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The purpose of this paper is to obtain some sufficient conditions for the global existence of multiple positive periodic solutions of
a delayed stage-structured plant-hare model with a toxin-determined functional response. Some novel estimation techniques to
construct two open subsets for a priori bounds are employed.

1. Introduction

A lot of classical predator-preymodels have been well studied
(e.g., see [1–12]). Recently, Gao et al. [13] considered a
nonautonomous plant-hare dynamical system with a toxin-
determined functional response given by

̇

𝑁 (𝑡) = 𝑟 (𝑡)𝑁 (𝑡) [1 −

𝑁 (𝑡)

𝐾

] − 𝐶 (𝑁 (𝑡)) 𝑃 (𝑡) ,

̇

𝑃 (𝑡) = 𝐵 (𝑡) 𝐶 (𝑁 (𝑡)) 𝑃 (𝑡) − 𝑑 (𝑡) 𝑃 (𝑡) ,

(1)

𝐶 (𝑁 (𝑡)) = 𝑓 (𝑁 (𝑡)) [1 −

𝑓 (𝑁 (𝑡))

4𝐺

] ,

𝑓 (𝑁 (𝑡)) =

𝑒𝛿𝑁 (𝑡)

1 + ℎ𝑒𝛿𝑁 (𝑡)

,

(2)

where 𝑁(𝑡) denotes the density of plant at time 𝑡 and 𝑃(𝑡)

denotes the herbivore biomass at time 𝑡.
On the other hand, many experts argued that the

predator-prey models should be modified to fit the more
realistic environment. They suggested that one should take
the stage structure factor into consideration. Because it is very
unrealistic to assume that each individual predator admits the
same ability of attacking in the classical predator-prey mod-
els.They divided the individuals into two stages in life history,
namely, immature and mature stages, where the rate of the
immature predator attacking the prey and the reproductive

rate can be ignored, while the mature predators are respon-
sible for the prey. For example, one can refer to [14, 15] and
the references cited therein. To discuss the effects of Holling
type IV functional responses on a stage-structuredmodel, the
authors in [16] proposed the following delayed system:

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) [𝑟

1
(𝑡) − 𝑎

1
(𝑡)

× ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠

−

𝑎

2
(𝑡) 𝑦

2
(𝑡)

𝑥

2
(𝑡) /𝑚 + 𝑥 (𝑡) + 𝑎

] ,

𝑑𝑦

1
(𝑡)

𝑑𝑡

=

𝑏

1
(𝑡) 𝑥 (𝑡) 𝑦

2
(𝑡)

𝑥

2
(𝑡) /𝑚 + 𝑥 (𝑡) + 𝑎

− 𝛽 (𝑡) 𝑦

1
(𝑡)

− 𝑏

1
(𝑡 − 𝜏) exp(−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠)

×

𝑥 (𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑥

2
(𝑡 − 𝜏) /𝑚 + 𝑥 (𝑡 − 𝜏) + 𝑎

,

𝑑𝑦

2
(𝑡)

𝑑𝑡

= 𝑏

1
(𝑡 − 𝜏) exp(−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠)

×

𝑥 (𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

𝑥

2
(𝑡 − 𝜏) /𝑚 + 𝑥 (𝑡 − 𝜏) + 𝑎

− 𝑟

2
(𝑡) 𝑦

2
(𝑡) .

(3)
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However, Holling IV type functional response is not
appropriate for the plant-hare model if we explore the impact
of plant toxicity on the dynamics of plant-hare interactions.
Because such kind of plant can produce toxicity to protect
itself. Therefore, in the present paper, we discuss the
stage-structured plant-hare model with toxin-determined
functional response as follows:

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) [𝑟

1
(𝑡) − 𝑎 (𝑡) 𝑥 (𝑡)

−

4𝐺𝑒𝛿𝑦

2
(𝑡) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑥 (𝑡) 𝑦

2
(𝑡)

4𝐺(1 + ℎ𝑒𝛿𝑥(𝑡))

2
] ,

𝑑𝑦

1
(𝑡)

𝑑𝑡

= − 𝛽 (𝑡) 𝑦

1
(𝑡)

+ ((𝑏

1
(𝑡) 4𝐺𝑒𝛿𝐵𝑥 (𝑡) 𝑦

2
(𝑡)

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵𝑥

2
(𝑡) 𝑦

2
(𝑡))

× (4𝐺(1 + ℎ𝑒𝛿𝑥 (𝑡))

2
)

−1

)

− 𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵𝑥 (𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵𝑥

2
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏))

× (4𝐺(1 + ℎ𝑒𝛿𝑥 (𝑡 − 𝜏))

2
)

−1

) ,

𝑑𝑦

2
(𝑡)

𝑑𝑡

= 𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵𝑥 (𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏)

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵𝑥

2
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏))

× (4𝐺(1 + ℎ𝑒𝛿𝑥 (𝑡 − 𝜏))

2
)

−1

)

− 𝑟

2
(𝑡) 𝑦

2
(𝑡) ,

(4)

where 𝑥(𝑡) denotes the density of the plant at time 𝑡, 𝑦
1
(𝑡)

is the density of immature individual hares at time 𝑡, and
𝑦

2
(𝑡) denotes the density of mature individual hares at time 𝑡,

respectively; 𝑟
1
(𝑡), 𝑟
2
(𝑡), 𝑎(𝑡), 𝑏

1
(𝑡), and 𝛽(𝑡) are continuously

positive periodic functions with period𝜔. 𝐵 is the conversion
rate, 𝑒 is the encounter rate per hare, 𝛿 is the fraction of food
items encountered that the hares ingest,𝐺measures the toxic-
ity level, and ℎ is the time for handing one unit of plant. 𝑒, 𝛿,𝐺,
and ℎ are positive real constants. 𝑟

1
(𝑡) is the intrinsic growth

rate of the prey, 𝑎(𝑡) is the density-dependent coefficient of
the plant, and 𝑟

2
(𝑡) is the death rate of the mature hares.

For any continuous 𝜔-periodic function 𝑓(𝑡), we always
adopt the following notations throughout this paper:

𝑓 =

1

𝜔

∫

𝜔

0

𝑓 (𝑡) 𝑑𝑡, 𝑓

𝐿
= min
𝑡∈[0,𝜔]

𝑓 (𝑡) ,

𝑓

𝑀
= max
[0,𝜔]

𝑓 (𝑡) ,

(5)

where 𝑓 is a continuous 𝜔-periodic function.
The purpose of this paper is to obtain some sufficient con-

ditions for the global existence of multiple positive periodic
solutions of system (4). Our method is based on Mawhin’s
coincidence degree and novel estimation techniques for a
priori bounds of unknown solutions to 𝐿𝑥 = 𝜆𝑁𝑥. To the
best of our knowledge, it is the first time that a delayed
stage-structured plant-hare dynamical system with a toxin-
determined functional response has been proposed and
studied by using this method.

Remark 1. Thetermexp{− ∫𝑡
𝑡−𝜏

𝛽(𝑠)𝑑𝑠}(𝑥(𝑡−𝜏)𝑦

2
(𝑡−𝜏)/(𝑥

2
(𝑡−

𝜏)/𝑚 + 𝑥(𝑡 − 𝜏) + 𝑎)) in the third equation of (4) involves
𝑥(𝑡 − 𝜏)𝑦

2
(𝑡 − 𝜏) instead of 𝑥(𝑡 − 𝜏)𝑦

2
(𝑡); the method used

in [13] cannot be applied to system (4) directly. Thus, novel
estimation techniques must be employed for a priori bounds
of unknown solutions to the operator equation 𝐿𝑥 = 𝜆𝑁𝑥.
More specifically, integrating the second equation of system
(1) over [0, 𝜔], the authors in [13] obtained

∫

𝜔

0

((4𝐺𝑒𝛿𝐵 (𝑡) exp {𝑢
1
(𝑡)}

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 (𝑡) exp {2𝑢

1
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡)})

2

)

−1

)𝑑𝑡

= 𝑑𝜔.

(6)

It follows that

𝑑𝜔 ≥ ∫

𝜔

0

4𝐺𝑒𝛿𝐵 (𝑡) exp {𝑢
1
(𝑡)}

4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡)})

2
𝑑𝑡. (7)

By some arguments, this inequality then leads them to

𝑑ℎ

2
𝑒

2
𝛿

2 exp (2𝑢
1
(𝜂

1
))

− (𝑒𝛿𝐵 exp {−2𝑟𝜔} − 2ℎ𝑒𝛿𝑑)

× exp {𝑢
1
(𝜂

1
)} + 𝑑 > 0,

(8)

which implies that

𝑥

1
(𝜂

1
) < ln ℎ0

−
, 𝑥

1
(𝜂

1
) > ln ℎ0

+
, (9)

where

ℎ

0

±
=

(𝑒𝛿𝐵 exp {−2𝑟𝜔} − 2ℎ𝑒𝛿𝑑) ± √Δ
1

2𝑑ℎ

2
𝑒

2
𝛿

2

,

Δ

1
= [𝑒𝛿𝐵 exp{−2𝑟𝜔} − 2ℎ𝑒𝛿𝑑]

2

− 4𝑑

2

ℎ

2
𝑒

2
𝛿

2
.

(10)
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It should be noted that it is possible to construct two open
subsets Ω

1
and Ω

2
due to (9). The essential reason to obtain

(9) is the inequality (7). In inequality (7), there is no variable
𝑢

2
(𝑡) and only one variable 𝑢

1
(𝑡).

However, since the term 𝑥(𝑡 − 𝜏)𝑦

2
(𝑡 − 𝜏) is in the third

equation of (4), by same arguments in [13], we will see that

∫

𝜔

0

𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× exp {𝑢
2
(𝑡 − 𝜏) − 𝑢

2
(𝑡)}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡 − 𝜏)}

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 exp {2𝑢

1
(𝑡 − 𝜏)})

× (4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡 − 𝜏)})

2
)

−1

) 𝑑𝑡

= 𝑟

2
𝜔.

(11)

Note that both 𝑢
1
and 𝑢

2
appear simultaneously in the above

equality. If we were to use the same ideas in [13], then the
above equality does not lead us anywhere. Thus, some new
arguments should be employed to obtain a priori bounds for
𝑢

1
. To see how to overcome this difficulty, the reader can refer

to (33)–(56) in Section 2.

Remark 2. It should be noted that the standard estimation
techniques used in [16] are not applicable to the system (4)
either, due to the term𝐶(𝑁(𝑡)). If we were to use the standard
arguments in [16], we can not obtain two positive roots of
exp(𝑢

1
(𝜉

1
)). Consequently, we can not construct two open

subsets. Thus, we can not obtain two positive solutions in
these two open subsets.

2. Existence of Multiple Positive
Periodic Solutions

In this section,wewill study the existence ofmultiple periodic
solutions of (4). We recall a few concepts and results from
[17].

Lemma 3 (see [17]). LetΩ ⊂ 𝑋 be an open bounded set. Let 𝐿
be a Fredholm mapping of index zero and 𝑁𝐿-compact on Ω.
Assume

(a) for each 𝜆 ∈ (0, 1), 𝑥 ∈ 𝜕Ω ∩ Dom𝐿, 𝐿𝑥 ̸= 𝜆𝑁𝑥;
(b) for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0;
(c) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0.

Then 𝐿𝑥 = 𝑁𝑥 has at least one solution inΩ ∩ Dom𝐿.

Lemma 4. If 𝛽(𝑡) and 𝑔(𝑡) are 𝜔-periodic functions, then the
system

𝑑𝑦 (𝑡)

𝑑𝑡

= 𝛽 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡)
(12)

has a unique 𝜔-periodic solution which can be represented as
𝑦(𝑡) = ∫

𝑡

−∞
exp(∫𝑡
𝑠
𝛽(𝜎)𝑑𝜎)𝑔(𝑠)𝑑𝑠.

Throughout, we assume the following:

(𝐴
1
) 1/4ℎ < 𝐺 < 1/3ℎ;

(𝐴
2
) 4ℎ𝑟𝑀
2
exp{𝜏𝛽𝑀} exp{2𝑟

1
𝜔}/𝑏

𝐿

1
< 𝐵 < 4𝐺𝑟

𝐿

2
ℎ

2
(𝑏

𝑀

1
)

−1

exp{𝜏𝛽𝐿}/(4𝐺ℎ − 1).

We further introduce six positive numbers which will be
used later as follows:

ℎ

±
= ((𝑏

𝐿

1
𝑒𝛿𝐵 exp {−𝜏𝛽𝑀} exp {−2𝑟

1
𝜔} − 2ℎ𝑒𝛿𝑟

𝑀

2
)

±
√
Δ

1
) × (2𝑟

𝑀

2
ℎ

2
𝑒

2
𝛿

2
)

−1

,

𝑙

±
= ([4𝐺ℎ

2
𝑒𝛿𝐵 exp {2𝑟

1
𝜔}

− 2ℎ𝑒𝛿 (4𝐺ℎ

2
𝑟

𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵)]

±
√
Δ

2
)

× (2ℎ

2
𝑒

2
𝛿

2
[4𝐺ℎ

2
𝑟

𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿}

− (4𝐺ℎ − 1) 𝐵])

−1

,

𝑢

±
=

(4𝐺𝑒𝛿𝐵 − 8𝐺ℎ𝑒𝛿𝑟

2
𝑏

−1

) ± √Δ

3

2 [4𝐺𝑟

2
𝑏

−1

ℎ

2
𝑒

2
𝛿

2
− (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵]

,

(13)

where

Δ

1
= [𝑏

𝐿

1
𝑒𝛿𝐵 exp{−𝜏𝛽𝑀} exp{−2𝑟

1
𝜔} − 2ℎ𝑒𝛿𝑟

𝑀

2
]

2

− 4(𝑟

𝑀

2
)

2

ℎ

2
𝑒

2
𝛿

2
,

Δ

2
= [4𝐺ℎ

2
𝑒𝛿𝐵 exp {2𝑟

1
𝜔}

−2ℎ𝑒𝛿 (4𝐺ℎ

2
𝑟

𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵)]
2

− 4ℎ

2
𝑒

2
𝛿

2
[4𝐺ℎ

2
𝑟

𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵]
2

,

Δ

3
= (4𝐺𝑒𝛿𝐵 − 8𝐺ℎ𝑒𝛿𝑟

2
𝑏

−1

)

2

− 16𝐺𝑟

2
𝑏

−1

[4𝐺𝑟

2
𝑏

−1

ℎ

2
𝑒

2
𝛿

2
− (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵] ,

(14)

𝑏 = (1/𝜔) ∫

𝜔

0
𝑏

1
(𝑡) exp{− ∫𝑡+𝜏

𝑡
𝛽(𝑠)}𝑑𝑠𝑑𝑡. Under assumptions

(𝐴

1
) and (𝐴

2
), it is not difficult to show that

𝑙

−
< 𝑢

−
< ℎ

−
< ℎ

+
< 𝑢

+
< 𝑙

+
. (15)

Theorem 5. In addition to (𝐴
1
) and (𝐴

2
), suppose that

(𝐴
3
) 𝑟
1
− 𝑎 exp{ln 𝑙

+
+ 2𝑟𝜔} > 0.

Then system (4) has at least two positive 𝜔-periodic solutions.
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Proof. Note that the first equation and the third equation of
(4) can be separated from the whole system. Consider the
following subsystem:

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) [𝑟

1
(𝑡) − 𝑎 (𝑡) 𝑥 (𝑡)

−

4𝐺𝑒𝛿𝑦

2
(𝑡) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑥 (𝑡) 𝑦

2
(𝑡)

4𝐺(1 + ℎ𝑒𝛿𝑥(𝑡))

2
] ,

𝑑𝑦

2
(𝑡)

𝑑𝑡

= 𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵𝑥 (𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏) + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× 𝐵 (𝑡) 𝑥

2
(𝑡 − 𝜏) 𝑦

2
(𝑡 − 𝜏))

× (4𝐺(1 + ℎ𝑒𝛿𝑥 (𝑡 − 𝜏))

2
)

−1

)

− 𝑟

2
(𝑡) 𝑦

2
(𝑡) .

(16)

Make the change of variables

𝑥 (𝑡) = exp {𝑢
1
(𝑡)} , 𝑦 (𝑡) = exp {𝑢

2
(𝑡)} ; (17)

then system (16) can be rewritten as

�̇�

1
(𝑡) = 𝑟

1
(𝑡) − 𝑎 (𝑡) exp {𝑢

1
(𝑡)}

− ((4𝐺𝑒𝛿 exp {𝑢
2
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp {𝑢
1
(𝑡) + 𝑢

2
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡)})

2
)

−1

) := 𝑓

1
(𝑡, 𝑢) ,

�̇�

2
(𝑡) = − 𝑟

2
(𝑡) + 𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡 − 𝜏)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝑡 − 𝜏)})

× (4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡 − 𝜏)})

2

)

−1

)

× exp {𝑢
2
(𝑡 − 𝜏) − 𝑢

2
(𝑡)} := 𝑓

2
(𝑡, 𝑢) .

(18)

Take

𝑋 = 𝑌 = {𝑥 = (𝑢

1
, 𝑢

2
)

𝑇
∈ 𝐶 (R,R

2
) | 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡)}

(19)

and define

‖𝑥‖ = max
𝑡∈[0,𝜔]









𝑢

1
(𝑡)









+ max
𝑡∈[0,𝜔]









𝑢

2
(𝑡)









,

𝑥 = (𝑢

1
, 𝑢

2
)

𝑇

∈ 𝑋 or 𝑌;
(20)

here |⋅|denotes the Euclideannorm.Then𝑋 and𝑌 are Banach
spaces with the norm ‖ ⋅ ‖. Set

𝐿 : Dom𝐿 ∩ 𝑋,

𝐿(𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
= (

𝑑𝑢

1
(𝑡)

𝑑𝑡

,

𝑑𝑢

2
(𝑡)

𝑑𝑡

)

𝑇

,

(21)

where Dom𝐿 = {(𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝐶

1
(R,R2)}. Further, 𝑁 :

𝑋 → 𝑋 is defined by

𝑁(

𝑢

1

𝑢

2

) = (

𝑓

1
(𝑡, 𝑢)

𝑓

2
(𝑡, 𝑢)

) . (22)

Define

𝑃(

𝑢

1

𝑢

2

) = 𝑄(

𝑢

1

𝑢

2

) = (

1

𝜔

∫

𝜔

0

𝑢

1
(𝑡) 𝑑𝑡

1

𝜔

∫

𝜔

0

𝑢

2
(𝑡) 𝑑𝑡

) ,

(

𝑢

1

𝑢

2

) ∈ 𝑋 = 𝑌.

(23)

It is not difficult to show that 𝐿 is a Fredholm mapping of
index zero. Furthermore, the generalized inverse (to 𝐿) 𝐾

𝑝
:

Im 𝐿 → Dom𝐿∩Ker𝑃 exists. Standard arguments show that
𝑁 is 𝐿-compact onΩ for any open bounded setΩ ⊂ 𝑋.

Now, we will search for two appropriate open bounded
subsets in order to apply the continuation theorem.

Corresponding to the operator equation 𝐿𝑥 = 𝜆𝑁𝑥, 𝜆 ∈

(0, 1), we have

�̇�

1
(𝑡) = 𝜆𝑟

1
(𝑡)

− 𝜆 [𝑎 (𝑡) exp {𝑢
1
(𝑡)}

− ((4𝐺𝑒𝛿 exp {𝑢
2
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp {𝑢
1
(𝑡) + 𝑢

2
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡)})

2

)

−1

)] ,

(24)

�̇�

2
(𝑡) = − 𝜆𝑟

2
(𝑡)

+ 𝜆 [𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡 − 𝜏)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝑡 − 𝜏)})

× (4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡 − 𝜏)})

2

)

−1

)

× exp {𝑢
2
(𝑡 − 𝜏) − 𝑢

2
(𝑡)}] .

(25)
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Suppose 𝑥 = (𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑋 is a solution of (24) and

(25) for a certain 𝜆 ∈ (0, 1). Integrating (24), (25) over the
interval [0, 𝜔], we obtain

∫

𝜔

0

𝑎 (𝑡) exp {𝑢
1
(𝑡)} 𝑑𝑡

+ ∫

𝜔

0

((4𝐺𝑒𝛿 exp {𝑢
2
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp {𝑢
1
(𝑡) + 𝑢

2
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡)})

2
)

−1

) 𝑑𝑡

= 𝑟

1
𝜔,

(26)

∫

𝜔

0

𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× exp {𝑢
2
(𝑡 − 𝜏) − 𝑢

2
(𝑡)}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡 − 𝜏)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝑡 − 𝜏)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡 − 𝜏)})

2
)

−1

) 𝑑𝑡

= 𝑟

2
𝜔.

(27)

It follows from (𝐴

1
), (24), and (26) that

∫

𝜔

0









�̇�

1
(𝑡)









𝑑𝑡

= 𝜆∫

𝜔

0















𝑟

1
(𝑡) − 𝑎 (𝑡) exp {𝑢

1
(𝑡)}

− ((4𝐺𝑒𝛿 exp {𝑢
2
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp {𝑢
1
(𝑡) + 𝑢

2
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡)})

2

)

−1

)















𝑑𝑡

< ∫

𝜔

0

𝑟

1
(𝑡) 𝑑𝑡 + ∫

𝜔

0

𝑎 (𝑡) exp {𝑢
1
(𝑡)} 𝑑𝑡

+ ∫

𝜔

0

((4𝐺𝑒𝛿 exp {𝑢
2
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2

× exp {𝑢
1
(𝑡) + 𝑢

2
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡)})

2
)

−1

) 𝑑𝑡

= ∫

𝜔

0

𝑟

1
(𝑡) 𝑑𝑡 + 𝑟

1
𝜔 = 2𝑟

1
𝜔;

(28)

that is,

∫

𝜔

0









�̇�

1
(𝑡)









𝑑𝑡 < 2𝑟

1
𝜔. (29)

Similarly, it follows from (𝐴

1
), (25), and (27) that

∫

𝜔

0









�̇�

2
(𝑡)









𝑑𝑡 < 2𝑟

2
𝜔. (30)

Since (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑋, there exist 𝜉

𝑖
, 𝜂

𝑖
∈ [0, 𝜔] such that

𝑢

𝑖
(𝜉

𝑖
) = min
𝑡∈[0,𝜔]

𝑢

𝑖
(𝑡) , 𝑢

𝑖
(𝜂

𝑖
) = max
𝑡∈[0,𝜔]

𝑢

𝑖
(𝑡) , 𝑖 = 1, 2. (31)

Multiplying (25) by exp{𝑢
2
(𝑡)} and integrating over [0, 𝜔], we

obtain

∫

𝜔

0

𝑟

2
(𝑡) exp {𝑢

2
(𝑡)} 𝑑𝑡

= ∫

𝜔

0

[𝑏

1
(𝑡 − 𝜏) exp{−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡 − 𝜏)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝑡 − 𝜏)})

× (4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡 − 𝜏)})

2

)

−1

)

× exp {𝑢
2
(𝑡 − 𝜏)}] 𝑑𝑡

= ∫

𝜔−𝜏

−𝜏

[𝑏

1
(𝜎) exp{−∫

𝜎+𝜏

𝜎

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝜎)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝜎)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝜎)})

2
)

−1

)

× exp {𝑢
2
(𝜎)}] 𝑑𝑡

= ∫

𝜔

0

[𝑏

1
(𝑡) exp{−∫

𝑡+𝜏

𝑡

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡)})

2
)

−1

)

× exp {𝑢
2
(𝑡)}] 𝑑𝑡;

(32)
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that is,

∫

𝜔

0

𝑟

2
(𝑡) exp (𝑢

2
(𝑡)) 𝑑𝑡

= ∫

𝜔

0

[𝑏

1
(𝑡) exp{−∫

𝑡+𝜏

𝑡

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡)})

2
)

−1

)

× exp {𝑢
2
(𝑡)}] 𝑑𝑡.

(33)

It follows from (27), (33), and (𝐴
1
); we see that

𝑟

𝐿

2
∫

𝜔

0

exp {𝑢
2
(𝑡)} 𝑑𝑡

≤ ∫

𝜔

0

𝑟

2
(𝑡) exp {𝑢

2
(𝑡)} 𝑑𝑡

= ∫

𝜔

0

[𝑏

1
(𝑡) exp{−∫

𝑡+𝜏

𝑡

𝛽 (𝑠) 𝑑𝑠}

× ((4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵

× exp {2𝑢
1
(𝑡)})

× (4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡)})

2
)

−1

)

× exp {𝑢
2
(𝑡)}] 𝑑𝑡

≤ ∫

𝜔

0

𝑏

1
(𝑡) exp{−∫

𝑡+𝜏

𝑡

𝛽 (𝑠) 𝑑𝑠}

× [

4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡)}

4𝐺(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝑡)})

2

+

(4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 exp {2𝑢

1
(𝑡)}

4𝐺ℎ

2
𝑒

2
𝛿

2 exp {2𝑢
1
(𝑡)}

]

× exp {𝑢
2
(𝑡)} 𝑑𝑡

≤ 𝑏

𝑀

1
exp {−𝜏𝛽𝐿}

× [

𝑒𝛿𝐵 exp {𝑢
1
(𝜂

1
)}

(1 + ℎ𝑒𝛿 exp{𝑢
1
(𝜉

1
)})

2

+

(4𝐺ℎ − 1) 𝐵

4𝐺ℎ

2
]∫

𝜔

0

exp {𝑢
2
(𝑡)} 𝑑𝑡,

(34)

which implies

𝑟

𝐿

2
≤ 𝑏

𝑀

1
exp {−𝜏𝛽𝐿}

× [

𝑒𝛿𝐵 exp {𝑢
1
(𝜂

1
)}

(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝜉

1
)})

2
+

(4𝐺ℎ − 1) 𝐵

4𝐺ℎ

2
] .

(35)

So

𝑢

1
(𝜂

1
) ≥ ln (([4𝐺ℎ2𝑟𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵]

× (1 + ℎ𝑒𝛿 exp {𝑢
1
(𝜉

1
)})

2

)

× (4𝐺ℎ

2
𝑒𝛿𝐵)

−1

) .

(36)

This, combined with (29), gives

𝑢

1
(𝑡) ≥ 𝑢

1
(𝜂

1
) − ∫

𝜔

0









�̇�

1
(𝑡)









𝑑𝑡

> ln (([4𝐺ℎ2𝑟𝐿
2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵]

× (1 + ℎ𝑒𝛿 exp {𝑢
1
(𝜉

1
)})

2

)

× (4𝐺ℎ

2
𝑒𝛿𝐵)

−1

) − 2𝑟

1
𝜔.

(37)

In particular, we have

𝑢

1
(𝜉

1
) > ln (([4𝐺ℎ2𝑟𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵]

× (1 + ℎ𝑒𝛿 exp {𝑢
1
(𝜉

1
)})

2

)

× (4𝐺ℎ

2
𝑒𝛿𝐵)

−1

) − 2𝑟

1
𝜔,

(38)

or

[4𝐺ℎ

2
𝑟

𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵] ℎ2𝑒2𝛿2

× exp {2𝑢
1
(𝜉

1
)}

− [4𝐺ℎ

2
𝑒𝛿𝐵 exp {2𝑟𝜔}

−2ℎ𝑒𝛿 (4𝐺ℎ

2
𝑟

𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵)]

× exp {𝑢
1
(𝜉

1
)}

+ [4𝐺ℎ

2
𝑟

𝐿

2
(𝑏

𝑀

1
)

−1

exp {𝜏𝛽𝐿} − (4𝐺ℎ − 1) 𝐵] < 0.

(39)

In view of (𝐴
2
), we have

ln 𝑙
−
< 𝑢

1
(𝜉

1
) < ln 𝑙

+
. (40)
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Similarly, it follows from (33) that

𝑏

𝐿

1
exp {−𝜏𝛽𝑀}

×

4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝜉

1
)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 exp {2𝑢

1
(𝜉

1
)}

4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝜂

1
)})

2

× ∫

𝜔

0

exp {𝑢
2
(𝑡)} 𝑑𝑡

≤ ∫

𝜔

0

𝑏

1
(𝑡) exp{−∫

𝑡+𝜏

𝑡

𝛽 (𝑠) 𝑑𝑠}

×

4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝑡)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 exp {2𝑢

1
(𝑡)}

4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝑡)})

2

× exp {𝑢
2
(𝑡)} 𝑑𝑡

= ∫

𝜔

0

𝑟

2
(𝑡) exp {𝑢

2
(𝑡)} 𝑑𝑡

≤ 𝑟

𝑀

2
∫

𝜔

0

exp {𝑢
2
(𝑡)} 𝑑𝑡,

(41)

which implies

𝑏

𝐿

1
exp {−𝜏𝛽𝑀}

×

4𝐺𝑒𝛿𝐵 exp {𝑢
1
(𝜉

1
)} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵 exp {2𝑢

1
(𝜉

1
)}

4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝜂

1
)})

2

≤ 𝑟

𝑀

2
;

(42)

that is,

𝑏

𝐿

1
exp {−𝜏𝛽𝑀} 𝑑𝑠

𝑒𝛿𝐵 exp {𝑢
1
(𝜉

1
)}

(1 + ℎ𝑒𝛿 exp {𝑢
1
(𝜂

1
)})

2
≤ 𝑟

𝑀

2
. (43)

So

𝑢

1
(𝜉

1
) ≤ ln

𝑟

𝑀

2
(1 + ℎ𝑒𝛿 exp {𝑢

1
(𝜂

1
)})

2

𝑏

𝐿

1
𝑒𝛿𝐵 exp {−𝜏𝛽𝑀}

.
(44)

This, combined with (29), gives

𝑢

1
(𝑡) ≤ 𝑢

1
(𝜉

1
) + ∫

𝜔

0









�̇�

1
(𝑡)









𝑑𝑡

< ln
𝑟

𝑀

2
(1 + ℎ𝑒𝛿 exp {𝑢

1
(𝜂

1
)})

2

𝑏

𝐿

1
𝑒𝛿𝐵 exp {−𝜏𝛽𝑀}

+ 2𝑟

1
𝜔.

(45)

In particular, we have

𝑢

1
(𝜂

1
) < ln

𝑟

𝑀

2
(1 + ℎ𝑒𝛿 exp {𝑢

1
(𝜂

1
)})

2

𝑏

𝐿

1
𝑒𝛿𝐵 exp {−𝜏𝛽𝑀}

+ 2𝑟

1
𝜔,

(46)

or

𝑟

𝑀

2
ℎ

2
𝑒

2
𝛿

2 exp {2𝑢
1
(𝜂

1
)}

− [𝑏

𝐿

1
𝑒𝛿𝐵 exp {−𝜏𝛽𝑀} exp {−2𝑟

1
𝜔} − 2ℎ𝑒𝛿𝑟

𝑀

2
]

× exp {𝑢
1
(𝜂

1
)} + 𝑟

𝑀

2
> 0.

(47)

It follows from (𝐴

2
) that

𝑢

1
(𝜂

1
) < ln ℎ

−
or 𝑢

1
(𝜂

1
) > ln ℎ

+
. (48)

From (29) and (40), we find

𝑢

1
(𝑡) ≤ 𝑢

1
(𝜉

1
) + ∫

𝜔

0









�̇�

1
(𝑡)









𝑑𝑡

< ln 𝑙
+
+ 2𝑟

1
𝜔 ≜ 𝐻

11
.

(49)

On the other hand, it follows from (𝐴

1
), (26), and (49) that

𝑟

1
𝜔 ≥ ∫

𝜔

0

4𝐺𝑒𝛿 exp {𝑢
2
(𝜉

2
)}

4𝐺(1 + ℎ𝑒𝛿 exp {ln 𝑙
+
+ 2𝑟𝜔})

2
𝑑𝑡, (50)

𝑟

1
𝜔 ≤ ∫

𝜔

0

𝑎 (𝑡) exp {ln 𝑙
+
+ 2𝑟

1
𝜔} 𝑑𝑡

+ ∫

𝜔

0

𝑒𝛿 exp {𝑢
2
(𝜂

2
)} 𝑑𝑡

+ ∫

𝜔

0

𝑒𝛿 exp {𝑢
2
(𝜂

2
)}

2

𝑑𝑡.

(51)

It follows from (50) that

𝑢

2
(𝜉

2
) ≤ ln

𝑟

1
(1 + ℎ𝑒𝛿 exp {ln 𝑙

+
+ 2𝑟

1
𝜔})

2

𝑒𝛿

.

(52)

This, combined with (30), gives

𝑢

2
(𝑡) ≤ 𝑢

2
(𝜉

2
) + ∫

𝜔

0









�̇�

2
(𝑡)









𝑑𝑡

< ln
𝑟

1
(1 + ℎ𝑒𝛿 exp {ln 𝑙

+
+ 2𝑟

1
𝜔})

2

𝑒𝛿

+ 2𝑟

2
𝜔 ≜ 𝐻

21
.

(53)

Moreover, because of (𝐴
3
), it follows from (51) that

𝑢

2
(𝜂

2
) ≥ ln

2 (𝑟

1
− 𝑎 exp {ln 𝑙

+
+ 2𝑟𝜔})

3𝑒𝛿

.

(54)

This, combined with (30) again, gives

𝑢

2
(𝑡) ≥ 𝑢

2
(𝜂

2
) − ∫

𝜔

0









�̇�

2
(𝑡)









𝑑𝑡

> ln
2 (𝑟

1
− 𝑎 exp {ln 𝑙

+
+ 2𝑟𝜔})

3𝑒𝛿

− 2𝑟

2
𝜔 ≜ 𝐻

22
.

(55)
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It follows from (53) and (55) that

max
𝑡∈[0,𝜔]

𝑢

2
(𝑡) < max {



𝐻

21









,









𝐻

22









} ≜ 𝐻

2
. (56)

Now, let us consider 𝑄𝑁𝑥 with

𝑄𝑁(𝑢

1
, 𝑢

2
)

𝑇

= (𝑟

1
𝜔 − 𝑎𝜔 exp {𝑢

1
} − 𝑤

×

4𝐺𝑒𝛿 exp {𝑢
2
} + (4𝐺ℎ − 1) 𝑒

2
𝛿

2 exp {𝑢
1
+ 𝑢

2
}

4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
})

2
,

− 𝑟

2
𝜔 + 𝑏𝜔

×

4𝐺𝑒𝛿𝐵 exp{𝑢
1
} + (4𝐺ℎ − 1)𝑒

2
𝛿

2
𝐵 exp{2𝑢

1
}

4𝐺(1 + ℎ𝑒𝛿 exp {𝑢
1
})

2
)

𝑇

.

(57)

In viewof (𝐴
1
), (𝐴

2
), and (𝐴

3
), we can show that the equation

𝑄𝑁(𝑢

1
, 𝑢

2
)

𝑇
= 0 has two distinct solutions

�̃� = (ln 𝑢
−
, ln

4𝐺 (𝑟

1
− 𝑎𝑢

−
) (1 + ℎ𝑒𝛿𝑢

−
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

−

) ,

�̂� = (ln 𝑢
+
, ln

4𝐺 (𝑟

1
− 𝑎𝑢

+
) (1 + ℎ𝑒𝛿𝑢

+
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

+

) .

(58)

Choose 𝐶 > 0 such that

𝐶 > max{




















ln
4𝐺 (𝑟

1
− 𝑎𝑢

−
) (1 + ℎ𝑒𝛿𝑢

−
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

−





















,





















ln
4𝐺 (𝑟

1
− 𝑎𝑢

+
) (1 + ℎ𝑒𝛿𝑢

+
)

2

4𝐺𝑒𝛿 + (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝑢

+





















} .

(59)

We define two open bounded subsets. Let

Ω

1
= {𝑥 = (𝑢

1
, 𝑢

2
)

𝑇

∈ 𝑋 | 𝑢

1
(𝑡) ∈ (ln 𝑙

−
, ln ℎ
−
) ,

max
𝑡∈[0,𝜔]









𝑢

2
(𝑡)









< 𝐻

2
+ 𝐶} ,

Ω

2
= {𝑥 = (𝑢

1
, 𝑢

2
)

𝑇

∈ 𝑋 | min
𝑡∈[0,𝜔]

𝑢

1
(𝑡) ∈ (ln 𝑙

−
, ln 𝑙
+
) ,

max
𝑡∈[0,𝜔]

𝑢

1
(𝑡) ∈ (ln ℎ

+
, 𝐻

11
) , max
𝑡∈[0,𝜔]









𝑢

2
(𝑡)









< 𝐻

2
+ 𝐶} .

(60)

Then both Ω

1
and Ω

2
are bounded open subsets of 𝑋. It

follows from (16) and (59) that �̃� ∈ Ω
1
and �̂� ∈ Ω

2
. With the

help of (16), (40), (48), (49), (56), and (59), it is easy to see that
Ω

1
∩Ω

2
= 𝜙, andΩ

𝑖
satisfies the requirement (a) in Lemma 3

for 𝑖 = 1, 2. Moreover,𝑄𝑁𝑥 ̸= 0 for 𝑥 ∈ 𝜕Ω∩Ker 𝐿 = 𝜕Ω∩R2.
A direct computation gives deg{𝐽𝑄𝑁,Ω

𝑖
∩Ker 𝐿, 0} ̸= 0. Here,

𝐽 is taken as the identity mapping since Im𝑄 = Ker 𝐿. So
far we have proved that Ω

𝑖
satisfies all the assumptions in

Lemma 3. Hence, (16) has at least two 𝜔-periodic solutions
𝑢

∗
(𝑡) and 𝑢+(𝑡)with 𝑢∗ ∈ Dom𝐿∩Ω

1
and 𝑢+ ∈ Dom𝐿∩Ω

2
.

Obviously, 𝑢∗ and 𝑢

+ are different. Let 𝑥∗(𝑡) = exp(𝑢∗
1
(𝑡)),

𝑦

∗

2
(𝑡) = exp(𝑢∗

2
(𝑡)) and 𝑥

+
(𝑡) = exp(𝑢+

1
(𝑡)), 𝑦+

2
(𝑡) =

exp(𝑢+
2
(𝑡)). Then, by (18), (𝑥∗(𝑡), 𝑦∗

2
(𝑡)) and (𝑥+(𝑡), 𝑦+

2
(𝑡)) are

two different positive 𝜔-periodic solutions of (4). By the
periodicity of the coefficients of system (4), it is not difficult
to verify that

𝑔

∗
(𝑡) = − 𝛽 (𝑡) 𝑦

1
(𝑡)

+ ((𝑏

1
(𝑡) 4𝐺𝑒𝛿𝐵𝑥

∗
(𝑡) 𝑦

∗

2
(𝑡)

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵(𝑥

∗
)

2

(𝑡) 𝑦

∗

2
(𝑡))

× (4𝐺(1 + ℎ𝑒𝛿𝑥

∗
(𝑡))

2

)

−1

)

− 𝑏

1
(𝑡 − 𝜏) exp(−∫

𝑡

𝑡−𝜏

𝛽 (𝑠) 𝑑𝑠)

× ((4𝐺𝑒𝛿𝐵𝑥

∗
(𝑡 − 𝜏) 𝑦

∗

2
(𝑡 − 𝜏)

+ (4𝐺ℎ − 1) 𝑒

2
𝛿

2
𝐵(𝑥

∗
)

2

(𝑡 − 𝜏) 𝑦

∗

2
(𝑡 − 𝜏))

× (4𝐺(1 + ℎ𝑒𝛿𝑥

∗
(𝑡 − 𝜏))

2
)

−1

)

(61)

is also 𝜔-periodic. Then, from Lemma 4, we know that

𝑑𝑦

1
(𝑡)

𝑑𝑡

= −𝛽 (𝑡) 𝑦

1
(𝑡) + 𝑔

∗
(𝑡)

(62)

has a unique 𝜔-periodic solution denoted by 𝑦∗
1
(𝑡). And

𝑑𝑦

2
(𝑡)

𝑑𝑡

= −𝛽 (𝑡) 𝑦

1
(𝑡) + 𝑔

+
(𝑡)

(63)

has a unique𝜔-periodic solution denoted by𝑦+
1
(𝑡).Therefore,

(𝑥

∗
(𝑡), 𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡)) and (𝑥+(𝑡), 𝑦+

1
(𝑡), 𝑦

+

2
(𝑡)) are two different

𝜔-periodic solutions of system (3). This completes the proof
of Theorem 5.
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