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A FitzHugh-Nagumo (FHN) neural system with multiple delays has been proposed. The number of equilibrium point is analyzed.
It implies that the neural system exhibits a unique equilibrium and three ones for the different values of coupling weight by
employing the saddle-node bifurcation of nontrivial equilibrium point and transcritical bifurcation of trivial one. Further, the
stability of equilibrium point is studied by analyzing the corresponding characteristic equation. Some stability criteria involving
the multiple delays and coupling weight are obtained. The results show that the neural system exhibits the delay-independence
and delay-dependence stability. Increasing delay induces the stability switching between resting state and periodic activity in some
parameter regions of coupling weight. Finally, numerical simulations are taken to support the theoretical results.

1. Introduction

The FitzHugh-Nagumo (FHN) neuron [1, 2], a simplified
model of Hodgkin-Huxley neuron [3], describes the genera-
tion and propagation of nerve impulse in planar autonomous
systems. In recent years, to understand information process-
ing in the brain, the FHN neuron model is commonly used
to study neural spiking due to its simplicity. A complete
qualitative investigation of the FHN neuron was done by
Bautin [4]. Further, a hard oscillation, separatrix loops, and
bifurcations of equilibria and limit cycles can occur under
suitable values of the parameters in this system [5].

To understand the coupling effect and information trans-
mission between neuron systems, the analysis of the dynamic
behavior in coupled FHNneural systems has been the subject
of many papers [6–9], in which many rich bifurcation behav-
iors for equilibrium point and limit cycle are observed. Based
on the finite propagating speed in the signal transmission
between the neurons [10, 11], a coupled FHN neural system
with time delays has been established:

𝑢̇

1
= −𝑢

1
(𝑢

1
− 1) (𝑢

1
− 𝑎) − 𝑢

2
+ 𝑐 tanh (𝑢

3
(𝑡 − 𝜏

1
)) ,

𝑢̇

2
= 𝑏 (𝑢

1
− 𝛾𝑢

2
) ,

𝑢̇

3
= −𝑢

3
(𝑢

3
− 1) (𝑢

3
− 𝑎) − 𝑢

4
+ 𝑐 tanh (𝑢

1
(𝑡 − 𝜏

2
)) ,

𝑢̇

4
= 𝑏 (𝑢

3
− 𝛾𝑢

4
) ,

(1)

where 𝑎, 𝑏, and 𝛾 are the positive constants, 𝑢
1,3

represent the
membrane potentials of neurons 1 and 2, 𝑢

2,4
are the slow

refractory variables, which model the time dependence of
several physical quantities, 𝑐 measures the coupling weight,
and 𝜏
1,2

> 0 represent the time delays in signal transmission
between the neurons.

The research for coupled FHN neural systems with time
delay has attracted many authors’ attentions. Burić and
Todorović [12] studied the Hopf bifurcation (inverse and
direct) and fold bifurcation of limit cycle in the delay-
coupling FHNneurons. Using the ODE (ordinary differential
equation) to approximate the dynamics of the coupled FHN
neurons with small delays, the codimension-2 generalized
Hopf bifurcation was investigated [13]. The different syn-
chronization states were observed with the variation of the
coupling strength and time delay [14]. Their results illus-
trated that the patterns of exactly synchronous oscillations
were dependent on the type of excitability and coupling.
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Wang et al. [15] presented that time delay can control
the transition from the original chaotic motions to peri-
odic ones in two coupled nonidentical FHN models with
synaptic connection. Regarding the sum of two delays as a
parameter, Fan and Hong [16] investigated the stability and
local Hopf bifurcation in the synaptically coupled nonidenti-
cal FHN model. The simple zero singularity (both pitchfork
and transcritical bifurcations) was studied employing the
center manifold reduction and normal form method [17].
Further, by applying the Bautin bifurcation theorem, the
coexistence of rest state and periodic spiking was reported in
the synchronous solution of a coupled FHN neural system
with delay [18].

Recently, some criteria to determine the periodic oscil-
lation were provided in the multiple delayed FHN neural
system with three nonidentical cells [19]. In [20], the Hopf
bifurcation and Bogdanov-Takens bifurcation were investi-
gated in a coupled FHN neural system with gap junction.
The spatiotemporal patterns of bifurcating periodic solutions
were considered by using the symmetric bifurcation theory.
The neuron behavior can transit between resting and spiking.
By the proportional-spatial derivative control approach, Yang
et al. [21] achieved the control problem of the FHN equation.
All works mentioned above have promoted greatly a deep
understanding for dynamic behavior of the coupled FHN sys-
temswith time delay.However, in reality, the neural dynamics
may be influenced by multiple independent parameters, such
as external inputs [22, 23], time delays, and coupling weight
[24, 25]. Their combined effects on dynamic behavior may
be an important topic in the coupled FHN neural systems
with multiple delays. The purpose of the present paper is to
consider the combined effects of coupling weight and mul-
tiple delays on the stability of equilibrium point and obtain
the stability switches in the coupled FHN neural system with
multiple delays (1).

The paper is organized as follows. In the next section,
we study the number of equilibrium points in the coupled
FHN neural system employing the static bifurcation. The
neural system (1) may have one/three equilibrium points
for the varying of the coupled weight by employing the
saddle-node bifurcation of nontrivial equilibrium point and
transcritical bifurcation of trivial one. In Section 3, the
stability of equilibrium point for system (1) is investigated
by analyzing the corresponding characteristic equation. Some
stability criteria involving the multiple delays and coupling
weight are obtained. The results show that the FHN neu-
ral system exhibits the parameter regions involving the
delay-independence stability and delay-dependence stabil-
ity. Increasing time delay can induce the stability switches
between resting state and periodic activity in some parameter
regions of coupling weight. In Section 4, some numerical
simulations are employed to support the theoretical results.
Conclusions are given in Section 5.

2. Equilibrium Point Analysis

It is obvious that (𝑢
1
, 𝑢

2
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3
, 𝑢

4
) = (0, 0, 0, 0) is the triv-

ial equilibrium point of system (1). Linearizing system (1)

near the point (0, 0, 0, 0) produces the following linearized
system:

𝑢̇

1
= −𝑎𝑢

1
− 𝑢

2
+ 𝑐𝑢

3
(𝑡 − 𝜏

1
) ,

𝑢̇

2
= 𝑏𝑢

1
− 𝑏𝛾𝑢

2
,

𝑢̇

3
= −𝑎𝑢

3
− 𝑢

4
+ 𝑐𝑢

1
(𝑡 − 𝜏

2
) ,

𝑢̇

4
= 𝑏𝑢

3
− 𝑏𝛾𝑢

4
.

(2)

The corresponding characteristic equation is
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Then, we have the following conclusion on the eigenvalues of
system (1).

Theorem 1. System (1) has a zero eigenvalue if and only if
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Further, system (1) exhibits a double zero eigenvalue if and only
if
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Proof. 𝜆 = 0 is a zero eigenvalue of system (1) if and only if
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Further, 𝜆 = 0 is a double root of system (1) if and only if
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Figure 1: Intersection points of two curves given by (9), showing the number of equilibriums: (a) unique equilibrium for 𝑐 = 2.0, (b) three
equilibriums for 𝑐 = 2.3, and (c) three equilibriums for 𝑐 = 3.0, where the system parameter values are fixed as 𝑎 = 0.33, 𝑏 = 1, and 𝛾 = 0.47.

From the dynamic theory, when an eigenvalue passes
through the imaginary axis along the real axis with the
variation of system parameter, a static bifurcation will be
exhibited, which results in the variation of the number of
equilibrium points. In fact, all equilibrium points of system
(1) are the solution of the following equations:
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Solutions of (9), that is, equilibrium points of system (1),
depend on the parameters 𝑎, 𝑐, and 𝛾 but are independent
of the delays 𝜏

1
and 𝜏
2
. Geometrically, equilibrium points are

the intersection points of two curves given by (9), as shown in
Figure 1. These two curves are called the nullclines of system
(1). Thus, it is seen that system (1) exhibits either one or three
equilibriums for the different coupling weight 𝑐. In fact, for
the small value of the coupling weight 𝑐, the system has just
the trivial equilibrium point (0, 0), as shown in Figure 1(a).
With the increasing of the coupling weight 𝑐, two nontrivial
equilibrium points are emerged immediately at the right side
of the trivial point (0, 0) (Figure 1(b)), which is the saddle-
node bifurcation of the nontrivial equilibrium point. Further,

the trivial equilibrium point (0, 0) evolves into somewhere
between the nontrivial ones, as shown in Figure 1(c). It
is called the transcritical bifurcation of the trivial point.
Figure 2 shows the corresponding one-dimension bifurcation
diagram in the (𝑐, 𝑢

1
)-plane (Figure 2(a)) and (𝑐, 𝑢

2
)-plane

(Figure 2(b)).

3. Stability Switches and Hopf Bifurcation

It is well known that the equilibrium point is locally asymp-
totically stable if and only if each eigenvalue of the character-
istic equation (3) has the negative real part. In the following,
we investigate the stability of the equilibriumpoint by obtain-
ing the eigenvalues with the maximum real part. The FHN
neural system exhibits the parameter regions involving the
delay-independence stability and delay-dependence stability.
Themultiple delays can induce the stability switches between
resting state and periodic activity in some parameter regions
of coupling weight. To simplify, the investigation begins with
the case 𝜏

1
= 𝜏

2
= 0 in (3) as follows:
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Figure 2: The one-dimensional bifurcation diagrams in the (a) (𝑐, 𝑢
1
)-plane and (b) (𝑐, 𝑢

2
)-plane for the fixed parameters 𝑎 = 0.33, 𝑏 = 1,

and 𝛾 = 0.47.
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It follows from the Routh-Hurwitz criterion that the nec-
essary and sufficient conditions for all roots of (10) having
negative real parts are given by
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Based on the dynamical theory, we have the following.

Theorem 2. If the system parameters are satisfied with one of
the conditions (i) and (ii), the trivial equilibrium point is locally
asymptotically stable for the FHN neural systemmodel without
any time delays.

With the variation of delay 𝜏
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point of system (1) will lose its stability. The neural system
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Based on the dynamical theory, the equilibrium point is
locally asymptotically stable if and only if each of eigenvalues
has the negative real part.Therefore, one can obtain the effect
of delay 𝜏

1
on the eigenvalue of characteristic equation (13).

Theorem 3. If the parameters values of system (1) are satisfied
with one of the conditions (i) and (ii), the following statements
are true.

(a) When the polynomial 𝐿(V) has no positive root, all
eigenvalues of the characteristic equation (13) have the
negative real parts for the arbitrary 𝜏
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. The trivial equi-

librium point exhibits the delay-independent stability.
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1
increases and passes through the critical

delayed value 𝜏𝑐
1
.

(c) When the polynomial 𝐿(V) has at least two positive and
simple roots 0 < V

1
< V
2
< ⋅ ⋅ ⋅ , there exist a finite

number of the delayed 𝜏
1
intervals inwhich all eigenval-

ues of the characteristic equation (13) have negative real
parts.The system exhibits the stability switches between
resting state and periodic activity.

In order to investigate the combined effects of multiple
delays on the local stability of neural system (1), we regard 𝜏

2

as the varying parameter for any fixed delay 𝜏
1
= 𝜏

∗

1
. Letting

𝜆 = 𝑖𝜔 be the simple roots of the characteristic equation (3),
one obtains

𝐷(𝑖𝜔, 𝜏

∗

1
, 𝜏

2
, 𝑐) = 𝜔

4
+ 𝑘

3
𝜔

3
+ 𝑘

2
𝜔

2
+ 𝑘

1
𝜔 + 𝑘

0
= 0, (19)

where

𝑘

3
= −2𝑖𝑎 − 2𝑖𝑏𝛾,

𝑘

2
= −𝑎

2
− 2𝑏 + 𝑐

2e−𝑖𝜔𝜏
∗

1 e−𝑖𝜔𝜏2 − 4𝑎𝑏𝛾 − 𝑏2𝛾2,

𝑘

1
= 2𝑖𝑎𝑏 + 2𝑖𝑎

2
𝑏𝛾 + 2𝑖𝑏

2
𝛾 − 2𝑖𝑏𝑐

2e−𝑖𝜔𝜏
∗

1 e−𝑖𝜔𝜏2𝛾 + 2𝑖𝑎𝑏2𝛾2,

𝑘

0
= 𝑏

2
+ 2𝑎𝑏

2
𝛾 + 𝑎

2
𝑏

2
𝛾

2
− 𝑏

2
𝑐

2e−𝑖𝜔𝜏
∗

1 e−𝑖𝜔𝜏2𝛾2.
(20)

That is

𝑏

2
+ 2𝑎𝑏

2
𝛾 + 𝑎

2
𝑏

2
𝛾

2
− (𝑎

2
+ 2𝑏 + 4𝑎𝑏𝛾 + 𝑏

2
𝛾

2
) 𝜔

2

+ 𝜔

4
+ (𝑐

2
𝜔

2
− 𝑏

2
𝑐

2
𝛾

2
) cos𝜔𝜏

2
cos𝜔𝜏∗

1

− 2𝑏𝑐

2
𝛾𝜔 cos𝜔𝜏∗

1
sin𝜔𝜏

2
− 2𝑏𝑐

2
𝛾𝜔 cos𝜔𝜏

2
sin𝜔𝜏∗

1

+ (𝑏

2
𝑐

2
𝛾

2
− 𝑐

2
𝜔

2
) sin𝜔𝜏

2
sin𝜔𝜏∗

1
= 0,

(2𝑎𝑏 + 2𝑎

2
𝑏𝛾 + 2𝑏

2
𝛾 + 2𝑎𝑏

2
𝛾

2
) 𝜔 − 2 (𝑎 + 𝑏𝛾) 𝜔

3

− 2𝑏𝑐

2
𝛾𝜔 cos𝜔𝜏

2
cos𝜔𝜏∗

1

+ (𝑏

2
𝑐

2
𝛾

2
− 𝑐

2
𝜔

2
) cos𝜔𝜏∗

1
sin𝜔𝜏

2

+ (𝑏

2
𝑐

2
𝛾

2
− 𝑐

2
𝜔

2
) cos 𝜏

2
𝜔 sin𝜔𝜏∗

1

+ 2𝑏𝑐

2
𝛾𝜔 sin 𝜏

2
𝜔 sin𝜔𝜏∗

1
= 0.

(21)

Eliminating 𝜏
2
from (21), one has

cos𝜔𝜏
2
=

𝑓

1
(𝜏

∗

1
, 𝜔)

𝑓

3
(𝜏

∗

1
, 𝜔)

,

sin𝜔𝜏
2
=

𝑓

2
(𝜏

∗

1
, 𝜔)

𝑓

3
(𝜏

∗

1
, 𝜔)

,

(22)

where

𝑓

1
(𝜏

∗

1
, 𝜔)

= (𝑏𝜔 + (𝑎 − 𝜔) 𝜔

2
+ 𝑏

2
𝛾 (1 + 𝑎𝛾 − 𝛾𝜔))

× (−𝑏𝜔 + 𝜔

2
(𝑎 + 𝜔)

+ 𝑏

2
𝛾 (1 + 𝑎𝛾 + 𝜔𝛾))

× cos𝜔𝜏∗
1
− 2𝜔 (𝑏 (−1 + 𝑏𝛾

2
) + 𝜔

2
)

× (𝑏

2
𝛾 (1 + 𝑎𝛾) + 𝑎𝜔

2
) sin𝜔𝜏∗

1
,

𝑓

2
(𝜏

∗

1
, 𝜔)

= − (2𝜔 (𝑏 (−1 + 𝑏𝛾

2
) + 𝜔

2
)

× (𝑏

2
𝛾 (1 + 𝑎𝛾) + 𝑎𝜔

2
) cos𝜔𝜏∗

1

+ (𝑏𝜔 + (𝑎 − 𝜔) 𝜔

2

+𝑏

2
𝛾 (1 + 𝑎𝛾 − 𝛾𝜔))

× (−𝑏𝜔 + 𝜔

2
(𝑎 + 𝜔)

+𝑏

2
𝛾 (1 + 𝑎𝛾 + 𝜔𝛾)) sin𝜔𝜏∗

1
) ,

𝑓

3
(𝜏

∗

1
, 𝜔) = 𝑐

2
(𝑏

2
𝛾

2
+ 𝜔

2
)

2

.

(23)
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Figure 3: Roofs of function 𝐿 ((a) and (c)) and eigenvalue real parts with 𝜏
1
varying ((b) and (d)) for the different coupling weights (a)-(b)

𝑐 = 0.5 and (c)-(d) 𝑐 = 0.8. The other parameters are chosen as 𝑎 = 0.33, 𝑏 = 1, 𝛾 = 0.47, and 𝜏
2
= 0.
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Figure 4: Time histories with the varying delay 𝜏
1
(a) 𝜏
1
= 1.0 and (b) 𝜏

1
= 15.0 when the time delay and coupling weight are fixed as 𝜏

2
= 0,

𝑐 = 0.5, where the other system parameters have the fixed values 𝑎 = 0.33, 𝑏 = 1, and 𝛾 = 0.47.
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Figure 5: Time histories with the varying delay 𝜏
1
(a) 𝜏
1
= 1.0, (b) 𝜏

1
= 5.0, (c) 𝜏

1
= 8.0, and (d) 𝜏

1
= 10.0 when the delay 𝜏

2
and coupled

weight are fixed as 𝜏
2
= 0, 𝑐 = 0.8, where the other system parameters have the fixed values 𝑎 = 0.33, 𝑏 = 1, and 𝛾 = 0.47.

This implies that

𝐺 (𝜏

∗

1
, 𝜔) = (𝑓

1
(𝜏

∗

1
, 𝜔))

2

+ (𝑓

2
(𝜏

∗

1
, 𝜔))

2

− (𝑓

3
(𝜏

∗

1
, 𝜔))

2

= 0.

(24)

If (24) has a number of positive and simple roots 𝜔
𝑖
, 𝑖 =

1, 2, . . ., (3) has the following critical delays determined by
(24):

𝜏

𝑖,𝑗
=

(𝜑

𝑖
+ 2𝑗𝜋)

𝜔

𝑖

, 𝑖 = 1, 2, . . . ; 𝑗 = 0, 1, 2, . . . , (25)

where 𝜑
𝑖
∈ [0, 2𝜋) and is satisfied with

cos (𝜑
𝑖
) =

𝑓

1
(𝜏

∗

1
, 𝜔

𝑖
)

𝑓

3
(𝜏

∗

1
, 𝜔

𝑖
)

, sin (𝜑
𝑖
) =

𝑓

2
(𝜏

∗

1
, 𝜔

𝑖
)

𝑓

3
(𝜏

∗

1
, 𝜔

𝑖
)

. (26)

We determine whether the eigenvalue real part increases
or decreases as delay 𝜏

2
crosses the critical values 𝜏

𝑖,𝑗
,

𝑖 = 1, 2, . . . ; 𝑗 = 0, 1, 2, . . .. Differentiating 𝜆 with respect to
𝜏

2
in (3) reaches

𝜆

󸀠
(𝜏

2
) =

𝜆

2e2𝜆𝜏
∗

1
𝑐

2
(𝑏𝛾 + 𝜆)

2

𝑔 (𝜏

2
, 𝜆)

,
(27)

where

𝑔 (𝜏

2
, 𝜆) = 2e𝜆(𝜏

∗

1
+𝜏
2
)
(𝑎 + 𝑏𝛾 + 2𝜆)

× (𝜆 (𝑎 + 𝜆) + 𝑏 (1 + 𝑎𝛾 + 𝜆𝛾))

+ 𝑐

2
(𝑏𝛾 + 𝜆)

× (−2 + (𝑏𝛾 + 𝜆) (𝜏

∗

1
+ 𝜏

2
)) .

(28)

Based on the transversality condition (27) and theHopf bifur-
cation theorem of delay differential equations, one has the
following theorem.
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Figure 6: The one-dimensional bifurcation diagram in (a) (𝜏
1
, 𝑢

1
)-plane, (b) (𝜏

1
, 𝑢

2
)-plane, (c) (𝜏

1
, 𝑢

3
)-plane, and (d) (𝜏

1
, 𝑢

4
)-plane for the

fixed delay 𝜏
2
= 0 and coupling weights 𝑐 = 0.8.

Theorem4. The following assertions are true if all roots of (13)
have negative real parts.

(a) If 𝐺(𝜏∗
1
, 𝜔) = 0 has no positive root, the trivial equi-

librium point of system (1) is asymptotically stable for
an arbitrary time delay 𝜏

2
, which is called the delay 𝜏

2
-

independent stability.
(b) If𝐺(𝜏∗

1
, 𝜔) = 0 has at least one positive and simple root

𝜔

𝑐
, there exists exactly a critical delay 𝜏𝑐

2
> 0 such that

the trivial equilibrium of system (1) is asymptotically
stable for 𝜏

2
∈ [0, 𝜏

𝑐

2
). Furthermore, if the transversality

condition Re(𝜆󸀠(𝜏
2
)) ̸= 0 holds, system (1) undergoes a

Hopf bifurcation for 𝜏
2
= 𝜏

𝑐

2
. That is, it exhibits a peri-

odic activity bifurcating from the trivial equilibrium
near 𝜏𝑐

2
.

(c) If𝐺(𝜏∗
1
, 𝜔) = 0has at least two positive and simple roots

0 < 𝜔

1
< 𝜔

2
< ⋅ ⋅ ⋅ and the transversality condition

Re(𝜆󸀠(𝜏
2
)) ̸= 0 holds, there exist a finite number of

intervals. If time delay is fixed into these intervals, the
trivial equilibriumpoint is locally asymptotically stable,
while unstable if delay does not belong to ones. The rest

sate of neural system switches from stable to unstable,
and then back to stable when time delay increases and
crosses the critical values in sequence.

4. Numerical Simulation

In this section, some numerical results of system (1) are pre-
sented for the different parameter values. Using the method
of numerical simulation, we find that the theoretically pre-
dicted values are in excellent agreement with the numerical
behaviors. For simplicity, the system parameters are fixed as
𝑎 = 0.33, 𝑏 = 1, and 𝛾 = 0.47. The coupling weight 𝑐 and time
delays (𝜏

1
, 𝜏

2
) are considered as the variable parameters.

Firstly, we fix the time delay 𝜏
2
= 0 and illustrate the

dynamic behavior of system (1) for the different values of the
coupling weight 𝑐 and time delay 𝜏

1
. It follows from (17) that

the polynomial 𝐿(V) has no positive root (see Figure 3(a)) for
the fixed coupling weight 𝑐 = 0.5. The trivial equilibrium
point is locally asymptotically stable for the arbitrary delay
𝜏

1
, which is called the delay 𝜏

1
-independent stability. The

corresponding eigenvalue has the negative real parts for the
delay 𝜏

1
variation, as shown in Figure 3(b).The time histories
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Figure 7: Time histories of the transient chaos for (a) overall view, (b) transient behavior, and (c) long-term behavior for the fixed delay
𝜏

1
= 14.15 when 𝜏

2
= 0 and 𝑐 = 0.8.

with the fixed delay are shown in Figure 4(a) for 𝜏
1
= 1.0 and

Figure 4(b) for 𝜏
1
= 15.0; both converge to the equilibrium

point (0, 0, 0, 0) spirally.
However, when the coupling weight is fixed as 𝑐 = 0.8,

the equation 𝐿(V) = 0 has two positive and simple roots
V
1
= 0.8826, V

2
= 1.2372, as shown in Figure 3(c). The corre-

sponding eigenvalue with 𝜏
1
varying is shown in Figure 3(d).

There exist some critical delays determined by (25). From
Theorem 3, system (1) exhibits the stability switches with
the delay 𝜏

1
increasing. In fact, the trivial equilibrium point

is asymptotically stable when 𝜏

1
∈ (0, 3.9045). Figure 5(a)

illustrates the time history for the fixed delay 𝜏
1
= 1.0. When

𝜏

1
∈ (3.9045, 7.1184), the trivial equilibrium point loses its

stability and evolves into the instability. The time history for
𝜏

1
= 5.0 is shown in Figure 5(b). Further, system (1) obtains

the resting state when delay increases and crosses the critical
value 𝜏

1
= 7.1184. The time history for the fixed delay 𝜏

1
=

8.0 is illustrated in Figure 5(c). Finally, the equilibrium point
loses its stability when the delay 𝜏

1
continues to increase,

which is shown in Figure 5(d) for the fixed delay 𝜏
1
= 10.0.

Figure 6 shows the corresponding one-dimension bifurcation
diagrams for the varying delay 𝜏

1
. It supports the above

theoretical results. Neural system (1) exhibits the multiple
switches between resting state and periodic spiking. Further,
it is worth mentioning that the neural system (1) exhibits
the transient chaos (see Figure 7(a)), which implies that
the system trajectory exhibits a seemingly chaotic solution
for a longer time (see Figure 7(b)) but evolves into a final
nonchaotic state, such as a periodic activity (see Figure 7(c))
or equilibrium eventually.

The partial eigenvalues are exhibited in Figure 8 for the
different delay 𝜏

1
to illustrate the stability switches between

resting state and periodic spiking. Figure 8(a) shows that the
maximum eigenvalues are a conjugate pair with negative part
given by −0.0888 ± 0.7515𝑖 for the fixed delay 𝜏

1
= 1.0. The

neural system exhibits the resting state. Increasing delay 𝜏
1

yields that the conjugate pair passes through the imaginary
axis and go into the right-half plane. For 𝜏

1
= 5.0, the

pair becomes to be 0.0187 ± 1.0846𝑖 shown in Figure 8(b).
The trivial equilibrium point loses its stability. The FHN
neural system exhibits the periodic spiking. Continuing to
increase delay 𝜏

1
, the conjugate pair returns and passes

through the imaginary axis again. The maximum eigenval-
ues with negative real parts occurs in the left-hand plane.
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Figure 8: Distribution of partial eigenvalues for the fixed coupling weight 𝑐 = 0.8 and time delay 𝜏
2
= 0, where the asterisk in green represents

the eigenvalues with negative real part and one with positive real part is in red color. The other parameters are fixed as 𝑎 = 0.33, 𝑏 = 1, and
𝛾 = 0.47.

Figure 8(c) shows the eigenvalues are −0.0133 ± 0.8189𝑖

for the fixed delay 𝜏

1
= 8.0. The neural system obtains

again the resting state. Further, if delay 𝜏

1
is fixed as

𝜏

1
= 10.0, the maximum eigenvalues are the conjugate pair

with positive part 9.0902 × 10

−3
± 1.1452𝑖, as shown in

Figure 8(d). The system (1) exhibits the periodic spiking. In
a word, the increase of time delay can induce the stability
switches between resting state and periodic activity on the
neural system (1).

Furthermore, we fix the time delay 𝜏
1
= 𝜏

∗

1
= 0.5 and find

the combined effects of delay 𝜏
2
and coupling weight 𝑐 on the

dynamic behavior of neural system (1).Thefigures of function
𝐺 and eigenvalues real parts are displayed in Figure 9 for the
different coupling weights 𝑐. Figure 9(a) shows that the curve
𝐺 with 𝑐 = 0.2. There is no intersection point when 𝜔 > 0

holds. It implies that the function 𝐺 has no positive root.
The real parts of all eigenvalues have the negative part, as
shown in Figure 9(b). The equilibrium point of system (1) is
locally asymptotically stable for the arbitrary delay 𝜏

2
. It is

called the delay 𝜏
2
-independent stability. With the coupling

weight 𝑐 increasing to 0.8, the curve determined by function

𝐺 has two positive roots shown in Figure 9(c). It follows from
Figure 9(d) that there exist the delay 𝜏

2
intervals in which the

eigenvalues have the negative parts. The trivial equilibrium
point switches from stable to unstable, and then back to stable
state with delay 𝜏

2
increasing. The neural system exhibits the

stability switches between resting state and periodic spiking.
When coupling weight 𝑐 is increased to 1.8, function 𝐺 has
two pairs of positive roots, as shown in Figure 9(e). However,
at this time, the maximum eigenvalues of the characteristic
equation (13) for the fixed delay 𝜏

2
= 0 have the positive real

part Re(𝜆) = 0.2787. The equilibrium point of system (1) is
instable for any delay 𝜏

2
, as shown in Figure 9(f).

Additionally, it follows from Figure 10 that the time delay
has the different effect on the periodic activity in the FHN
neural system (1). When the coupling weight and time delay
are chosen as 𝑐 = 1.0, 𝜏

1
= 1.0, the eigenvalues of

the maximum real parts are changed from negative value
to positive ones, as shown in Figure 10(a). It implies that
the system behavior will evolve from the resting state into
periodic spiking. That is to say, time delay promotes the
occurrence of the periodic activity in the delay-coupling FHN
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Figure 9: Function 𝐺 curve ((a), (c), and (e)) and eigenvalues real parts with 𝜏
2
varying ((b), (d), and (f)) for the different coupling weights

(a)-(b) 𝑐 = 0.2, (c)-(d) 𝑐 = 0.8, and (e)-(f) 𝑐 = 1.8. The other parameters are fixed as 𝑎 = 0.33, 𝑏 = 1, 𝛾 = 0.47, and 𝜏
1
= 0.5.

neural system. However, for the parameter values of 𝑐 = 1.2

and 𝜏
1
= 0.1, the system has the periodic activity with the

nondelay 𝜏
2
= 0. Increasing delay 𝜏

2
, the eigenvalue of the

maximum real parts exhibits the negative value, as shown in

Figure 10(b). It implies that the trivial equilibrium point
obtains the stability by the increasing delay 𝜏

2
. Time delay

suppresses the system dynamic from periodic activity into
resting state, which can be used to control the neural system.
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Figure 10: Eigenvalues of the maximum real parts show that the
delay 𝜏

2
increasing promotes the system dynamic from resting state

into periodic spiking for 𝑐 = 1.0, 𝜏
1
= 1.0 (a) and suppresses ones

from periodic activity into resting state for 𝑐 = 1.2, 𝜏
1
= 0.1 (b),

where the other parameters are fixed as 𝑎 = 0.33, 𝑏 = 1, and 𝛾 = 0.47.

5. Conclusion

Time delay is an inevitable factor in the signal transmission
between neurons.The neural system with time delay exhibits
the rich dynamical behaviors. In this paper, a coupled FHN
neural system with two delays has been proposed. The
analyses of the number of equilibrium points illustrate that
the neural system has a unique equilibrium and three equi-
libria for the different values of coupling weights. It exhibits
the multiple equilibrium points employing the saddle-node
bifurcation of nontrivial equilibrium point and the transcrit-
ical bifurcation of the trivial point. Further, the stability of
equilibrium point is analyzed employing the corresponding
characteristic equation. Some stability criteria involving the
multiple delays and coupling weight are obtained.The results
show that the FHN neural system exhibits the parameter
regions involved the delay-independence stability and delay-
dependence stability. Time delay increasing can induce the
stability switches between resting state and periodic activity.

Finally, numerical simulations are taken to support the
theoretical results.
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