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The purpose of this paper is to obtain some sufficient conditions for the global existence of multiple positive periodic solutions of
a delayed stage-structured plant-hare model with a toxin-determined functional response. Some novel estimation techniques to
construct two open subsets for a priori bounds are employed.

1. Introduction

Alot of classical predator-prey models have been well studied
(e.g., see [1-12]). Recently, Gao et al. [13] considered a
nonautonomous plant-hare dynamical system with a toxin-
determined functional response given by
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where N(t) denotes the density of plant at time ¢ and P(t)
denotes the herbivore biomass at time .

On the other hand, many experts argued that the
predator-prey models should be modified to fit the more
realistic environment. They suggested that one should take
the stage structure factor into consideration. Because it is very
unrealistic to assume that each individual predator admits the
same ability of attacking in the classical predator-prey mod-
els. They divided the individuals into two stages in life history,
namely, immature and mature stages, where the rate of the
immature predator attacking the prey and the reproductive

rate can be ignored, while the mature predators are respon-
sible for the prey. For example, one can refer to [14, 15] and
the references cited therein. To discuss the effects of Holling
type IV functional responses on a stage-structured model, the
authors in [16] proposed the following delayed system:
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However, Holling IV type functional response is not
appropriate for the plant-hare model if we explore the impact
of plant toxicity on the dynamics of plant-hare interactions.
Because such kind of plant can produce toxicity to protect
itself. Therefore, in the present paper, we discuss the
stage-structured plant-hare model with toxin-determined
functional response as follows:
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where x(t) denotes the density of the plant at time ¢, y,(t)
is the density of immature individual hares at time ¢, and
9,(t) denotes the density of mature individual hares at time ¢,
respectively; 7, (£), r,(t), a(t), b, (t), and f(t) are continuously
positive periodic functions with period w. B is the conversion
rate, e is the encounter rate per hare, § is the fraction of food
items encountered that the hares ingest, G measures the toxic-
itylevel, and h is the time for handing one unit of plant. e, §, G,
and h are positive real constants. 7, (¢) is the intrinsic growth
rate of the prey, a(t) is the density-dependent coeflicient of
the plant, and 7, (¢) is the death rate of the mature hares.
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For any continuous w-periodic function f(t), we always
adopt the following notations throughout this paper:
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F=| fodnft= min g,
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where f is a continuous w-periodic function.

The purpose of this paper is to obtain some sufficient con-
ditions for the global existence of multiple positive periodic
solutions of system (4). Our method is based on Mawhin’s
coincidence degree and novel estimation techniques for a
priori bounds of unknown solutions to Lx = ANx. To the
best of our knowledge, it is the first time that a delayed
stage-structured plant-hare dynamical system with a toxin-
determined functional response has been proposed and
studied by using this method.

Remark 1. Theterm exp{- j't; ﬂ(s)ds}(x(t—'r)yz(t—r)/(xz(t—
T)/m + x(t — 7) + a)) in the third equation of (4) involves
x(t — 1) y,(t — 1) instead of x(t — 7)y,(t); the method used
in [13] cannot be applied to system (4) directly. Thus, novel
estimation techniques must be employed for a priori bounds
of unknown solutions to the operator equation Lx = ANXx.
More specifically, integrating the second equation of system

(1) over [0, w], the authors in [13] obtained
J <(4Ge6B () exp {u, (0)}
0

+ (4Gh — 1) €’8* B (t) exp {2u; (1)})
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It follows that
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By some arguments, this inequality then leads them to
dh’e’8” exp (2w (1))
- (eSE exp {—2rw} — 2he63) (8)
x exp {u, ()} + d>o,
which implies that
x, () < Ink, x; () > Ink, 9)
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It should be noted that it is possible to construct two open
subsets ); and Q, due to (9). The essential reason to obtain
(9) is the inequality (7). In inequality (7), there is no variable
u,(t) and only one variable u, ().

However, since the term x(t — 7)y,(t — 7) is in the third
equation of (4), by same arguments in [13], we will see that

Lw b, (t — 1) exp {— L; B(s) ds]»

x exp{u, (t — 1) — u, (1)}

x ((4Ge63 exp {u; (t - 1)} 1)

+ (4Gh — 1) €°8°Bexp {2u, (t — T)})

x (4G(1 + hed exp fuy (t - 1)D?) ) dt

=7,w.
Note that both u, and u, appear simultaneously in the above
equality. If we were to use the same ideas in [13], then the
above equality does not lead us anywhere. Thus, some new
arguments should be employed to obtain a priori bounds for
u,. To see how to overcome this difficulty, the reader can refer
to (33)-(56) in Section 2.

Remark 2. Tt should be noted that the standard estimation
techniques used in [16] are not applicable to the system (4)
either, due to the term C(N(t)). If we were to use the standard
arguments in [16], we can not obtain two positive roots of
exp(u,(&;)). Consequently, we can not construct two open
subsets. Thus, we can not obtain two positive solutions in
these two open subsets.

2. Existence of Multiple Positive
Periodic Solutions

In this section, we will study the existence of multiple periodic
solutions of (4). We recall a few concepts and results from
[17].

Lemma 3 (see [17]). Let Q C X be an open bounded set. Let L

be a Fredholm mapping of index zero and NL-compact on Q.
Assume

(a) for each A € (0,1), x € 0Q N Dom L, Lx # ANXx;
(b) for each x € 00 N Ker L, QNx # 0;
(c) deg{JQN,QnKerL,0} #0.

Then Lx = Nx has at least one solution in QO N Dom L.

Lemma 4. If 5(t) and g(t) are w-periodic functions, then the
system

dy(®) _
dt
has a unique w-periodic solution which can be represented as

y(t) = f_too eXp(Lt Blo)do)g(s)ds.

B@)y () +g(t) (12)

Throughout, we assume the following:
(A)) 1/4h < G < 1/3h;

(A,) 4hr) exp{tp™} exp{2r,w}/bl < B < 4Grik*(bM)™
exp{t-}/(4Gh - 1).

We further introduce six positive numbers which will be
used later as follows:

h, = ((blLe(?B exp {—TﬁM} exp {-27,0} - 2he5r§4)

i\/A\1> X (Zréwhzezéz)A,
I, = ([4Ghze8B exp {27, w}

- 2hed (4Ghzr2L(bfVI)71 exp {TﬁL} - (4Gh-1) B)]
)
X (2h2e262 [4Gh2r2L(bfVI)71 exp {TﬁL}
-1
- 4Gh-1)B])

(4GedB - 8GheoT,b ') + A,

u, =
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where
A= [blLeSB exp{-7p™} exp{-27,w} — 2he§r§4]2
- 4(1’;\4)21126252,
A, = [4Gh2e8B exp {27, w}

—2hed (4Gh2r2L(bfw)71 exp {TﬁL} - (4Gh-1) B)]2
— @8 [aGHr (b)) exp (B} - 4Gh - 1) B]
Ay = (4GedB — 8GhedTb | )2

—16GF,b [4G?2571h2e282 ~ (4Gh—1) e2823] :
(14)

b = (1/w) Iow by (t) exp{— LHT B(s)}dsdt. Under assumptions
(A,) and (A,), it is not difficult to show that

I_<u_<h_<h, <u,<lI,. (15)
Theorem 5. In addition to (A,) and (A,), suppose that
(A;) 7y —aexp{lnl, + 2rw} > 0.

Then system (4) has at least two positive w-periodic solutions.



Proof. Note that the first equation and the third equation of
(4) can be separated from the whole system. Consider the
following subsystem:
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Make the change of variables

x (t) = exp {u; )}, y(®) =exp{u,®)}; (17)

then system (16) can be rewritten as
iy (1) = 1y () —a () exp {u; (1)}
- ((4Ged exp {u, (1)} + (4Gh - 1) €’
x exp {uy (t) +u, (1)})

x (4G(1 + hed explu, OD?) ) = f, (6,w),

t
U, (t) = —r, () + b (t — 1) exp {—L ﬁ(s)ds}

X <(4Ge83 exp {u, (t - 7)} + (4Gh - 1) &*8’B
x exp {2u, (t - T)})
X (4G(1 + hed exp {u, (t - T)})Z)_l)

x exp {u, (t — 1) —u, (1)} == £, (t,u).

(18)
Take
X=Y={x=(@u,u) € C(RR)|x(t+w)=x()}
(19)
and define
el = max uy (8)] + max |us ()]
(20)

x=(upu) €eXory;

Abstract and Applied Analysis

here || denotes the Euclidean norm. Then X and Y are Banach
spaces with the norm || - ||. Set

L:DomLnNX,
T (21)

where Dom L = {(1,(t), u,(t))" € C'(R,R?)}. Further, N :
X — X isdefined by

u\ _( fi(tuw)
N (ui) - <f; (tm))' (22
Define
1 w
%J%ul (t) dt ’
¥ jo w, () dt 3

(”l) ceX-=VY.
U,

It is not difficult to show that L is a Fredholm mapping of
index zero. Furthermore, the generalized inverse (to L) K -
ImL — Dom LNKer P exists. Standard arguments show that
N is L-compact on Q for any open bounded set Q ¢ X.

Now, we will search for two appropriate open bounded
subsets in order to apply the continuation theorem.

Corresponding to the operator equation Lx = ANx, A €
(0, 1), we have

iy () = Ary (t)

—Ala(t)exp{u; (1)}

- ((4668 exp {u, (1)} + (4Gh - 1)e*8*  (24)
x exp {uy (t) +u, (t)})
X (4G(1 + hed exp {u, (t)})z)_l)] ,

t, (1) = = Ar, (1)

+A [bl (t—1)exp {— J: B(s) ds]»

x ((4GeSB exp {u, (t - 1)} + (4Gh - 1) *8°B
x exp{2u, (t - T)})

X (4G(1 + hed exp {u, (t - T)})Z)%)

xexp{u, (t = 1) —u, (t)}] :
(25)
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Suppose x = (u,(t), uz(t))T € X is a solution of (24) and
(25) for a certain A € (0,1). Integrating (24), (25) over the
interval [0, w], we obtain

J a(t)exp{u, (t)}dt
0
+ J ((4Ge§ exp {u, (t)} + (4Gh - 1) &*8°
0

26
x exp {u, (£) +u, (t)}) (26)

x (4G(1 + hed explu (OD)?) ) it
=7 w,
Jw b, (t — 1) exp {— Jt B(s) ds}
0 t-t
x exp {u, (t — 1) — u, ()}

x <(4Ge<SB exp {u, (t — 1)} + (4Gh - 1) &*8°B )

X exp {2u (t - T)})
x (4G(1 + hed explu, (t - 1)D?) ) dit

=T7,w.

It follows from (A,), (24), and (26) that

J |iry (2)] dt
0

0

r (1) —a @) exp {u, (1)}
_ ((4Ge8 exp {u, (t)} + (4Gh - 1) €°8°

x exp {u; (t) + u, (t)})

X (4G(1 + hed exp {u, (t)})z)_1>| dt
(28)

< Jw r () dt + Jw a(t)exp{u, (t)}dt
0 0
+ Jw <(4Ge<3 exp {u, ()} + (4Gh - 1) &°8”
0
x exp {uy (t) +u, (t)})
x (4G(1 + hed explu,(OD?) ) dt
= Jw ry () dt + 70 = 27 w;
0
that is,

r &y ()| dt < 27 w. (29)
0

Similarly, it follows from (A ), (25), and (27) that
w
J |&, ()| dt < 27,w. (30)
0

Since (ul(t),uz(t))T € X, there exist &, #; € [0, w] such that

w; () = maxu, (£),

Y (E’) = i u; (1), te[0,w]

i=1,2.
te[0,w] (31)

Multiplying (25) by exp{u,(t)} and integrating over [0, w], we
obtain

Lw r, () exp {u, (1)) dt

[ po-venf [ soal

X <(4Ge<SB exp {u, (t - )} + (4Gh - 1) &*8°B
x exp {2u, (t - T)})

x (4G(1 + hed exp {u, (t - T)})z)_l>

x exp {u, (t - T)}] dt

S

X ((4G68B exp {u, (0)} + (4Gh - 1) €°5°B
x exp {2u, (0)})

x (4G(1 + hed expluy (0))?) )

X exp {u, (0)}] dt

[ |p e - j ps)ds}

X <(4Ge8B exp {u, (t)} + (4Gh - 1) €’6°B
x exp {2u, (t)})

x (4G(1 + hed expfuy (1)})*) )

x exp {u, (t)}] dt;
(32)
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that is, which implies

© ry < b exp {—TBL}
L ry () exp (u, (1)) dt

- [ [ oo {— j Bs) ds}

x ((4Ge53 exp uy (1)} + (4Gh — 1) 26°B

y [ edBexp {u, (1n,)} . (4Gh-1) B] (35)
(1 + hed exp {u, (51)})2 4Gh?

So

u, (1) > In (([4Gh2r£“(blM)_1 exp {TﬁL} - (4Gh-1) B]

x exp {2u; (1)}) x (1 + hed exp {u, (fl)})z)

x (4G(1 + hed expluy (0))?) ) (scresn) )
x (4Gh“edB .

X exp {u, (t)}] dt. (36)
(33) This, combined with (29), gives

It follows from (27), (33), and (A ); we see that wy (8) 2wy () - L lal (t)l dt

; Jw {u, (1)} dt > In (( [4Gh2r2L(bfw)_l exp {78} - (4Gh-1) B]
r exp (U,
0 x (1 + hed exp {u, (fl)})z)

= Jo (O exp fu, ()} dt X (4Gh2663)_1) - 2r,w.

-[ [bl (t) exp {— j B(s) ds} 7

In particular, we have
((4GesBexp fu, () + (1Gh - 1) &5’ () > In(([4Gr*ri (4") " exp (a8} - (4Gh - 1) B]
x exp {2u; (t)}) - % (1 + hed exp {u, (51)})2)
X (4G(1 + hed exp{u,(£)}) ) ) y (4Gh2€63)71> 2w,

x exp {u, (t)}] dt o
w t+T (34) o
J nwer|] pow] 4004 exp ) a1y 8]
. [ 4GedBexp {u, (1)} x exp {2u, ()}
4G(1 + hed explu, (t)})*

- [4Gh266B exp {2rw}

(4Gh - 1) 8 Bexp {2u, (1)} ]

4GH?e*8? exp {2u, (1)} ~2hed (4GH'ry (b)) exp {1} - (4Gh - 1) B)]

x exp {u, ()} dt x exp {u; (&)}
< b exp {-7p" i
< exp {op'] « [46m(B") " exp{ef'} - aGn 1) B] <o,
[ e in ) (39)
2
(1 + hed exp{u,(£,)}) In view of (A,), we have
4k -1

T ] L exp {u, (1)} dt, Inl < u (&) <Inl,. (40)
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Similarly, it follows from (33) that
by exp {—TﬁM}

4Ge(SB exp {u; (§,)} + (4Gh - 1) e’ 6*Bexp {2u, ()}
4G(1 + hed exp {u, (’71)})

X r) exp {u, (t)} dt
0

< Lw by (t) exp {— J:H B(s) ds}

4Ge§B exp {u, (t)} + (4Gh — 1) 28> Bexp {2u, (1)}
4G(1 + hed exp {u, (1)})°

x exp {u, (1)} dt

_ Lw r, () exp {u, (1)) dt

<! L exp {u, (t)} dt,
(41)

which implies
blL exp {—TﬁM}

4G66B exp {u; (&)} + (4Gh - 1) e’ 6*Bexp {2u, ()}
4G(1 + hed exp {u, (1,)})’

Sréw;
(42)
that is,
6B
b exp {-ep) ds— 222U G} oy

(1 + hed exp {u, (n,)})”
So

PM(1 + hed exp {u, (171)})2' (44)

up (§) <In blLeSB exp {-7pM}

This, combined with (29), gives
)< u (&) + J- |iz, (1)] dt

ry(1 + hed exp fuy (m)})’ (45)
bledB exp {-1M}

+ 21, w.
In particular, we have

”éw(l + hed exp {u, (’71)})2
bledB exp {-1pM} (46)

+2r,w,

u; () < In

or
"éwhzez‘sz exp {2u, (17,)}

- [blLeéB exp {—T,BM} exp {—27,w} — 2hedr, ] (47)

x exp {uy (1)} + ”2 > 0.
It follows from (A,) that

u; (m) <Inh_ or wu(n)>Inh,. (48)

From (29) and (40), we find

u (t) <uy (&) + J o, (1)| dt (1)

<Inl, +2r,w 2 Hy;.
On the other hand, it follows from (A ), (26), and (49) that

Jw 4Ged exp {u, (§,)}

rw> 5
0 4G(1 + hed exp {Inl, + 27w})

r

dt,  (50)
7w< j a(t)exp{lnl, + 27w} dt
0

o [ eoexp fu ()} at 61

N r) ed exp {u, (Wz)}dt
0 2

It follows from (50) that

_ Y
uy(5) <1n r1(1+h68exp{61nl++2r1w}) )
e

This, combined with (30), gives

u, (t) < uy (&) + J |ir, (1)| dt

In 7,(1+ hed exp {In1, + 27, w})’ (53)
ed

+2r,0 = H,,.
Moreover, because of (A5), it follows from (51) that

2(r, —aexp{lnl, +2rw})

>1 (54)
Uy (’/’2) n 3ed
This, combined with (30) again, gives
Uy (£) 2w (17,) = J |iy ()] dt
- 2(r, —aexp{lnl, + 2rw}) (55)
3ed
- 21w = H,,.



It follows from (53) and (55) that

X iy (t) < max {|Hy |, |Hy|} = H,. (56)

Now, let us consider QN x with

QN(up uz)T

= (Flw —awexp{u,} —w

y 4Ged exp {u,} + (4Gh — 1) > 6% exp {u, + u,}
4G(1 + hed exp {u,})’

- 7,0+ bw

o 4GedB exp{u,} + (4Gh - 1)e’*5°B exp{2u,} )T
4G(1 + hed exp {u,})’ .
(57)

Inviewof (A,), (A,),and (A;), we can show that the equation
QN(u,, uz)T = 0 has two distinct solutions

. 4G (7, —au_) (1 + hedu_)’
B e 4Ges + (4Gh-1)e*8%u_ )’

(58)
1y 1 26 F a1 + hedu,)’
e N TGes + (4Gh -1)e28%u, |’
Choose C > 0 such that
cs | 4G (7, —au_) (1 + hedu_)’
A "4Ged + (4Gh — 1) e20%u_
(59)

4G (7, - au,) (1 + hedu, )’
4Ged + (4Gh - 1) e*6%u,

1

Q, = {x = (upuy)" € X |u, (t) € (Inl,Inh),

We define two open bounded subsets. Let

max |u2 (t)| <H, + C} ,
te[0,w]

Q, = {x = (ul,uz)T eX| n[)oin]u1 (t) € (Inl_,Inl,),
te[0,w

max t) € (Inh ,H , max Hl < H +C}
. [2} ]ul() ( 11) : [2} ]luz( )| 2

Then both Q, and Q, are bounded open subsets of X. It
follows from (16) and (59) that & € Q, and & € Q,. With the
help of (16), (40), (48), (49), (56), and (59), it is easy to see that
Q,NQ, = ¢, and Q; satisfies the requirement (a) in Lemma 3
fori = 1, 2. Moreover, QNx # 0 for x € 9QnKer L = 00NR>.
A direct computation gives deg{JQN, Q;NKer L, 0} # 0. Here,
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] is taken as the identity mapping since InQ = Ker L. So
far we have proved that Q; satisfies all the assumptions in
Lemma 3. Hence, (16) has at least two w-periodic solutions
u*(t) and u* (t) withu* € Dom LN Q, and u* € Dom LNQ,.
Obviously, u* and u" are different. Let x"(t) = exp(u; (1)),
¥y, (1) = exp(u;(t)) and x"(t) = exp(u(t)), y,(t) =
exp(u; (t)). Then, by (18), (x"(¢), y; (1)) and (x" (¢), y, (£)) are
two different positive w-periodic solutions of (4). By the
periodicity of the coefficients of system (4), it is not difficult
to verify that

g )= -B®y 1
+ (b 0 4GesBx" (1) 5 ©
+(4Gh - 1)€8°B(x")’ (1) y; (1))

X (4G(1 + hedx” (t))2)71>

-b (t—1)exp (— f B(s) ds)

X ((4Ge63x* (t-1)y, (t-1)
+(4Gh - 1) &8 B(x")* (t - 1) y; (t - 1))

x (4G(1 + hedx" (¢ - T))z)_1>

(61)
is also w-periodic. Then, from Lemma 4, we know that
dy, (t) *
N~ By O+g O (62)

has a unique w-periodic solution denoted by y; (t). And

% =By ) +g" () (63)

has a unique w-periodic solution denoted by y; (). Therefore,
(x™ (1), y; (), ¥, (1)) and (x"(2), y; (), y; (t)) are two different
w-periodic solutions of system (3). This completes the proof
of Theorem 5. O
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