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Vaccination is one of the most effective measures for suppressing the spread of computer virus, and the bilinear incidence rate
assumption for themajority of previousmodels, which is a good first approximation of the general incidence rate, is in disagreement
with the reality. In this paper, a new dynamical model with two kinds of generic nonlinear probabilities (incidence rate and
vaccination probability) is established. An exhaustive mathematical analysis of this model shows that (a) there are two equilibria,
virus-free equilibrium and viral equilibrium, and (b) the virus-free (or viral) equilibrium is globally asymptotically stable when
the basic reproduction number is less (or greater) than unity. The analysis of the basic reproduction number is also included.
Additionally, some numerical examples are given to illustrate the main results, from which it can be seen that the generic nonlinear
vaccination is helpful to strengthen computer security.

1. Introduction

Establishing rational dynamical models underlying the
mechanism of the spread of computer virus is a signifi-
cant issue in computer security, which can give important
insights to defend against viral spread. Since the seminal
work by Cohen [1] and Murray [2] as well as Kephart and
White [3], various propagation models, such as susceptible-
infected-susceptible (SIS) model [4, 5], susceptible-infected-
recovered (SIR)model [6, 7], susceptible-infected-recovered-
susceptible (SIRS) model [8–13], susceptible-exposed-infect-
ed-removed (SEIR) model [14, 15], susceptible-exposed-
infected-quarantined-recovered-susceptible (SEIQRS)model
[16], susceptible-antidotal-infectious-contaminated (SAIC)
model [17], susceptible-antidotal-infected-removed (SAIR)
model [18], susceptible-latent-breaking-susceptible (SLBS)
model [19, 20], susceptible-latent-breaking-recovered-sus-
ceptible (SLBRS) model [21], susceptible-infected-counter-
measure-susceptible (SICS) model [22], and susceptible-in-
fected-external-susceptible (SIES) model [23–25], have been
widely developed.

Vaccination (i.e., the measure that an uninfected com-
puter has the newest-version antivirus software installed)

plays an important role in repressing computer virus, by
which a susceptible computer would have temporary immu-
nity. The fact that a large number of susceptible computers
are infected would enhance the probability that the user
of a susceptible computer has his/her computer vaccinated,
implying that vaccination probability is related to the number
of infected computers. Indeed, Gan et al. [9, 11] recently
investigated two SIRS models by incorporating a linear or
nonlinear vaccination probability (i.e., the probability that a
susceptible computer gets vaccinated is linear or nonlinear in
the number of currently infected computers). Unfortunately,
the bilinear incidence rate assumption for these two models,
which is a good first approximation of the general incidence
rate, is inconsistent with the actual conditions [10]. In real-
ity, overcrowded infected computers and active protection
measures would render this approximation to fail terribly.
As a result, it is worthwhile to explore a dynamical model
with generic nonlinear vaccination probability under more
reasonable assumptions.

Having this idea in mind, in this paper, a new dynamical
model of computer virus with generic nonlinear vaccination
probability and nonlinear incidence rate is proposed. A
detailed study of the model is provided. Specifically, the basic
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reproduction number (i.e., the average number of secondary
infections produced by a single infected computer during
its life time), 𝑅

0
, is determined, and the virus-free (or viral)

equilibrium is shown to be globally asymptotically stable if
𝑅
0
≤ 1 (or 𝑅

0
> 1), implying that computer virus would

tend to extinction or persist according to the value of 𝑅
0
.

The related analysis of 𝑅
0
is also conducted. Additionally,

some numerical examples are examined to illustrate themain
results, from which it can be seen that the generic nonlinear
vaccination is helpful to suppress computer virus diffusion.

The organization of the rest of the paper is as follows.
Section 2 formulates the new model. Section 3 proves the
global stabilities of the virus-free and viral equilibria. A
parameter analysis of the basic reproduction number is
performed in Section 4. Finally, Section 5 summarizes this
work.

2. Model Formulation

As usual, a computer is either internal (i.e., on the Internet)
or external (i.e., outside the Internet). Moreover, an internal
computer is assumed to be in one of three possible states:
susceptible (i.e., uninfected but not immune), infected, and
recovered (i.e., uninfected and immune).

Now, let us introduce some notations as follows, which
will be adopted in the sequel:

𝑆(𝑡): the average number of susceptible internal computers
at time 𝑡,

𝐼(𝑡): the average number of infected internal computers at
time 𝑡,

𝑅(𝑡): the average number of recovered internal computers
at time 𝑡,

𝑁(𝑡): the average number of internal computers at time 𝑡;
that is,𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).

For brevity, let 𝑆, 𝐼, 𝑅, and 𝑁 represent 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), and
𝑁(𝑡), respectively.

The following fundamental assumptions of the new
model are made.

(A1) External computers enter the Internet at rate 𝑏 > 0,
of which a fraction of (1 − 𝑝) (resp., 𝑝) is susceptible
(resp., immune), 0 ≤ 𝑝 ≤ 1.

(A2) Every internal computer leaves the Internet with
probability per unit time 𝜇 > 0.

(A3) Every susceptible internal computer is infected by
infected internal computers with probability per unit
time 𝛽𝐼/ℎ(𝐼), where 𝛽 > 0; function ℎ(𝐼) is continu-
ously differentiable with ℎ(0) = 1 and ℎ


(𝐼) ≥ 0.

(A4) Due to treatment, every infected internal computer
becomes recovered (resp., susceptible) with probabil-
ity per unit time 𝛾

1
> 0 (resp., 𝛾

2
> 0).

(A5) Due to vaccination, every susceptible internal com-
puter acquires temporary immunity with probability
per unit time 𝛼

1
𝑓(𝐼), where 𝛼

1
> 0; function 𝑓(𝐼) is

continuously differentiable with 𝑓(0) = 1 and 𝑓(𝐼) ≥
0.

pb
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Figure 1: The transfer diagram of the new model.

(A6) Every recovered internal computer loses immunity
with probability per unit time 𝛼

2
> 0.

This collection of assumptions can be schematically
shown in Figure 1, from which one can derive the differential
system

̇𝑆 = (1 − 𝑝) 𝑏 − 𝜇𝑆 −
𝛽𝑆𝐼

ℎ (𝐼)
− 𝛼
1
𝑓 (𝐼) 𝑆 + 𝛾

2
𝐼 + 𝛼
2
𝑅,

̇𝐼 =
𝛽𝑆𝐼

ℎ (𝐼)
− 𝜇𝐼 − 𝛾

1
𝐼 − 𝛾
2
𝐼,

�̇� = 𝑝𝑏 − 𝜇𝑅 − 𝛼
2
𝑅 + 𝛼
1
𝑓 (𝐼) 𝑆 + 𝛾

1
𝐼,

(1)

with initial condition (𝑆(0), 𝐼(0), 𝑅(0)) ∈ R3
+
.

3. Model Analysis

This section is devoted to study model (1) theoretically. The
analysis of thismodel comprises the basic reproduction num-
ber, the existence of equilibria, and their global stabilities.

3.1. Basic Reproduction Number. Employing the next gener-
ation method (see [26]) to model (1), the basic reproduction
number can be derived as

𝑅
0
=

𝛽𝑏 (𝜇 + 𝛼
2
− 𝜇𝑝)

𝜇 (𝜇 + 𝛼
1
+ 𝛼
2
) (𝜇 + 𝛾

1
+ 𝛾
2
)
. (2)

3.2. Equilibria. Obviously, system (1) always has a unique
virus-free equilibrium 𝐸

0
= (𝑆
0
, 0, 𝑅
0
), where

𝑆
0
=
𝑏 (𝜇 + 𝛼

2
− 𝜇𝑝)

𝜇 (𝜇 + 𝛼
1
+ 𝛼
2
)
, 𝑅

0
=

𝑏 (𝛼
1
+ 𝜇𝑝)

𝜇 (𝜇 + 𝛼
1
+ 𝛼
2
)
. (3)

Next, let us examine the existence of viral equilibria. The
following result is obtained.

Lemma 1. System (1) has a unique viral equilibrium 𝐸
∗

=

(𝑆
∗
, 𝐼
∗
, 𝑅
∗
) if 𝑅
0
> 1.
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Proof. All viral equilibria of system (1) are determined by the
following system of equations:

(1 − 𝑝) 𝑏 − 𝜇𝑆 −
𝛽𝑆𝐼

ℎ (𝐼)
− 𝛼
1
𝑓 (𝐼) 𝑆 + 𝛾

2
𝐼 + 𝛼
2
𝑅 = 0,

𝛽𝑆𝐼

ℎ (𝐼)
− 𝜇𝐼 − 𝛾

1
𝐼 − 𝛾
2
𝐼 = 0,

𝑝𝑏 − 𝜇𝑅 − 𝛼
2
𝑅 + 𝛼
1
𝑓 (𝐼) 𝑆 + 𝛾

1
𝐼 = 0,

(4)

where 𝐼 ̸= 0. Simplifying, one can get

(1 − 𝑝) 𝑏 − 𝜇𝑆 − (𝜇 + 𝛾
1
) 𝐼 − 𝛼

1
𝑓 (𝐼) 𝑆 + 𝛼

2
𝑅 = 0,

𝑆 =
𝜇 + 𝛾
1
+ 𝛾
2

𝛽
ℎ (𝐼) ,

𝑅 =
𝑏

𝜇
− 𝑆 − 𝐼.

(5)

Substituting the last two equations into the first equation, one
can obtain

𝐹 (𝐼) := 𝑝𝑏 + (𝜇 + 𝛼
2
) (𝐼 +

𝜇 + 𝛾
1
+ 𝛾
2

𝛽
ℎ (𝐼) −

𝑏

𝜇
) + 𝛾
1
𝐼

+ 𝛼
1
𝑓 (𝐼)

𝜇 + 𝛾
1
+ 𝛾
2

𝛽
ℎ (𝐼) = 0.

(6)

Note that ℎ(0) = 1, ℎ

(𝐼) ≥ 0, 𝑓(0) = 1, 𝑓


(𝐼) ≥ 0, and𝑅

0
> 1.

Then,

𝐹

(𝐼) > 0,

lim
𝐼→∞

𝐹 (𝐼) = +∞,

𝐹 (0) =
(𝜇 + 𝛼

1
+ 𝛼
2
) (𝜇 + 𝛾

1
+ 𝛾
2
)

𝛽
(1 − 𝑅

0
) < 0.

(7)

Thus, function 𝐹(𝐼) has a unique positive zero. The proof is
complete.

For convenience, in what follows we will investigate the
following equivalent system of model (1). Consider

�̇� = 𝑏 − 𝜇𝑁,

̇𝐼 =
𝛽 (𝑁 − 𝐼 − 𝑅) 𝐼

ℎ (𝐼)
− (𝜇 + 𝛾

1
+ 𝛾
2
) 𝐼,

�̇� = 𝑝𝑏 − (𝜇 + 𝛼
2
) 𝑅 + 𝛼

1
𝑓 (𝐼) (𝑁 − 𝐼 − 𝑅) + 𝛾

1
𝐼,

(8)

with initial condition (𝑁(0), 𝐼(0), 𝑅(0)) ∈ R3
+
. Clearly, the set

Ω = {(𝑁, 𝐼, 𝑅) ∈ R
3

+
: 𝑅 + 𝐼 ≤ 𝑁 ≤

𝑏

𝜇
} (9)

is positively invariant for system (8).

3.3. Global Stability of the Virus-Free Equilibrium

Theorem 2. 𝐸0 is globally asymptotically stable if 𝑅
0
≤ 1.

Proof. Let 𝑥 = 𝑁 − 𝑏/𝜇, 𝑦 = 𝐼, and 𝑧 = 𝑅 − 𝑅
0; then, system

(8) can be rewritten as

�̇� = − 𝜇𝑥,

̇𝑦 =
𝛽𝑦

ℎ (𝑦)
(𝑥 − 𝑦 − 𝑧 + 𝑆

0
) − (𝜇 + 𝛾

1
+ 𝛾
2
) 𝑦,

�̇� = − (𝜇 + 𝛼
2
) 𝑧 + 𝛾

1
𝑦

+ 𝛼
1
𝑓 (𝑦) (𝑥 − 𝑦 − 𝑧 + 𝑆

0
) − 𝛼
1
𝑆
0
.

(10)

Consider Lyapunov function:

𝑉 =
𝛼
2

8𝜇
𝑥
2
+
𝛾
1

𝛽
∫

𝑦

0

ℎ (𝑢) 𝑑𝑢 +
𝛼
1
𝑆
0

𝛽
∫

𝑦

0

ℎ (𝑢) [𝑓 (𝑢) − 1]

𝑢
𝑑𝑢

+
𝛼
1

𝛽
∫

𝑦

0

𝑓 (𝑢) ℎ (𝑢) 𝑑𝑢 +
1

2
(𝑥 − 𝑧)

2
.

(11)

Then,

�̇�|
(6)

=
𝛼
2

4𝜇
�̇�𝑥 +

𝛾
1

𝛽
ℎ (𝑦) ̇𝑦 +

𝛼
1
𝑆
0

𝛽

ℎ (𝑦) [𝑓 (𝑦) − 1]

𝑦
̇𝑦

+
𝛼
1

𝛽
𝑓 (𝑦) ℎ (𝑦) ̇𝑦 + (𝑥 − 𝑧) (�̇� − �̇�)

= − 𝜇(𝑥 − 𝑧)
2
− 𝛼
2
(
𝑥

2
− 𝑧)

2

−
𝛾
1
(𝜇 + 𝛾

1
+ 𝛾
2
) 𝑦

𝛽
[ℎ (𝑦) − 𝑅

0
]

− 𝛼
1
𝑆
0
[𝑓 (𝑦) − 1] 𝑦

−
𝛼
1
𝑆
0
[𝑓 (𝑦) − 1] (𝜇 + 𝛾

1
+ 𝛾
2
)

𝛽
[ℎ (𝑦) − 𝑅

0
] − 𝛾
1
𝑦
2

− 𝛼
1
𝑓 (𝑦) (𝑥 − 𝑦 − 𝑧)

2

−
𝛼
1
𝑦𝑓 (𝑦) (𝜇 + 𝛾

1
+ 𝛾
2
)

𝛽
[ℎ (𝑦) − 𝑅

0
]

≤ 0.

(12)

�̇�|
(6)

= 0 if and only if (𝑥, 𝑦, 𝑧) = (0, 0, 0); that is,
(𝑆, 𝐼, 𝑅) = 𝐸

0. Hence, the claimed result follows from the
LaSalle Invariance Principle [27].

Remark 3. Theorem 2 implies that computer virus on the
Internet would tend to extinction when the basic reproduc-
tion number is less than or equal to unity.

Example 4. Consider system (1) with𝑝 = 0.3, 𝑏 = 5, 𝜇 = 0.01,
and 𝛽 = 0.00004, 𝛼

1
= 0.002, 𝛼

2
= 0.03, 𝛾

1
= 0.008,
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(a) Time plots of 𝑆, 𝐼, and 𝑅
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Figure 2: An illustration of the dynamics of system (1) given in Example 4.

𝛾
2
= 0.002, 𝑓(𝐼) = 𝐼 + 1, and ℎ(𝐼) = 𝐼

2
+ 1. Then, 𝑅

0
=

0.881 < 1. Figure 2(a) displays the time plots of 𝑆, 𝐼, and
𝑅 for the initial condition (𝑆(0), 𝐼(0), 𝑅(0)) = (480, 10, 10),
and Figure 2(b) shows the phase portrait for system (1), both
consistent withTheorem 2 and Remark 3.

3.4. Global Stability of the Viral Equilibrium. Firstly, let us
consider the following lemma.

Lemma 5. Assume that 𝑅
0
> 1. For 𝑦 ∈ (−𝐼

∗
, +∞), let

𝑉
1
(𝑦) = ∫

𝑦+𝐼
∗

𝐼
∗

ℎ (𝑢) (𝑢 − 𝐼
∗
)

𝑢
𝑑𝑢,

𝑉
2
(𝑦) = ∫

𝑦+𝐼
∗

𝐼
∗

ℎ (𝑢) 𝑓 (𝑢) (𝑢 − 𝐼
∗
)

𝑢
𝑑𝑢,

𝑉
3
(𝑦) = ∫

𝑦+𝐼
∗

𝐼
∗

ℎ (𝑢) [𝑓 (𝑢) − 𝑓 (𝐼
∗
)]

𝑢
𝑑𝑢,

𝑉
4
(𝑦) = 𝑦 [ℎ (𝑦 + 𝐼

∗
) − ℎ (𝐼

∗
)] ,

𝑉
5
(𝑦) = 𝑦 [𝑓 (𝑦 + 𝐼

∗
) − 𝑓 (𝐼

∗
)] ,

𝑉
6
(𝑦) = [𝑓 (𝑦 + 𝐼

∗
) − 𝑓 (𝐼

∗
)] [ℎ (𝑦 + 𝐼

∗
) − ℎ (𝐼

∗
)] .

(13)

Then,𝑉
𝑖
(𝑦) ≥ 0, 𝑖 = 1, 2, . . . , 6. Moreover,𝑉

𝑖
(𝑦) = 0 if and only

if 𝑦 = 0.

Proof. Here, we will prove only the result of𝑉
1
(𝑦).The proofs

of the remaining five functions are similar. It follows from
𝑑𝑉
1
(𝑦)/𝑑𝑦 = ℎ(𝑦 + 𝐼

∗
)𝑦/(𝑦 + 𝐼

∗
) that 𝑉

1
(𝑦) is decreasing

in (−𝐼
∗
, 0] and is increasing in (0, +∞). As 𝑉

1
(0) = 0, the

claimed result follows.

Now, let us explore the global stability of the viral
equilibrium.

Theorem 6. 𝐸∗ is globally asymptotically stable if 𝑅
0
> 1.

Proof. Let 𝑥 = 𝑁 − 𝑏/𝜇, 𝑦 = 𝐼 − 𝐼
∗, and 𝑧 = 𝑅 − 𝑅

∗. Rewrite
system (8) as

�̇� = − 𝜇𝑥,

̇𝑦 =
𝛽 (𝑦 + 𝐼

∗
)

ℎ (𝑦 + 𝐼∗)
{𝑥 − 𝑦 − 𝑧 −

𝑆
∗

ℎ (𝐼
∗
)
[ℎ (𝑦 + 𝐼

∗
) − ℎ (𝐼

∗
)]} ,

�̇� = − (𝜇 + 𝛼
2
) 𝑧 + 𝛾

1
𝑦

+ 𝛼
1
𝑓 (𝑦 + 𝐼

∗
) (𝑥 − 𝑦 − 𝑧 + 𝑆

∗
)

− 𝛼
1
𝑓 (𝐼
∗
) 𝑆
∗
.

(14)

Consider Lyapunov function:

𝑉 =
𝛼
2

8𝜇
𝑥
2
+
𝛾
1

𝛽
𝑉
1
(𝑦) +

𝛼
1

𝛽
𝑉
2
(𝑦)

+
𝛼
1
𝑆
∗

𝛽
𝑉
3
(𝑦) +

1

2
(𝑥 − 𝑧)

2
.

(15)

Then,

�̇�|
(8)

=
𝛼
2

4𝜇
�̇�𝑥 +

𝛾
1

𝛽

𝑑𝑉
1
(𝑦)

𝑑𝑦
̇𝑦 +

𝛼
1

𝛽

𝑑𝑉
2
(𝑦)

𝑑𝑦
̇𝑦

+
𝛼
1
𝑆
∗

𝛽

𝑑𝑉
3
(𝑦)

𝑑𝑦
̇𝑦 + (𝑥 − 𝑧) (�̇� − �̇�)

= − 𝜇(𝑥 − 𝑧)
2
− 𝛼
2
(
𝑥

2
− 𝑧)

2

−
𝛾
1
𝑆
∗

ℎ (𝐼
∗
)
𝑉
4
(𝑦) −

𝛼
1
𝑆
∗
𝑓 (𝑦 + 𝐼

∗
)

ℎ (𝐼
∗
)

𝑉
4
(𝑦)

− 𝛼
1
𝑓 (𝑦 + 𝐼

∗
) (𝑥 − 𝑦 − 𝑧)

2



Abstract and Applied Analysis 5

0

50

100

150

200

250

300

350

400

450

S

I

R

0 50 100 150 200 250 300
Time t   

Va
lu

es
 o

fS
,I
, a

nd
R

(a) Time plots of 𝑆, 𝐼, and 𝑅

0
100

200
300

0
20

40
60

80
0

50
100
150
200
250
300

I

R

S

(b) Phase portrait for system (1)

Figure 3: An illustration of the dynamics of system (1) given in Example 8.

− 𝛾
1
𝑦
2
− 𝛼
1
𝑆
∗
𝑉
5
(𝑦) −

𝛼
1
𝑆
∗2

ℎ (𝐼
∗
)
𝑉
6
(𝑦)

≤ 0.

(16)

�̇�|
(8)

= 0 if and only if (𝑥, 𝑦, 𝑧) = (0, 0, 0); that is, (𝑆, 𝐼, 𝑅) =
𝐸
∗. Therefore, the claimed result follows from the LaSalle

Invariance Principle [27].

Remark 7. Theorem 6 implies that computer virus on the
Internet would tend to persist when the basic reproduction
number is greater than unity.

Example 8. Consider system (1) with𝑝 = 0.3, 𝑏 = 5, 𝜇 = 0.01,
𝛽 = 0.006, 𝛼

1
= 0.001, 𝛼

2
= 0.03, 𝛾

1
= 0.008, 𝛾

2
= 0.002,

𝑓(𝐼) = 𝐼 + 1, and ℎ(𝐼) = 𝐼 + 1. Then, 𝑅
0
= 135.3659 > 1.

Figure 3(a) demonstrates the time plots of 𝑆, 𝐼, and 𝑅 for
the initial condition (𝑆(0), 𝐼(0), 𝑅(0)) = (450, 10, 40), and
Figure 3(b) exhibits the phase portrait for system (1), both in
accordance withTheorem 6 and Remark 7.

4. Discussions

Remarks 3 and 7 tell us the fact that computer virus on the
Internet would tend to extinction or persist according to the
value of the basic reproduction number. So, the analysis of 𝑅

0

is performed.

Theorem 9. Consider (2). Then, 𝜕𝑅
0
/𝜕𝛽 > 0, 𝜕𝑅

0
/𝜕𝛾
1
< 0,

𝜕𝑅
0
/𝜕𝛾
2
< 0, 𝜕𝑅

0
/𝜕𝛼
1
< 0, 𝜕𝑅

0
/𝜕𝛼
2
> 0, and 𝜕𝑅

0
/𝜕𝜇 < 0.

Proof. It is easy to see that the first four inequalities are true.
Consider

𝜕𝑅
0

𝜕𝛼
2

=
𝛽𝑏 (𝛼
1
+ 𝑝𝜇)

𝜇 (𝛾
1
+ 𝛾
2
+ 𝜇) (𝛼

1
+ 𝛼
2
+ 𝜇)
2
> 0,

𝜕𝑅
0

𝜕𝜇

= −
𝛽𝑏 (1 − 𝑝) (𝛼

1
+ 𝛼
2
+ 𝛾
1
+ 𝛾
2
+ 2𝜇)

(𝛼
1
+ 𝛼
2
+ 𝜇)
2
(𝛾
1
+ 𝛾
2
+ 𝜇)
2

−
𝛽𝑏𝛼
2
[(𝛼
1
+ 𝛼
2
+ 2𝜇) (𝛾

1
+ 𝛾
2
+ 𝜇) + 𝜇 (𝜇 + 𝛼

1
+ 𝛼
2
)]

𝜇2(𝛼
1
+ 𝛼
2
+ 𝜇)
2
(𝛾
1
+ 𝛾
2
+ 𝜇)
2

< 0.

(17)

The proof is complete.

Furthermore, the influences of system parameters (i.e.,
𝛼
1
, 𝛼
2
, 𝛾
1
, 𝛾
2
, 𝛽, and 𝜇) on 𝑅

0
are illustrated in Figures 4, 5,

and 6, in coherence withTheorem 9.
In addition, the following example indicates the effect of

different incidence rates and vaccination probabilities on 𝐼

(see Figure 7).

Example 10. Consider system (1) with 𝑝 = 0.3, 𝑏 = 5, 𝜇 =

0.01, and 𝛽 = 0.006, 𝛼
1
= 0.001, 𝛼

2
= 0.03, 𝛾

1
= 0.008,

and 𝛾
2
= 0.002 and the initial condition (𝑆(0), 𝐼(0), 𝑅(0)) =

(450, 10, 40).

5. Conclusions

This paper has studied the long-term behavior of com-
puter virus in terms of a new propagation model with
generic nonlinear incidence rate and nonlinear vaccination
probability. An elaborate analysis of the model including
the basic reproduction number, the existence of virus-free
and viral equilibria, and their global stabilities has been
conducted, from which it is found that computer virus on
the Internet would tend to extinction or persist according
to the value of the basic reproduction number. To illustrate



6 Abstract and Applied Analysis

𝛼1
𝛼2

0.4
0.3

0.2
0.1

0

0.4
0.3

0.2
0.1

0

150

100

50

0

R
0

Figure 4: An illustration of the impact of 𝛼
1
and 𝛼

2
on 𝑅
0
.

R
0

0.08
0.06

0.04
0.02

00
0.01

0.02
0.03

0.04

300

250

200

150

100

50

0

𝛾1
𝛾2

Figure 5: An illustration of the impact of 𝛾
1
and 𝛾

2
on 𝑅
0
.

0
0.5

1
1.5

2

0
1

2
3

4
0

500

1000

1500

2000

1 5

𝛽 𝜇

×10
−6×10

−3

R
0

Figure 6: An illustration of the impact of 𝛽 and 𝜇 on 𝑅
0
.

the obtained main results, some numerical examples have
been examined, from which it can be seen that the generic
nonlinear vaccination is useful for the inhibition of viral
spread.
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