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We introduce a new generalized system of nonlinear variational inequality problems (GSNVIP) by using the generalized projection
method. Moreover, we introduce an iterative scheme for finding a solution to this problem. Moreover, some existence and strong
convergence theorems are established in uniformly smooth and strictly convex Banach spaces under suitable conditions. The results
presented in the paper improve and extend some recent results.

1. Introduction

Variational inequality theory has become a very effective and
powerful tool for studying a wide range of problems arising in
pure and applied sciences which include work on differential
equations, general equilibrium problems in economics and
mechanics, control problems, and transportation. In 2005,
Verma [1] introduced a general model for two-step projection
methods and applied it to the approximation solvability of
a system of nonlinear variational inequality problems in a
Hilbert space. Based on the convergence of projection meth-
ods, Chang et al. [2] introduced and studied the approximate
solvability of a generalized system for relaxed cocoercive
nonlinear variational inequalities in Hilbert spaces (see, for
instance, [3-5] and the references therein). Recently, Chang
et al. [6] introduced a system of generalized nonlinear
variational inequalities and an iterative scheme for finding
a solution to a system of generalized nonlinear variational
inequality problems by using the generalized projection
method. Moreover, they proved some existence and strong
convergence theorems in uniformly smooth and strictly
convex Banach spaces.

In this paper, we introduce a generalized system of non-
linear variational inequality problems (GSNVIP) by using
the generalized projection approach to introduce an iterative
scheme for finding a solution to this problem. Finally, we

prove some existence and strong convergence theorems in
uniformly smooth and strictly convex Banach spaces under
suitable conditions.

2. Preliminaries

Let E be a real Banach space with dual space E*, (-,-) the
dual pair between E and E*, and K a nonempty closed convex

subset of E. The normalized duality mapping J : E — 2F s
defined by

J) ={f €E (. f*) == ||’} VxeE
1)

A Banach space E is said to be strictly convex if [|x + y[|/2 < 1
forallx,y e U ={z € E: |z| = 1} with x # y. E is said to be
uniformly convex if for each € € (0, 2] there exists § > 0 such
that [[x + y[l/2 < 1 - forall x, y € U with ||x — y| > €. Eis
said to be smooth if the limit

T )
t—0 t

2)

exists for all x, y € U. E is said to be uniformly smooth if the
above limit exists uniformly in x, y € U.
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Remark 1 (see [7]). (i) If E is a uniformly smooth Banach
space, then the normalized duality mapping J is uniformly
continuous on each bounded subset of E.

(ii) If E is a smooth, strictly convex and reflexive Banach
space, then the normalized duality mapping J : E — 2P s
a single valued bijective mapping.

(iii) If E is a smooth, strictly convex and reflexive Banach
space and J* : E* — E is the duality mapping in E*, then
J =7 = I, and J*) = I,

(iv) If E is a strictly convex and reflexive Banach space,
then J™' is hemicontinuous; that is, J™' is norm-weak-
continuous.

(v) E is uniformly smooth if and only if E* is uniformly
convex.

(vi) If E is a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property (i.e., for any sequence
{x,} ¢ E,ifx, — x € Eand |x,| — x|, thenx, — x),
then both the normalized duality mappings J : E — E* and
J*=J':E* - E are continuous.

(vii) Each uniformly convex Banach space E has the
Kadec-Klee property.

Assume that E is a smooth, strictly convex and reflexive
Banach space and K is a nonempty closed convex subset of E;
¢ : EXE — R" := [0, 00) to denote the Lyapunov functional
defined by

¢(xy) = Ix1> =2 (. Jy) + ||, VxyeE )

Following Alber [8], the generalized projection [[x :
E — K is defined by [[xx = z, where z is the unique
solution to the minimization problem

¢ (2x) = ming (y, ). (4)

The existence and uniqueness of the mapping [[x follow
from the property of the function ¢(x, y) and the strict
monotonicity of the mapping J.

Lemma 2 (see [8]). Let E be a smooth, strictly convex and
reflexive Banach space and K a nonempty closed convex subset
of E. Then the following conclusions hold:

(a) ifx e Eand z € K, then

z=Hx<=>(y—z,]z—]x)20, VyeKs (s
K

(b) [k is a continuous mapping from E onto K.

Remark 3. If E is a real Hilbert space, then J = I (identity
mapping), ¢(x, y) = llx — y||2, and [ [ is the metric projec-
tion Py from E onto K.

Lemma 4 (see [9, 10]). Let E be a uniformly convex Banach
space, r > 0 a positive number, and B,(0) = {x € E :
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llxll < 7} a closed ball of E. Then, for any given finite subset
{x1, %5, ..., x5} € B,(0) and for any given positive numbers
ApAy, . Ay with ZnN:1 A, = 1, there exists a continuous,
strictly increasing, and convex function g : [0,2r) — [0, 00)
with g(0) = 0 such that for any i,j € {1,2,..., N} withi < j
the following holds:

N
PR
n=1

Lemma 5 (see [11]). Let E be a real reflexive, smooth, and
strictly convex Banach space. Then the following inequality
holds:

I+ ol U +2(aT" (F+a)). VigeE. ©

Lemma 6 (see [6]). Let E be a real Banach space, K a
nonempty closed convex subset of E with 0 € K, and [[x :
E — K the generalized projection. Then for each x € E, one

has |[Tgxl < lxll.

2 N
< Ihlel -2dss (i -s])- - ©

3. Main Results

In this section, we assume that E is a real Banach space with
dual space E* and K is a nonempty closed convex subset
of E. Let Ty,...,Tyy : KN — E* be nonlinear mappings
and f : K — E a mapping. The generalized system of
nonlinear variational inequality problems (GSNVIP) is to
find x7,..., xy such that for all x € K

(F ) = £ ()T (x5

(f )= f (%), Ty (e 2o X0 %153)) 20,

) 2 0,

(8)

()= f (xR), Ty (%5555 X35 %)) 2 0.

IfN = 3, f = I,and T|,T,,T; : K> — E* are
nonlinear mappings, then the generalized system of nonlin-
ear variational inequality problems (GSNVIP) reduces to the
following problem (see [6]) to find x|, x;, x; such that, for
all x € K,

(x0T, (x5 630 67)) 20,
(x=x,,T, (x5, %1, %x5)) =0, 9)

(x = x5, Ty (x],%5,x3)) > 0.
IfN =2andT,,T, : K* — E* are nonlinear mappings
and f: K — E is a mapping, then the generalized system of
nonlinear variational inequality problems (GSNVIP) reduces

to the following problem to find x}, x; such that, for all x €
K)

(f ()= f(x1), Ty (x3,x7)) 20,
(f(x) - f(x3),Ty (x5, x3)) > 0.

(10)
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IfT,S : K* — E* are nonlinear mappings and g, f :
K — E are two mappings. Define T,,T, : K> — E* by
T (x1,x;) = pT(x7,%5) + g(x3) — g(x7) and T, (x7], x3) =
pS(x7,x5) + g(x;) — g(x;). Then the generalized system of
nonlinear variational inequality problems (GSNVIP) reduces
to the following problem to find x7, x; € K such that, for all
x €K,

(f) = f(x1), T (x3,%7) + 9 (x5) =g (x1)) 20,
(@)= f(5):pS(x,x) +9(x;) - g(x)) 20,

where p, and p, are two positive constants.

Lemma 7. Let E be a smooth, strictly convex, and reflexive
Banach space and K a nonempty closed convex subset of E.
Let Ty,...,Ty : KN — E* be mappings, f : K — Ka
bijective mapping, and p,, ..., py any positive real numbers.
Then (xy,...,xx) € KN is a solution to problem (8) if and
only if (x},...,xx) € K~ is a solution to the following system
of operator equations:

xy = D7 OF () = Ty (55,5655 %3, X)) »
K

x5 = 7 OF () = poTa (55, %55 X3 X1, 65)) 5
K

.
XN-1

=T OF ()
K
—Pn-1Tnor (X xf, x;, s xz*v—z’ xl*\l—l)) >
xn =S OF (53) = T (5756555 X3))
K
(12)

Proof. By Lemma 2, we have that (x},...,x%) € K" isa
solution of problem (8),

[(f )= f(x),
piTy (53, X555 X3 x7)) 20,

(f)-f(x),

* * * * *
Ty (%5, %), X X1 5 %5 ) = 0,

(f ()= f(xx1)
Pt Ter (X0 X7 %55, X550 %0)) 2 0,
(f () = f(xx)>

pnTn (x7,%5, ..., xx)) =0,

forall x € K,

3
[(f )= f(x7), Jf () = Jf (x7)
+p1 Ty (55, %5, .., x0p X1 ) ) 20,
(f )= £ (x3),Jf (x3) = Jf (x3)
+p, T, (X3, X35 X3 X1, %5 ) ) 2 0,
(f () = f (xxen) If (o) = I (33c0)
+pn1 s (K30 X155 X X)) 2 0,
(f )= f(xR)s If (x3)
=Jf (x%) +pnTy (%7 %35..5x%) ) 20,
[(f ()= f(x1),Jf (x7)
-7 Uf (=)
-1y (xilxé‘,---,x?wﬁ)))> 20,
(f )= f(x3),0f (x3)
-1 (7 Uf (+3)
=T, (%5, X35 s Xpgs xf,x;))» >0,
(f ) = f (exn) If ()
-J (]71 Uf (exet) = Pva T
X (x;\,,x’f,x;,...,x;,_z,xl*\,_l))» >0,
(f )= f(xx)sIf (xR)
-1 (7 UF (%)
—pnTn (xi‘,x;'l---,x}“v)))> 20,
(13)
[ (x7)
= l;[]_l Uf (1) = Ty (53, X555 X0, %7)) 5
f(x3)
=17 0F ()
=Ty (x5, X555 X %15 X5)) 5
fxx)
=117 0 (ie)
—pn-1Tno
X (X3 X) > X5 s Xngepr Xn_1)) >
f(xx)
= 1_[]_1 Uf (xx) = pnTn (3752555 x%) »
[ K w0



forany p; > 0,...,py > 0,

(!
=TI OF ()
K
= Ty (255X, X0 X)) >
X
ST Of &)
K
—po T (%3, X5 -5 X0 X1, %5 ) 5
= 3
XN-1 1 )
=f H]_ (f (x3-1) = Py-1Tn-1
K
X (X K X))
Xy
=TI 0f ()
K
— TN (%], %55 x8) -
(15)
O
Algorithm 8. For any given initial points x(()l), x(() ) ees x(()N ) e

K, compute the sequences {xfll)}, {x;2 },...,{an)} by the

iterative processes

) (657) + s

(I 0 () -

(5,52, ...,X;M))))),
(N-1) _ ffl

n+l
x <]—1 ( (1 _ ‘XEIN_I)) ]f (x;N—l)) + (XilN—l)]

(I 0r () -

K

) (1) (2)
x(xnﬂ,xn 3 Xy s

£ ).
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n+1 f_
x<r1<( o) If (x7) + 2]

(I o) -

3 @ (N)
X (‘xn+1"xn+l’ e ’xn+1’

2.0)

(7 (- a)ar () + a1

(T 07 () -,

@ 3
X (xn+1"xn+1’ e

where [ [ is the generalized projection and {oc n, {04(2)}
{ocn )} are sequences in [0, 1].

Theorem 9. Let E be a real uniformly smooth and strictly
convex Banach space with Kadec-Klee property and K a
nonempty closed and convex subset of E with 0 € K. Let
f + K — K be an isometry mapping, T,,...,Ty :
KN = E* continuous mappings, and {ocﬁll)}, {oc,(f)}, {oc(N)}
the sequences in (a,b) with 0 < a < b < 1 satzsfymg the
following conditions:

(i) there exist a compact subset C C E* and constants p, >
0,p, >0,..., py > 0such that

(] (K) - pnTn (KN)) U (] (K) = pn-1Tn— (KN))

u(J(K)-p T, (KY)) cC,
(17)
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where J(x,,%5,..., xN) = Jxn, for all (x1,%x5,..., Similarly, we note that
xy) € KN, and

_ _ 12
[ (5579) - T (R0 00,00
<T1 (%1, %5, -0 xN)» “ (qu —1) ”
I Uxn = Ty (%05 %55+ X)) > >0, ”]f ’(1N 2)
_ 2
<T2 (%1, X055 XN) P (xg:rll D XM 0 A N5 (N- 2))"
] (]xN Py (15 %5 xN))> 20, (18) ”f w 2) “
©) 3 @) N 0 2
<TN (xl,x2 ,,,,, xN), "]f ('xn ) PZTZ( n+1 xn+1 """ xn+1 xn » X n )"
@)|?
T Uxy = puTy (%1, %955 x)) ) 2 0, < "f (%) ' >
2
1 () - Ty (21 8020
<|r I
forall x,,x,,..., xy €K; (20)
(ii) lim, ., Ll) =d, € (a,b), hmn—>oo =d, € (a,b), By Lemma 6, we obtain that
l1mn_,ooocle) = dy € (a,b). Let {x (1)} {x(z)}
. {xilN)} be the sequences defined by (16). Then the "f 1 “
on

problem (8) has a solution (xy,x5,..., xy) € KN and

the sequences {x(l)} {x(z)} ..... {xiN)} converge strongly B 1

t0 X1, %5, .., Xap respectzvely. =\

-1 (N) (N)

Proof. % (] ((1 % )]f(xn )
Step 1. We first show that the sequences {x(l)} {x 512)} .....
{x(N )} are bounded in K. It follows from Lemma 5 where | + o™ i 1—[ I
is bijective and condition (18) that

< (If (=)

-pnTy
“]f (xle)) - pnTn (xff), xf) ..... x;N))"2

(<052, 5 )))”
<Jor (=)
a ( (1= ) 1f ()

- 2pN <TN (xfll),xf) ..... xle)) , - ‘

707 () = o (02 ) o (T
<l G = s I < (1 (=57

® i (52 4) ) )|



(1=a)Jf (x")

+ (xflm] (H]_l
x (£ (")

< (1-a ) rf ()

N) -1
J J
(1

0 8t () )|
(1— N))Ilf (=)
Y ( ) = ey (57570
e
o |y x;M) oxT (<1> <@ 50|
< (1=a) 7 ()] + o0 ()]
==
(21)
Since f is an isometry mapping, we have ||xn+1|| ||x(N Il.

By the same argument method as given above, we have

N-1 N-1) 1 1
IO < 1™V < 1x). Therefore, we
note that limn_>oo||x(1)|| ..... limn_)oollxﬁlN || exist and hence
the sequences {x(1 } {x(2>} ..... {xﬁlN )} are bounded in K.

Step 2. By Lemmas 4 and 6, where f is an isometry mapping
and (19), it follows that there exists a continuous strictly

increasing and convex function g : [0,2r) — [0, c0) with
g(0) = 0 such that
e
o) if ()
wa T 0F (7)
K
2
— Ty (20,52, x))
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- (1 - ocle))oc;N)g

< (f ()
T Of (=)
K
=Ty (7))
< (1-a) £ ()
+ o If (") = T (3 2, x(N))HZ
xg ||]f xff“)
D OF ()
K
T (5P o))

<(1-a ||f<xsv>>uz+a£”||f<xfz”>"2
xg ||]f xff“)
I OF ()
K
- Ty (0, )
I (0 - ()
x g (Jif (=57)
I Of (7)
K

-pnTn (xfll), xf) ..... xle) ))“) .
(22)

This implies that

(1-a)a g ([If (")

I 0F (=)

- pnIn
(<0< )]

S G I TG

(23)



Abstract and Applied Analysis

Since {IIx;k) I} converges for all k = 1,2,..., N, it follows by
lettingn — 00 in (23), condition (ii), and the property of g
that

”ff (=)

T OF (57) = puT (50,62,
K

A7) o

(24)

asn — 00. By (16) and (24), we have

£ (6i2) = 1 ()]
- )

T 0 ()

—pNTN( X, ,x(z) ...,xle)))" — 0,

(25)
asn — 00. Similarly, we can prove that
f Gt ™) =0 ()
_ EIN—I) ] ;N—n T
2 b -
< (If ()
= Pn-1Tn-
X (x(Ni, x(l)
xflz), e ,x(N_Z),xﬁN_l))) “ — 0,

s (i) - 0f (7))

=a” if (=7) -1 17
K

x (Jf ()

-p. T

3 @ (N) (1)

(2)
X ('xn+1’xn+1""’xn+1’xn ,X 0’

7
I () - 17 ()]
i () - T
<(f () i,
S ] )
(26)
asn — OO.

Step 3. Since {xﬁll)}, {xf)}, s {x;N)} are bounded and there
exists a compact subset C < E* such that (J(K) -

N : (N) (N)
pnTN(K™)) € C, there exists a subsequence {xni(N)} of {xnj }
such that

(N) (1) @ (N) *
Jf (x",-m)) -pnTn (xn,<w>’xﬂi<w>"'"xn,.(m) — h, € E".
(27)

Since E is uniformly smooth and strictly conve, it follows by

Lemma 2 (b) and Remark 1 that [, and J ~! are continuous.
Thus

-1 (N)
T (f (550 ) =pu T
K ;
(1) (2) (N) -1
X (xniw, xn,.m) yeees x",-(N) )) — l_[]

K

(h):=f (),
(28)

-1 (N)
]1;[] <]f (x"i(N)>
—pnTN (xﬁi()w > xfzi)w SRR xflI:]N )) — Jf (xx) -
(29)
From (24) and (29), we get

]f( n(N)) -
By (25) and (30), we have

]f( n(N)+1) -

Since E is strictly convex and reflexive, it follows by Remark 1
(iv) that J7! is norm-weak-continuous. Therefore, from (30)
and (31), we note that

F(N) = £ (x),

and

Jf (x)  (as mew — 00). (30)

Jf (xxy) (as mon — 00). (31

f( n(N)+l> flxy)  (32)

[ (0] = L ol
“f< ”<N>+1)|l - “f (xN)" (33)

(as mm — 00).




By the Kadec-Klee property, we have

FENY =60, F(E L) —

(as mxy — 00).

— f (xN)
(34)

Since f~'
quence of {x(N)} such that xifj o

S,N) — xyasn — 00. So, it follows from (16), (30), (34),
and condition (ii) that

Jf (xx)

is continuous, it implies that {xff?g)} is a subse-

— xp € E. Therefore

Il

8
=
—
:XA
1z
~

[
2

N)) If (xt(’lN)) + “LN)fq]H]q
* (35)

x(]f(x ) PnTN ((1) ﬁz),...,quN)))}
(1-dy)Jf (xy)

+d [ 7 OF (53) = paT (6], %5,
K

X))

Since f is a bijective mapping, we obtain that
-1 -1 * * * *

N =f H] (Jf (xn) = TN (X7, X5, X)) -

K

(36)
Similarly, we can prove that for every subsequence {xfﬁ)} of

]
{xflk)} there exist a subsequence {xfj_‘(i)} of {xﬁl’;)} and x{ € E

such that

F(9) = £(5)  (as nw — 00),

(37)

Vk=1,2,...,N -1

Since f~! is a continuous mapping, we note that
X, — % (@8 nw — ). (38)
Hence xfj‘) — x; € E, forallk = 1,2,...,N — 1. Therefore,

we have

Xy = f*lZ[rl Uf (x31)

= P Tnet (X0 X5 X0 X))

x; = P Of ()

AT, (5550 )-
(39)
By Lemma7, we can conclude that (x],x;,...,xy) is a
solution of (8) and x(l) - x| x(z) - x;,...,x(N> —
]

XN
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Setting N = 3 and f = I in Theorem 9, we immediately
obtain the following result.

Corollary 10 (see [6]). Let E be a real uniformly smooth and
strictly convex Banach space with Kadec-Klee property and K
a nonempty closed and convex subset of E with 0 € K. Let

T, T, Ty : K> — E* be continuous mappings and {oc,(f)},
{045,2)}, and {ocff)} the sequences in (a,b) with0 < a < b < 1
satisfying the following conditions.

(i) There exist a compact subset C C E* and constants p; >
0, p, > 0, and py > 0 such that

()= piT, () U (1) - T, ()
u(J(K)-pT, (K*)) cC,

= Jx, forall (x,, x,, x;) € K>, and

(40)

where J(x,, x,, X3)

<T1 (%1, %5, %3) J (Ux; —pTy (xl’x2>x3))> 20,
<T2 (%1%, %3), T (Jx3 = poT) (xl,xz,x3))> 20, (41)

<T3 (x5 %5, %3) T (Jxs = 3T (x1>x2’x3))> 20,

forall x,,x,,x; € K.

(ii) lim,,_, oV = d, € (a,b), lim, _, &'’ = d, € (a,b),
and lim,,_, & = d, € (a,b). Let {xV}, {x<2>} and

{xf)} be the sequences defined by
(3)

n+l

(=) ()
(T 0 () - (25250 ) ),

X

()

n+l

(a7 <ol
(L1 07 () - it (2 5052))) ).
K

X

e ( (1-a) 1f () + a7

X (H}l (]f (xi,l)) _P1T1( f,zfprq?vx(l))))) ’
K

n=0.
(42)

Then the problem (9) has a solution (x],x,,x;) €

K and the sequences {xs)}, {xf)} and {xff)} converge
strongly to x7, x5, and x3, respectively.
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Setting E as a real Hilbert space in Theorem 9, we have
the following result.

Corollary 11. Let H be a real Hilbert space and K a nonempty
closed and convex subset of H. Let f : K — K be an isometry
mapping and Ty,..., Ty, : KN — H continuous mappings
and {ocill)}, {oc,(f)},...,{ocle)} are sequences in (a,b) with 0 <
a < b < 1 satisfying the following conditions.

(i) There exist a compact subset C ¢ H and constants p; >
0,p, >0,...,py > 0such that

(1 (K) - pnTn (KN)>
U (1 (K) = pn-1Tn- (

U (I(K) - p Ty (

where (x1,%,, ...
KN, and

KM)) (43)

kM) cc,

,XN) = X for all (x,%5,...,%xy) €

(T (x1, %5, - .. ,XN)) >0,

> xN)) 2 0)

»xn) %y = P T (%0, %,

(T, (%1, %3, .- xN) > x5y — P T (9, %55

> XN)> >0,
(44)

(T (%1, %55, xn) XN — PTn (X1, X, -
forall x;,x,,...

all) = d, €

n—00"n

, XN € K.

. 2
(a,b), lim,_, a®?

d, € (ab),...,lim,  a™ = € (ab). Let

n—00"n
{xs)}, {xﬁlz)}, s {xﬁLN)} be the sequences defined by

(ii) lim

x(N)
n+l
=7 () () R
X (f (57) = T (x f?,x‘” x5 )))s
(N-1)
xn+1

“;N—1))f(x’(1N—1)>+a 1)PK

x (f (xilNil)) — pPn-1TN-

X (xf:?, xil), xf), RN xLN_Z), iN_l)))) R

e

n+1

(o) £ () 4 P
(7 (<) = p,

X (x(3)1,x£l4+)1, o xN X ),x(z)))),

9
X
= ((-a?) £ (5)
+ ol P (f (a8 ) Ty (45)
(n A 0),
n>0,

where Py is a metric projection on H to K. Then the
problem (8) has a solution (x},x5,...,xy) € KN and
thesequences {x(l)} {x(z)} {x ﬁlN)}convergestrongly
10 X1, %5500 Xpps respectzvely.
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