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑒

𝛼𝑖𝑗𝑥𝑗(𝑡)
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑒

𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)











0

≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗






𝑒
𝛼𝑖𝑗𝑥𝑗(𝑡)





0

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗






𝑒
𝛽𝑖𝑗𝑥𝑗(𝑡−𝜏𝑖𝑗)





0

≤ 𝑟
𝑖
+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝛼𝑗𝑗𝑥𝑗(𝑡𝑗)

= 𝑟
𝑖
+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

𝑧
𝑗
(𝑡

𝑗
)

= 𝑟
𝑖
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗

𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

𝑧
𝑗
(𝑡

𝑗
) +

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑧
𝑖
(𝑡

𝑖
)

≤ 𝐷
𝑖
+

𝑛

∑

𝑗=1

Γ
𝑖𝑗
̃
ℎ
𝑗

+

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑧
𝑖
(𝑡

𝑖
)

≤
̃
ℎ
𝑖
+

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

̃
ℎ
𝑖

= [1 +

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

]
̃
ℎ
𝑖
.

(48)

We can choose a large enough real number (𝑑 > 1) such that

1

𝛼
𝑖𝑖

ln
𝑑

̃
ℎ
𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

>

1

𝛼
𝑖𝑖

ln
̃
ℎ
𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

+ [1 +

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

]
̃
ℎ
𝑖
. (49)

Set ℎ
𝑖

= (1/𝛼
𝑖𝑖
) ln(𝑑

̃
ℎ
𝑖
/(𝑎

𝑖𝑖
+ 𝑏

𝑖𝑖
)). Then for any solution of

𝐿𝑥 = 𝜆𝑁𝑥, we have




𝑥
𝑖 (

𝑡)



1

=




𝑥
𝑖 (

𝑡)



0

+




�̇�
𝑖 (

𝑡)



0

≤

1

𝛼
𝑖𝑖

ln
̃
ℎ
𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

+ [1 +

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

]
̃
ℎ
𝑖
< ℎ

𝑖
,

(50)
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for all 𝑖 = 1, 2, . . . , 𝑛. Obviously, ℎ
𝑖
are independent

of 𝜆 and the choice of 𝑥(𝑡). Consequently, taking ℎ
𝑖

=

(1/𝛼
𝑖𝑖
) ln(𝑑

̃
ℎ
𝑖
/(𝑎

𝑖𝑖
+ 𝑏

𝑖𝑖
)), the open subset Ω satisfies that

𝐿𝑥 ̸= 𝜆𝑁𝑥 for each 𝜆 ∈ (0, 1), 𝑥 ∈ 𝜕Ω ∩ Dom𝐿; that is, the
open subset Ω satisfies assumption (i) of Lemma 3.

Step 3. In what follows, we verify that for the given open
bounded set Ω, assumption (ii) of Lemma 3 also holds. That
is, for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0 and deg{𝐽𝑄𝑁, Ω ∩

Ker 𝐿, 0} ̸= 0.
Take 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿. Then, in view of Ker 𝐿 = R𝑛, 𝑥 is

a constant vector in R𝑛, denoted by 𝑥 = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
)
𝑇 and

by the property




𝑥
𝑖






=




𝑥
𝑖




0

=




𝑥
𝑖




1

= ℎ
𝑖
, ∀𝑖 = 1, 2, . . . , 𝑛. (51)

Operate 𝑥 by 𝑄𝑁, and we obtain that, for 𝑖 = 1, 2, . . . , 𝑛,

(𝑄𝑁𝑥)𝑖
= 𝑚 (𝑟

𝑖
) −

𝑛

∑

𝑗=1

𝑚 (𝑎
𝑖𝑗
) 𝑒

𝛼𝑖𝑗𝑥𝑗
−

𝑛

∑

𝑗=1

𝑚 (𝑏
𝑖𝑗
) 𝑒

𝛽𝑖𝑗𝑥𝑗
,

𝑖 = 1, 2, . . . , 𝑛.

(52)

We claim that |(𝑄𝑁𝑥)
𝑖
| > 0, for 𝑖 = 1, 2, . . . , 𝑛. If this is not

valid, suppose that there exists a certain 𝑘 ∈ {1, 2, . . . , 𝑛} such
that |(𝑄𝑁𝑥)

𝑘
| = 0; that is,

𝑚 (𝑟
𝑘
) −

𝑛

∑

𝑗=1

𝑚 (𝑎
𝑘𝑗

) 𝑒
𝛼𝑘𝑗𝑥𝑗

−

𝑛

∑

𝑗=1

𝑚 (𝑏
𝑘𝑗

) 𝑒
𝛽𝑘𝑗𝑥𝑗

= 0, (53)

or

𝑚 (𝑎
𝑘𝑘

) 𝑒
𝛼𝑘𝑘𝑥𝑘

+ 𝑚 (𝑏
𝑘𝑘

) 𝑒
𝛽𝑘𝑘𝑥𝑘

= 𝑚 (𝑟
𝑘
) −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑎
𝑘𝑗

) 𝑒
𝛼𝑘𝑗𝑥𝑗

−

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑏
𝑘𝑗

) 𝑒
𝛽𝑘𝑗𝑥𝑗

.

(54)

That is,

[𝑚 (𝑎
𝑘𝑘

) + 𝑚 (𝑏
𝑘𝑘

)] 𝑒
𝛼𝑘𝑘𝑥𝑘

= 𝑚 (𝑟
𝑘
) −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑎
𝑘𝑗

) 𝑒
𝛼𝑘𝑗𝑥𝑗

−

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑏
𝑘𝑗

) 𝑒
𝛽𝑘𝑗𝑥𝑗

.

(55)

Letting [𝑚(𝑎
𝑘𝑘

) + 𝑚(𝑏
𝑘𝑘

)]𝑒
𝛼𝑘𝑘𝑥𝑘

= 𝑦
𝑘
, we have

𝑒
𝛼𝑘𝑗𝑥𝑗

= (

𝑦
𝑗

𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)

)

𝛼𝑘𝑗/𝛼𝑗𝑗

,

𝑒
𝛽𝑘𝑗𝑥𝑗

= (

𝑦
𝑗

𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)

)

𝛽𝑘𝑗/𝛼𝑗𝑗

,

𝛼
𝑘𝑗

≤ 𝛼
𝑗𝑗

, 𝛽
𝑘𝑗

≤ 𝛼
𝑗𝑗

,

𝑦
𝑗

𝑚 (𝑎
𝑗𝑗

)

> 1.

(56)

In view of (51), we get




𝑦
𝑖






=




𝑦
𝑖




0

=




𝑦
𝑖




1

= [𝑚 (𝑎
𝑖𝑖
) + 𝑚 (𝑏

𝑖𝑖
)] 𝑒

𝛼𝑖𝑖ℎ𝑖

= [𝑚 (𝑎
𝑖𝑖
) + 𝑚 (𝑏

𝑖𝑖
)] 𝑒

ln(𝑑ℎ̃𝑖/(𝑎𝑖𝑖+𝑏𝑖𝑖))

= [𝑚 (𝑎
𝑖𝑖
) + 𝑚 (𝑏

𝑖𝑖
)]

𝑑
̃
ℎ
𝑖

𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖

, ∀𝑖 = 1, 2, . . . , 𝑛.

(57)

Note that 𝑓 ≤ 𝑚(𝑓) ≤ 𝑓. It follows from (2), (57), and (47)
that

𝑑
̃
ℎ
𝑘

≤ [𝑚 (𝑎
𝑘𝑘

) + 𝑚 (𝑏
𝑘𝑘

)]

𝑑
̃
ℎ
𝑘

(𝑎
𝑘𝑘

+ 𝑏
𝑘𝑘

)

=




𝑦
𝑘






≤













𝑚 (𝑟
𝑘
) −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑎
𝑘𝑗

) 𝑒
𝛼𝑘𝑗𝑥𝑗

−

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑏
𝑘𝑗

) 𝑒
𝛽𝑘𝑗𝑥𝑗













≤ 𝑚 (𝑟
𝑘
) +

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑎
𝑘𝑗

) (






𝑦
𝑗







𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)

)

𝛼𝑘𝑗/𝛼𝑗𝑗

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑏
𝑘𝑗

) (






𝑦
𝑗







𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)

)

𝛽𝑘𝑗/𝛼𝑗𝑗

≤ 𝑟
𝑘

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑎
𝑘𝑗

)






𝑦
𝑗







𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑏
𝑘𝑗

)






𝑦
𝑗







𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)

= 𝑟
𝑘

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑎
𝑘𝑗

) + 𝑚 (𝑏
𝑘𝑗

)

𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)






𝑦
𝑗







≤ 𝑟
𝑘

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑚 (𝑎
𝑘𝑗

) + 𝑚 (𝑏
𝑘𝑗

)

𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)

× [𝑚 (𝑎
𝑗𝑗

) + 𝑚 (𝑏
𝑗𝑗

)]

𝑑
̃
ℎ
𝑗

(𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

)

≤ 𝐷
𝑘

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑎
𝑘𝑗

+ 𝑏
𝑘𝑗

𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

𝑑
̃
ℎ
𝑗

< 𝑑𝐷
𝑘

+ 𝑑

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

𝑎
𝑘𝑗

+ 𝑏
𝑘𝑗

𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

̃
ℎ
𝑗

< 𝑑
[

[

𝐷
𝑘

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑘

Γ
𝑘𝑗

̃
ℎ
𝑗
]

]

= 𝑑
̃
ℎ
𝑘
,

(58)
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which is a contradiction. Therefore, for any 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿,
|(𝑄𝑁𝑥)

𝑖
| > 0 for all 𝑖 = 1, 2, . . . , 𝑛. That is, (𝑄𝑁𝑥) ̸= 0, for 𝑥 ∈

𝜕Ω ∩Ker 𝐿. Furthermore, in view of (H
1
) and Definition 2, it

is easy to see that

deg {𝐽𝑄𝑁, Ω ∩ Ker 𝐿, 0} ̸= 0, (59)

where deg(⋅) is the Brouwer degree and 𝐽 is the identity
mapping since Im𝑄 = Ker 𝐿.

So far, we have shown that the open subset Ω ⊂ 𝑋

satisfies all the assumptions of Lemma 3. Hence, by Lemma 3,
system (14) has at least one positive 𝜔-periodic solution in
Dom𝐿 ∩ Ω. By (13), system (3) has at least one positive 𝜔-
periodic solution, denoted by 𝑦(𝑡). This completes the proof
of Theorem 6.

3. Globally Asymptotic Stability

Under the assumption of Theorem 6, we know that system
(3) has at least one positive 𝜔-periodic solution, denoted by
𝑦(𝑡) = (𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇. The aim of this section is to derive
a set of sufficient conditions which guarantee the global
asymptotic stability of the positive 𝜔-periodic solution 𝑦

∗
(𝑡).

As pointed out in Section 1, because𝑦
𝑗
(𝑡) has been changed to

𝑦

𝛼𝑖𝑗

𝑗
(𝑡) in (3), the previous method in Xia and Han [8] cannot

be applied to study the stability of system (3) directly. Before
the formal analysis, we recall some facts which will be used
in the proof.

Lemma 7 (see [21]). Let 𝑓 be a nonnegative function defined
on [0, +∞] such that 𝑓 is integrable on [0, +∞] and is
uniformly continuous on [0, +∞]. Then lim

𝑡→+∞
𝑓(𝑡) = 0.

Lemma 8 (see [19, 20]). Let Q = (𝑞
𝑖𝑗
)
𝑛×𝑛

be a matrix with
nonpositive off-diagonal elements.Q is an𝑀-matrix if and only
if there exists a positive diagonal matrix Ξ = diag(𝜉

1
, 𝜉

2
. . . , 𝜉

𝑛
)

such that

𝜉
𝑖
𝑞
𝑖𝑖

> ∑

𝑗 ̸= 𝑖

𝜉
𝑗
𝑞
𝑗𝑖

, 𝑖 = 1, 2, . . . , 𝑛. (60)

We need a lemma which can follow immediately from
Theorem 2.1 in Xia et al. [22]. We consider the following
logistic equation:

�̇�
𝑖 (

𝑡) = 𝑥
𝑖 (

𝑡) [𝑟
𝑖 (

𝑡) − 𝑎
𝑖𝑖 (

𝑡) 𝑥
𝛼𝑖𝑖

𝑖
(𝑡)] . (61)

Since 𝑟
𝑖
(𝑡) is nonnegative and 𝑎

𝑖𝑖
(𝑡) are strictly positive, it

follows immediately from Lemma 2.1 in Xia et al. [22] that
system (61) has a unique positive solution, denoted by 𝑋

𝑖
(𝑡),

with 𝑋
𝑖
(𝑡) ≤ (𝑟

𝑖
/𝑎

𝑖𝑖
)
1/𝛼𝑖𝑖 , which is globally asymptotically

stable. Then, as a special case of Theorem 2.1 in [22], we have
the following.

Lemma 9. Suppose that

(H
4
) 𝑚(𝑟

𝑖
(𝑡) − ∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
[𝑎

𝑖𝑗
(𝑡) + 𝑏

𝑖𝑗
(𝑡 + 𝜏

𝑖𝑗
)]𝑋

𝛼𝑖𝑗

𝑗
(𝑡)) > 0;

then system (3) is bounded above and below.

Lemma 10 (see [23]). If 𝑥, 𝑦 > 1, and 𝛼
𝑗𝑖

≤ 𝛼
𝑖𝑖
, (𝑖, 𝑗 =

1, 2, . . . , 𝑛), then





𝑥
𝛼𝑗𝑖

− 𝑦
𝛼𝑗𝑖 




≤




𝑥
𝛼𝑖𝑖

− 𝑦
𝛼𝑖𝑖 



, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (62)

Theorem 11. Assume that 𝛼
𝑖𝑗

= 𝛽
𝑖𝑗
; if (H

1
)–(H

4
) hold, then

system (3) has a unique positive 𝜔-periodic solution 𝑦(𝑡) which
is globally asymptotically stable.

Proof. By Lemma 9, system (3) is bounded below.Thus there
exist positive constants 𝑚

𝑖
> 0 such that 𝑦

𝑖
(𝑡) ≥ 𝑚

𝑖
. We

proceed the proof of this theorem with two steps.

Step 1. Choose positive constants 𝑑
𝑖

(0 < 𝑑
𝑖

< 𝑚
𝑖
), 𝑖 = 1,

2, . . . , 𝑛, such that 𝜌(K) = 𝜌(H), whereH = (ℎ
𝑖𝑗
)
𝑛×𝑛

and

ℎ
𝑖𝑗

= {

0, 𝑖 = 𝑗,

(𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

)

−1

(𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗
) 𝑑

𝛼𝑖𝑗−𝛼𝑗𝑗

𝑗
, 𝑖 ̸= 𝑗.

(63)

We claim that the positive constants 𝑑
𝑖
can be definitely

chosen. By similar arguments in [23], one can prove this fact.

Step 2. Prove the global asymptotic stability of system (3).
Changing variables 𝑤

𝑖
= 𝑦

𝑖
/𝑑

𝑖
, by noticing that 𝛽

𝑖𝑗
= 𝛼

𝑖𝑗
,

then system (3) changes to

�̇�
𝑖 (

𝑡) = 𝑤
𝑖 (

𝑡)
[

[

𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑑

𝛼𝑖𝑗

𝑗
𝑤

𝛼𝑖𝑗

𝑗
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) 𝑑

𝛼𝑖𝑗

𝑗
𝑤

𝛼𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
)
]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(64)

In view of (H
1
)–(H

3
), system (3) has at least a positive

periodic solution. By the linear transformation 𝑤
𝑖

= 𝑦
𝑖
/𝑑

𝑖
,

we know that system (64) also has at least a positive periodic
solution, denoted by 𝑤(𝑡) = (𝑤

1
(𝑡), . . . , 𝑤

𝑛
(𝑡)). In order to

show the global asymptotic stability of system (3), it suffices to
show that𝑤(𝑡) of system (64) is globally asymptotically stable.
For this purpose, let 𝑤(𝑡) = (𝑤

1
(𝑡), . . . , 𝑤

𝑛
(𝑡)) be any other

positive solution of system (64). And we define a Lyapunov
functional 𝑉(𝑡) as follows:

𝑉 (𝑡) =

𝑛

∑

𝑖=1

𝜉
𝑖
[





ln𝑤

𝑖 (
𝑡) − ln𝑤

𝑖 (
𝑡)






+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

∫

𝑡

𝑡−𝜏𝑖𝑗

𝑏
𝑖𝑗

(𝑠 + 𝜏
𝑖𝑗
) 𝑑

𝛼
𝑖𝑗

𝑗

×






𝑤

𝛼𝑖𝑗

𝑗
(𝑠) − 𝑤

𝛼𝑖𝑗

𝑗
(𝑠)






𝑑𝑠] .

(65)
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Calculating the upper right derivative of 𝑉(𝑡) along (64), it
follows from (65) that

𝐷
+
𝑉 (𝑡)

=

𝑛

∑

𝑖=1

𝜉
𝑖
sgn 




ln𝑤

𝑖 (
𝑡) − ln𝑤

𝑖 (
𝑡)






×
[

[

𝑤


𝑖
(𝑡)

𝑤
𝑖 (

𝑡)

−

𝑤


𝑖
(𝑡)

𝑤
𝑖 (

𝑡)

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗

(𝑡 + 𝜏
𝑖𝑗
) 𝑑

𝛼𝑖𝑗

𝑗






𝑤

𝛼𝑖𝑗

𝑗
(𝑡) − 𝑤

𝛼𝑖𝑗

𝑗
(𝑡)







−

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗 (𝑡) 𝑑

𝛼𝑖𝑗

𝑗






𝑤

𝛼𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
) − 𝑤

𝛼𝑖𝑗

𝑗
(𝑡 − 𝜏

𝑖𝑗
)







]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

ln𝑤
𝑖 (

𝑡) − ln𝑤
𝑖 (

𝑡)





ln𝑤

𝑖 (
𝑡) − ln𝑤

𝑖 (
𝑡)






×
[

[

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑑

𝛼𝑖𝑗

𝑗
(𝑤

𝛼𝑖𝑗

𝑗
(𝑡) − 𝑤

𝛼𝑖𝑗

𝑗
(𝑡))

− 𝑏
𝑖𝑖 (

𝑡) 𝑑
𝛼𝑖𝑖

𝑗
(𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡))

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑏
𝑖𝑗

(𝑡 + 𝜏
𝑖𝑗
) 𝑑

𝛼𝑖𝑗

𝑗






𝑤

𝛼𝑖𝑗

𝑗
(𝑡) − 𝑤

𝛼𝑖𝑗

𝑗
(𝑡)







]

]

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑖
𝑏
𝑖𝑗

(𝑡 + 𝜏
𝑖𝑗
) 𝑑

𝛼𝑖𝑗

𝑗






𝑤

𝛼𝑖𝑗

𝑗
(𝑡) − 𝑤

𝛼𝑖𝑗

𝑗
(𝑡)







≤ −

𝑛

∑

𝑖=1

𝜉
𝑖
𝑎
𝑖𝑖 (

𝑡) 𝑑
𝛼𝑖𝑖

𝑖





𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡)






+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑎
𝑗𝑖 (

𝑡) 𝑑

𝛼𝑗𝑖

𝑖






𝑤

𝛼𝑗𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑗𝑖

𝑖
(𝑡)







−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑏
𝑖𝑖 (

𝑡) 𝑑
𝛼𝑖𝑖

𝑖
(𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑏
𝑗𝑖

(𝑡 + 𝜏
𝑗𝑖

) 𝑑

𝛼𝑗𝑖

𝑖






𝑤

𝛼𝑗𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑗𝑖

𝑖
(𝑡)







≤ −

𝑛

∑

𝑖=1

𝜉
𝑖
[𝑎

𝑖𝑖 (
𝑡) + 𝑏

𝑖𝑖 (
𝑡)] 𝑑

𝛼𝑖𝑖

𝑖





𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡)






+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑎
𝑗𝑖 (

𝑡) 𝑑

𝛼𝑗𝑖

𝑖






𝑤

𝛼𝑗𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑗𝑖

𝑖
(𝑡)







+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑏
𝑗𝑖

(𝑡 + 𝜏
𝑗𝑖

) 𝑑

𝛼𝑗𝑖

𝑖






𝑤

𝛼𝑗𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑗𝑖

𝑖
(𝑡)






.

(66)

Note that𝑤
𝑖
(𝑡), 𝑤

𝑖
(𝑡) ≥ 𝑚

𝑖
/𝑑

𝑖
> 1 and𝛼

𝑗𝑖
≤ 𝛼

𝑖𝑖
. By Lemma 10,

we have





𝑤

𝛼𝑗𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑗𝑖

𝑖
(𝑡)







≤




𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡)





. (67)

It follows from (66) and (67) that

𝐷
+
𝑉 (𝑡) ≤ −

𝑛

∑

𝑖=1

𝜉
𝑖
[𝑎

𝑖𝑖 (
𝑡) + 𝑏

𝑖𝑖 (
𝑡)] 𝑑

𝛼𝑖𝑖

𝑖





𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡)






+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑎
𝑗𝑖 (

𝑡) 𝑑

𝛼𝑗𝑖

𝑖





𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡)






+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑏
𝑗𝑖

(𝑡 + 𝜏
𝑗𝑖

) 𝑑

𝛼𝑗𝑖

𝑖





𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡)






≤ −

𝑛

∑

𝑖=1

[

[

𝜉
𝑖
(𝑎

𝑖𝑖
+ 𝑏

𝑖𝑖
) 𝑑

𝛼𝑖𝑖

𝑖

−

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑑

𝛼𝑗𝑖

𝑖
(𝑎

𝑗𝑖
+ 𝑏

𝑗𝑖
)
]

]

×




𝑤

𝛼𝑖𝑖

𝑖
(𝑡) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑡)





.

(68)

From Step 1, we know 𝜌(H𝑇
) = 𝜌(H) = 𝜌(K) < 1. Thus, in

view of Lemma 5 and Definition 4, (𝐸 −H𝑇
) is an 𝑀-matrix,

where 𝐸 denotes an identity matrix of size 𝑛. Therefore, by
Lemma 8, there exists a diagonal matrix Ξ = diag(𝜉

1
, . . . , 𝜉

𝑛
)

with positive diagonal elements such that the product (𝐸 −

H𝑇
)Ξ is strictly diagonally dominant with positive diagonal

entries; namely,

𝜉
𝑖
>

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
ℎ
𝑗𝑖

,

or 𝜉
𝑖
𝑑
𝛼𝑖𝑖

𝑖
(𝑎

𝑖𝑖
+ 𝑏

𝑖𝑖
) −

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝜉
𝑗
𝑑

𝛼𝑗𝑖

𝑖
(𝑎

𝑗𝑖
+ 𝑏

𝑗𝑖
) > 0,

𝑖 = 1, . . . , 𝑛.

(69)

It follows from (68) and (69) that 𝐷
+
𝑉(𝑡) ≤ 0. Obviously, the

zero solution of (64) is Lyapunov stable. On the other hand,
integrating (69) over [𝑡

0
, 𝑡] leads to

𝑉 (𝑡) − 𝑉 (𝑡
0
) ⩽ −𝑘 ∫

𝑡

𝑡0

𝑛

∑

𝑖=1





𝑤

𝛼𝑖𝑖

𝑖
(𝑠) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑠)





𝑑𝑠, 𝑡 ≥ 𝑡

0
,

(70)
or

𝑉 (𝑡) + 𝑘 ∫

𝑡

𝑡0

𝑛

∑

𝑖=1





𝑤

𝛼𝑖𝑖

𝑖
(𝑠) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑠)





𝑑𝑠 ≤ 𝑉 (𝑡

0
) <+∞, 𝑡 ⩾ 𝑡

0
.

(71)

Noting that 𝑉(𝑡) ⩾ 0, it follows that

∫

𝑡

𝑡0

𝑛

∑

𝑖=1





𝑤

𝛼𝑖𝑖

𝑖
(𝑠) − 𝑤

𝛼𝑖𝑖

𝑖
(𝑠)





𝑑𝑠 ≤

𝑉 (𝑡
0
)

𝑘

< +∞, 𝑡 ⩾ 𝑡
0
.

(72)
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Therefore, by Lemma 7, it is not difficult to conclude that

lim
𝑡→+∞





𝑤

𝑖 (
𝑡) − 𝑤

𝑖 (
𝑡)






= 0. (73)

Which implies the global asymptotical stability of system
(64). By the linear transformation 𝑦

𝑖
(𝑡) = 𝑑

𝑖
𝑤

𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑛, the positive periodic solution 𝑦(𝑡) of (3) is also
globally asymptotically stable. This completes the proof of
Theorem 11.

4. Remark and Discussion

To illustrate the generality of our results, we will give a
corollary in this section. Now recall that, for a given matrix
K, its spectral radius 𝜌(K) is equal to the minimum of all
matrix norms ofK; that is, for anymatrix norm ‖⋅‖, 𝜌(K) ≤

‖K‖. Therefore, a corollary ofTheorem 11 is stated as follows.

Corollary 12. In addition to (H
1
), (H

2
), and (H

4
), if one

further supposes that there exist positive constants 𝜉
𝑖
, 𝑖 =

1, 2, . . . , 𝑛, such that one of the following inequalities holds:

(1) max
1≤𝑗≤𝑛

∑
𝑛

𝑖=1,𝑖 ̸= 𝑗
(𝜉

𝑖
(𝑎

𝑖𝑗
+ 𝑏

𝑖𝑗
)/𝜉

𝑗
(𝑎

𝑗𝑗
+ 𝑏

𝑗𝑗
)) < 1, or

equivalently, (𝑎
𝑗𝑗

+ 𝑏
𝑗𝑗

)𝜉
𝑗

> ∑
𝑛

𝑖=1,𝑖 ̸= 𝑗
(𝑎

𝑖𝑗
+ 𝑏

𝑖𝑗
)𝜉

𝑖
for all

𝑗 = 1, 2, . . . , 𝑛,
(2) ∑

𝑛

𝑖=1
∑

𝑛

𝑗=1
(𝜉

−1

𝑖
𝜉
𝑗
Γ
𝑖𝑗
)
2

< 1, where Γ
𝑖𝑗
has been defined in

Theorem 6,
(3) max

1≤𝑖≤𝑛
∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
(𝜉

𝑗
(𝑎

𝑗𝑖
+ 𝑏

𝑗𝑖
)/𝜉

𝑖
(𝑎

𝑖𝑖
+ 𝑏

𝑖𝑖
)) < 1, or

equivalently, (𝑎
𝑖𝑖

+ 𝑏
𝑖𝑖
)𝜉

𝑖
> ∑

𝑛

𝑗=1,𝑗 ̸= 𝑖
(𝑎

𝑗𝑖
+ 𝑏

𝑗𝑖
)𝜉

𝑖
for all

𝑖 = 1, 2, . . . , 𝑛,
then system (3) has a unique positive 𝜔-periodic
solution which is globally asymptotically stable.

Proof. For any matrix norm ‖ ⋅ ‖ and any nonsingular matrix
𝑆, ‖K‖

𝑆
= ‖𝑆

−1K𝑆‖ also defines a matrix norm. Let Ξ =

diag(𝜉
1
, 𝜉

2
, . . . , 𝜉

𝑛
). Then conditions (1)-(2) correspond to

the column norms and Frobenius norm of matrix ΞKΞ
−1,

respectively. Condition (3) corresponds to the row norms
of ΞK𝑇

Ξ
−1 and note that 𝜌(ΞK𝑇

Ξ
−1

) = 𝜌(ΞKΞ
−1

).
Corollary 12 follows immediately.

Remark 13. The corollary implies that the conditions given in
terms of the spectral radius are much better than the classic
norms.

Nowwe consider a special case of system (3). Take𝛼
𝑖𝑗

= 1,
𝑏
𝑖𝑗

= 0, and 𝜏
𝑖𝑗

≡ 0; then system (3) reduces to the classical LV
competition system which has been well studied in Xia and
Han [8]:

̇𝑦
𝑖 (

𝑡) = 𝑦
𝑖 (

𝑡)
[

[

𝑟
𝑖 (

𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) 𝑦

𝑗 (𝑡)
]

]

, 𝑖 = 1, 2, . . . , 𝑛.

(74)

Remark 14. In this case, Theorem 11 and Corollary 12 reduce
to the main results in Xia and Han [8].

5. Discussion

As we know, dynamic systems are often classified into two
categories of either continuous-time or discrete-time systems.
However, many real-world phenomena are neither purely
continuous-time nor purely discrete-time. This leads to the
development of dynamic systems with impulses, which dis-
play a combination of characteristics of both the continuous-
time and discrete-time systems and hence provide a more
natural framework for mathematical modeling of many real-
world phenomena. Whether the new method proposed in
this paper can be applied to study the existence and global
asymptotic stability of the LV systems with impulses remains
open.

6. Examples

In this section, some examples and their simulations are
presented to illustrate the feasibility and effectiveness of our
results.

Example 15. Consider the two-species competitive system

̇𝑦
1 (𝑡) = 𝑦

1 (𝑡) [4 − (2 + sin 𝑡) 𝑦
2

1
(𝑡) −

1

2

𝑦
2 (𝑡)

−

1

8

(3 + cos 𝑡) 𝑦
2

1
(𝑡) −

1

2

𝑦
2 (𝑡 − 0.2)] ,

̇𝑦
2 (𝑡) = 𝑦

2 (𝑡) [2 − (1 + sin 𝑡) 𝑦
1 (𝑡) − (4 − cos 𝑡) 𝑦

2

2
(𝑡)

−

1

4

(1 − cos 𝑡) 𝑦
1 (𝑡 − 0.5) −

1

2

𝑦
2

2
(𝑡)] .

(75)

Corresponding to system (3), we have 𝑎
11

= 𝑎
21

= 2, 𝑎
12

=

𝑏
12

= 𝑏
21

= 𝑏
22

= 1/2, 𝑎
12

= 1/2, 𝑎
22

= 3, 𝑏
11

= 1/4. Simple
computation shows

K = (

0

𝑎
12

+ 𝑏
12

𝑎
22

+ 𝑏
22

𝑎
21

+ 𝑏
21

𝑎
11

+ 𝑏
11

0

)

= (

0 (

1

2

+

1

2

) ×

2

7

(2 +

1

2

) ×

4

5

0

)

= (

0

2

7

2 0

) .

(76)

And 𝜌(K) = √4/7 < 1. Thus, byTheorem 11, system (75) has
a unique positive equilibrium which is globally asymptoti-
cally stable.

Remark 16. In this example, one can observe that, though
the spectral 𝜌(K) < 1, the matrix norms (including the row
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norm, the column norm, and the Frobenius norm) of matrix
Kmay be bigger than 1. For instance, the column norm

‖K‖1
= 0 + 2 > 1. (77)

Example 17. Consider the three-species competitive system

̇𝑦
1 (𝑡) = 𝑦

1 (𝑡) [4 −

1

2

(2 + sin 𝑡) 𝑦
2

1
(𝑡)

−

1

8

(1 + cos 𝑡) 𝑦
2 (𝑡) −

1

12

𝑦
3 (𝑡)

− (2 + sin 𝑡) 𝑦
2

1
(𝑡) −

1

8

(1 + cos 𝑡) 𝑦
2 (𝑡 − 0.5)

−

1

4

𝑦
3 (𝑡 − 0.2)] ,

̇𝑦
2 (𝑡) = 𝑦

2 (𝑡) [4 −

1

8

(1 − sin 𝑡) 𝑦
1 (𝑡)

−

1

2

(2 + sin 𝑡) 𝑦
2

2
(𝑡)

−

1

8

(1 − sin 𝑡) 𝑦
1 (𝑡 − 0.5)

− (2 + sin 𝑡) 𝑦
2

2
(𝑡) ] ,

̇𝑦
3 (𝑡) = 𝑦

3 (𝑡) [6 − (1 − sin 𝑡) 𝑦
1 (𝑡)

−

1

8

(1 + sin 𝑡) 𝑦
2 (𝑡) −

1

2

(2 + cos 𝑡) 𝑦
2

3
(𝑡)

− sin 𝑡𝑦
1 (𝑡 − 0.5) −

1

4

𝑦
2 (𝑡 − 0.2)

− (2 + cos 𝑡) 𝑦
2

3
(𝑡) ] .

(78)

Corresponding to system (3), we have 𝑎
11

= 𝑎
22

= 𝑎
33

= 1/2,
𝑎
12

= 𝑎
21

= 𝑎
32

= 1/4, 𝑎
13

= 1/12, 𝑎
23

= 0, 𝑎
31

= 2, 𝑏
11

=

𝑏
22

= 𝑏
33

= 𝑏
31

= 1, 𝑏
12

= 𝑏
13

= 𝑏
21

= 𝑏
32

= 1/4, and 𝑏
23

= 0.
Then, simple computation leads to

K =

(

(

(

(

(

0

𝑎
12

+ 𝑏
12

𝑎
22

+ 𝑏
22

𝑎
13

+ 𝑏
13

𝑎
33

+ 𝑏
33

𝑎
21

+ 𝑏
21

𝑎
11

+ 𝑏
11

0 0

𝑎
31

+ 𝑏
31

𝑎
11

+ 𝑏
11

𝑎
32

+ 𝑏
32

𝑎
22

+ 𝑏
22

0

)

)

)

)

)

=
(

(

0

1

3

2

9

1

3

0 0

2

1

3

0

)

)

.

(79)

Hence, by using MATLAB, we get

𝜌 (K) = max . eigenvalues [K] = 0.7667 < 1. (80)

Thus, by Theorem 11, system (78) has a unique positive
equilibrium which is globally asymptotically stable.

Remark 18. In this example, one can observe that though the
spectral 𝜌(K) < 1, the matrix norms (including the row
norm, the column norm, and the Frobenius norm) of matrix
Kmay be bigger than 1. For instance, the column norm

‖K‖1
= 0 +

1

3

+ 2 > 1. (81)
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