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We introduce a unified general iterative method to approximate a fixed point of k-strictly pseudononspreading mapping. Under
some suitable conditions, we prove that the iterative sequence generated by the proposedmethod converges strongly to a fixed point
of a k-strictly pseudononspreading mapping with an idea of mean convergence, which also solves a class of variational inequalities
as an optimality condition for a minimization problem. The results presented in this paper may be viewed as a refinement and as
important generalizations of the previously known results announced by many other authors.

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space𝐻 with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, respectively.
Recall that a mapping 𝑇 : 𝐶 → 𝐶 is said to be 𝑘-strict
pseudocontractive if there exists a constant 𝑘 ∈ [0, 1) such
that

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 𝑘
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦



2

,

∀𝑥, 𝑦 ∈ 𝐶.

(1)

If 𝑘 = 0, 𝑇 is said to be nonexpansive mapping; that is,

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

The set of fixed points of 𝑇 is denoted by 𝐹(𝑇); that is, 𝐹(𝑇) =
{𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. Recall also that a mapping 𝑇 : 𝐶 → 𝐶 is
said to be nonspreading if

2
𝑇𝑥 − 𝑇𝑦



2

≤
𝑇𝑥 − 𝑦



2

+
𝑥 − 𝑇𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐶. (3)

It is shown in the study by Iemoto and Takahashi [1] that (3)
is equivalent to
𝑇𝑥 − 𝑇𝑦



2

≤
𝑥 − 𝑦



2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐶.

(4)

Observe that every nonspreadingmapping is quasinonexpan-
sive; that is, ‖𝑇𝑥−𝑝‖ ≤ ‖𝑥−𝑝‖ for all 𝑥 ∈ 𝐶 and all 𝑝 ∈ 𝐹(𝑇).
Following the terminology of Browder and Petryshyn [2], a
mapping 𝑇 : 𝐶 → 𝐶 is called 𝑘-strictly pseudononspreading
if there exists a constant 𝑘 ∈ [0, 1) such that

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 𝑘
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦



2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ ,

∀𝑥, 𝑦 ∈ 𝐶.

(5)

Clearly, every nonspreading mapping is 𝑘-strictly pseudon-
onspreading, but the converse is not true. This shows that
the class of 𝑘-strictly pseudononspreading mappings is more
general than the class of nonspreading mappings. Moreover,
we remark also that the class of 𝑘-strictly pseudononspread-
ing mappings is independent of the class of 𝑘-strict pseudo-
contractions.
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Fixed point problem of nonlinear mappings recently
becomes an attractive subject because of its application
in solving variational inequalities and equilibrium prob-
lems arising in various fields of pure and applied sciences.
Moreover, various iterative schemes and methods have been
developed for finding fixed points of nonlinear mappings.
It is worth mentioning that iterative methods for nonex-
pansive and nonspreading mappings have been extensively
investigated. However, iterative methods for strict pseudo-
contractions are far less developed than those for nonexpan-
sive mappings though Browder and Petryshyn [2] initiated
their work in 1967; the reason is probably that the second
term appearing in the right-hand side of (1) impedes the
convergence analysis for iterative algorithms used to find
a fixed point of the strict pseudo-contraction. This case is
aggravated by adding another inner product to the right-
hand side of (5) for 𝑘-strictly pseudononspreading mapping;
see, for example, [3–13] and the references therein. On the
other hand, 𝑘-strictly pseudononspreading mappings have
more powerful applications than nonexpansive mappings
do in solving mean ergodic problems; see, for example,
[14, 15]. Therefore, it is interesting to develop the effective
numerical methods for approximating fixed point of 𝑘-
strictly pseudononspreading mapping.

In 2006,Marino andXu [10] introduced a general iterative
method and proved that, for a given 𝑥

0
∈ 𝐻, the sequence

{𝑥
𝑛
} generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐵)𝑇𝑥

𝑛
, ∀𝑛 ≥ 1, (6)

where 𝑇 is a self-nonexpansive mapping on 𝐻, 𝑓 is a
contraction of 𝐻 into itself, {𝛼

𝑛
} ⊆ (0, 1) satisfies certain

conditions, and 𝐵 is a strongly positive bounded linear
operator on 𝐻, converges strongly to 𝑥

∗
∈ 𝐹(𝑇), which is

the unique solution of the following variational inequality:

⟨(𝐵 − 𝛾𝑓) 𝑥
∗
, 𝑥
∗
− 𝑤⟩ ≤ 0, ∀𝑤 ∈ 𝐹 (𝑇) , (7)

and is also the optimality condition of problem
min
𝑥∈𝐶

(1/2)⟨𝐵𝑥, 𝑥⟩ − ℎ(𝑥), where ℎ is a potential function
for 𝛾𝑓 (i.e., ℎ(𝑥) = 𝛾𝑓(𝑥),∀𝑥 ∈ 𝐻). Thereafter, the general
iterative method is used to find a common element of the set
of fixed point problems and the set of solutions of variational
inequalities and equilibrium problems (see, e.g., [11–13]).

Recently, Kurokawa and Takahashi [14] obtained a weak
mean ergodic theorem for nonspreadingmappings inHilbert
spaces. Furthermore, they proved a strong convergence
theorem using an idea of mean convergence. In 2011, Osi-
like and Isiogugu [15] introduced a more general 𝑘-strictly
pseudononspreading mapping and considered the following
iterative schemes:

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑧
𝑛
,

𝑧
𝑛
=

1

𝑛

𝑛−1

∑

𝑘=0

𝑇
𝑘

𝛽
𝑥
𝑛
, 𝑛 ≥ 1,

(8)

where auxiliary mapping 𝑇
𝛽
= 𝛽𝐼 + (1 − 𝛽)𝑇. They proved

that the sequences {𝑥
𝑛
} and {𝑧

𝑛
} converge strongly to 𝑃

𝐹(𝑇)
𝑢,

which is themetric projection of𝐻onto𝐹(𝑇).Moreover, they
considered the following Halpern type iterative scheme:

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇
𝛽
𝑥
𝑛
, 𝑛 ≥ 1. (9)

They also proved that {𝑥
𝑛
} generated by (9) converges

strongly to 𝑞 ∈ 𝐹(𝑇) under some suitable conditions and
hence resolved in the affirmative the open problem raised by
Kurokawa andTakahashi [14] in their final remark for the case
where the mapping 𝑇 is averaged.

In 2013, Kangtunyakarn [16] further studied variational
inequalities and fixed point problem of 𝑘-strictly pseudonon-
spreading mapping 𝑇 by modifying the auxiliary mapping
with projection technique. To be more precise, he introduced
the following iterative scheme:

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑃
𝐶
[𝐼 − 𝜆

𝑛
(𝐼 − 𝑇)] 𝑥

𝑛
+ 𝛾
𝑛
𝑆𝑥
𝑛
, 𝑛 ≥ 1,

(10)

where 𝛼
𝑛
, 𝛽
𝑛
, 𝛾
𝑛
∈ (0, 1) such that 𝛼

𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1 and 𝛽

𝑛
∈

[𝑐, 𝑑] ⊂ (0, 1) and 𝑆 is a nonexpansive mapping generated
by a finite family of defining operators, whose fixed point
problems are equivalent to variational inequalities.Moreover,
under some suitable conditions, he proved that the sequence
{𝑥
𝑛
} converges strongly to 𝑃

Ω
𝑢, where Ω is the intersection

of the set of fixed point problems and the set of solutions for
variational inequalities.

Inspired and motivated by research going on in this area,
we introduce a modified general iterative method for 𝑘-
strictly pseudononspreading mapping, which is defined in
the following way:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐵]𝑇
𝜆
𝑛

𝑥
𝑛
,

𝑛 ≥ 1,

(11)

where 𝑇
𝜆
𝑛

= 𝑃
𝐶
[𝐼 − 𝜆

𝑛
(𝐼 − 𝑇)] with 𝜆

𝑛
∈ (0, 1) and

sequences {𝛼
𝑛
} and {𝛽

𝑛
} in [0, 1]. Note that, if 𝛽

𝑛
= 0,

scheme (11) reduces to general iterative method (6), which
is mainly due to Marino and Xu [10]. If 𝛽

𝑛
= 0, 𝛾 = 1, and

𝐵 = 𝐼, scheme (11) reduces to viscosity approximate method
introduced by Moudafi [17] and developed by Inchan [18],
which also extends theHalpern type results of [19, 20] with an
idea of mean convergence for 𝑘-strictly pseudononspreading
mapping.

Our purpose is not only to modify the general iterative
method (6) and projection method (10) to the case of a 𝑘-
strictly pseudononspreading mapping, but also to establish
a new strong convergence theorem with an idea of mean
convergence for a 𝑘-strictly pseudononspreading mapping,
which also solves a class of variational inequalities as an
optimality condition for a minimization problem. Our main
results presented in this paper improve and extend the
corresponding results of [10, 14–17] and many others.

2. Preliminaries

Let 𝐶 be a nonempty closed convex subset of real Hilbert 𝐻
space with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅‖, respectively. For
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every point 𝑥 ∈ 𝐻, there exists a unique nearest point in 𝐶,
denoted by 𝑃

𝐶
, such that
𝑥 − 𝑃

𝐶
𝑥
 ≤

𝑥 − 𝑦
 , ∀𝑦 ∈ 𝐶. (12)

Then 𝑃
𝐶
is called the metric projection of𝐻 onto 𝐶. It is well

known that 𝑃
𝐶
is a nonexpansive mapping and the following

inequality holds:

⟨𝑥 − 𝑢, 𝑢 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (13)

if and only if 𝑢 = 𝑃
𝐶
𝑥 for given 𝑥 ∈ 𝐻 and 𝑢 ∈ 𝐶.

Let𝐴 be amapping from𝐶 into𝐻.Thenormal variational
inequality problem is to find a point 𝑢 ∈ 𝐶 such that

⟨𝐴𝑢, V − 𝑢⟩ ≥ 0, ∀V ∈ 𝐶. (14)

The set of all solutions of the variational inequality is denoted
by 𝑉𝐼(𝐶, 𝐴). Note that 𝑢 ∈ 𝑉𝐼(𝐶, 𝐴) if and only if 𝑢 = 𝑃

𝐶
(𝐼 −

𝜆𝐴)𝑢 for some 𝜆 > 0.
Recall that an operator𝐵 is strongly positive if there exists

a constant 𝛾 > 0 with the property

⟨𝐵𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (15)

Recall also that an operator 𝑓 : 𝐶 → 𝐶 is a contraction, if
there exists a constant 𝜌 ∈ (0, 1) such that

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜌

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (16)

In order to prove our main results, we need the following
lemmas and propositions.

Lemma 1. Let 𝐻 be a real Hilbert space. There hold the
following well-known results:

(i) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, (𝑥 + 𝑦)⟩, ∀𝑥, 𝑦 ∈ 𝐻;

(ii) ‖𝑡𝑥 + (1 − 𝑡)𝑦‖
2

= 𝑡‖𝑥‖
2
+ (1 − 𝑡)‖𝑦‖

2
− 𝑡(1 −

𝑡)‖𝑥 − 𝑦‖
2, 𝑡 ∈ [0, 1], ∀𝑥, 𝑦 ∈ 𝐻.

Lemma 2 (see [6]). Let {𝑥
𝑛
} and {𝑧

𝑛
} be bounded sequences in

Banach space 𝐸 and let {𝛽
𝑛
} be a sequence in [0, 1] such that

0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1. Suppose 𝑥

𝑛+1
=

𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑧
𝑛
and

lim sup
𝑛→∞

(
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛

) ≤ 0, ∀𝑛 ≥ 0. (17)

Then lim
𝑛→∞

‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 3 (see [10]). Let 𝐵 be a strongly positive linear
bounded operator on a Hilbert space𝐻with a coefficient 𝛾 > 0

and 0 <  < ‖𝐵‖
−1. Then ‖𝐼 − 𝐵‖ ≤ 1 − 𝛾.

Lemma 4 (see [10]). Let𝐶 be a nonempty closed convex subset
of a Hilbert space𝐻. Assume that 𝑓 : 𝐶 → 𝐶 is a contraction
with a coefficient 𝜌 ∈ (0, 1) and 𝐵 is a strongly positive linear
bounded operator with a coefficient 𝛾 > 0. Then, for 0 < 𝛾 <

𝛾/𝜌,

⟨𝑥 − 𝑦, (𝐵 − 𝛾𝑓) 𝑥 − (𝐵 − 𝛾𝑓) 𝑦⟩ ≥ (𝛾 − 𝛾𝜌)
𝑥 − 𝑦



2

,

∀𝑥, 𝑦 ∈ 𝐻.

(18)

That is, 𝐵 − 𝛾𝑓 is strongly monotone with coefficient 𝛾 − 𝛾𝜌.

Lemma 5 (see [15]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻, and let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly
pseudononspreadingmapping.Then 𝐼−𝑇 is demiclosed at zero.

Lemma 6 (see [15]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻, and let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly
pseudononspreadingmapping. If𝐹(𝑇) ̸= 0, then it is closed and
convex.

Lemma 7 (see [16]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻, and let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly
pseudononspreading mapping with 𝐹(𝑇) ̸= 0. Then 𝐹(𝑇) =

𝑉𝐼(𝐶, (𝐼 − 𝑇)).

Lemma 8 (see [21]). Assume {𝑎
𝑛
} is a sequence of nonnegative

real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (19)

where {𝛾
𝑛
} is a sequence in (0,1) and {𝛿

𝑛
} is a sequence such

that

(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛿
𝑛
≤ 0 or ∑∞

𝑛=1
|𝛾
𝑛
𝛿
𝑛
| < ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

3. Main Results

Theorem 9. Let 𝐶 be a nonempty closed convex subset of
a Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly
pseudononspreading mapping such that 𝐹(𝑇) ̸= 0. Let 𝑓 :

𝐶 → 𝐶 be a contraction with a coefficient 𝜌 ∈ (0, 1) and let
𝐵 be a strongly positive bounded linear operator with 𝛾 > 0.
For a given point 𝑥

0
∈ 𝐶 and 0 < 𝛾 < 𝛾/𝜌, assume that

𝛼
𝑛
, 𝛽
𝑛
, 𝜆
𝑛
∈ [0, 1] satisfying the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iii) 𝜆
𝑛
∈ (0, 1 − 𝑘) and lim

𝑛→∞
𝜆
𝑛
= 0.

Then the sequence {𝑥
𝑛
} generated by (11) converges strongly

to 𝑞 ∈ 𝐹(𝑇), which is the unique solution of the following
variational inequality:

⟨(𝐵 − 𝛾𝑓) 𝑞, 𝑞 − 𝑤⟩ ≤ 0, ∀𝑤 ∈ 𝐹 (𝑇) . (20)

Proof. First, we show that sequences {𝑥
𝑛
} and {𝑇𝑥

𝑛
} are

bounded. Indeed, from the property of 𝑘-strictly pseudonon-
spreading mapping defined on 𝑇 and 𝑝 ∈ 𝐹(𝑇), we have
𝑇𝑥𝑛 − 𝑇𝑝



2

=
(𝑥𝑛 − 𝑝) − [(𝐼 − 𝑇)𝑥

𝑛
− (𝐼 − 𝑇)𝑝]



2

=
𝑥𝑛 − 𝑝



2

− 2 ⟨𝑥
𝑛
− 𝑝, (𝐼 − 𝑇) 𝑥

𝑛
⟩ +

(𝐼 − 𝑇)𝑥
𝑛



2

≤
𝑥𝑛 − 𝑝



2

+ 𝑘
(𝐼 − 𝑇) 𝑥

𝑛
− (𝐼 − 𝑇) 𝑝



2

+ 2 ⟨(𝐼 − 𝑇) 𝑥
𝑛
, (𝐼 − 𝑇) 𝑝⟩

=
𝑥𝑛 − 𝑝



2

+ 𝑘
(𝐼 − 𝑇) 𝑥

𝑛



2

,

(21)
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which implies that

(1 − 𝑘)
(𝐼 − 𝑇) 𝑥

𝑛



2

≤ 2 ⟨𝑥
𝑛
− 𝑝, (𝐼 − 𝑇) 𝑥

𝑛
⟩ . (22)

From 𝑇
𝜆
𝑛

= 𝑃
𝐶
[𝐼 − 𝜆

𝑛
(𝐼 − 𝑇)] and (22), we obtain


𝑇
𝜆
𝑛

𝑥
𝑛
− 𝑝



2

≤
(𝑥𝑛 − 𝑝) − 𝜆

𝑛
[(𝐼 − 𝑇)𝑥

𝑛
− (𝐼 − 𝑇)𝑝]



2

=
𝑥𝑛 − 𝑝



2

− 2𝜆
𝑛
⟨𝑥
𝑛
− 𝑝, (𝐼 − 𝑇) 𝑥

𝑛
⟩ + 𝜆
2

𝑛

(𝐼 − 𝑇)𝑥
𝑛



2

≤
𝑥𝑛 − 𝑝



2

− 𝜆
𝑛
(1 − 𝑘)

(𝐼 − 𝑇)𝑥
𝑛



2

+ 𝜆
2

𝑛

(𝐼 − 𝑇)𝑥
𝑛



2

=
𝑥𝑛 − 𝑝



2

− 𝜆
𝑛
[(1 − 𝑘) − 𝜆

𝑛
]
(𝐼 − 𝑇)𝑥

𝑛



2

≤
𝑥𝑛 − 𝑝



2

.

(23)

By (i) and Lemma 3, we have that (1 − 𝛽
𝑛
)𝐼 − 𝛼

𝑛
𝐵 is positive

and ‖(1 − 𝛽
𝑛
)𝐼 − 𝛼

𝑛
𝐵‖ ≤ 1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾 for all 𝑛 ≥ 1 (see, i.e.,

[8]). It follows from (11) and (23) that
𝑥𝑛+1 − 𝑝



=

𝛼
𝑛
(𝛾𝑓 (𝑥

𝑛
) − 𝐵𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

+ [(1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐵] (𝑇
𝜆
𝑛

𝑥
𝑛
− 𝑝)



≤ 𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐵𝑝



+ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾)


𝑇
𝜆
𝑛

𝑥
𝑛
− 𝑝



≤ 𝛼
𝑛
𝛾
𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

 + 𝛼
𝑛

𝛾𝑓 (𝑝) − 𝐵𝑝


+ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾)

𝑥𝑛 − 𝑝


≤ [1 − 𝛼
𝑛
(𝛾 − 𝛾𝜌)]

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝛾𝑓 (𝑝) − 𝐵𝑝
 .

(24)

By induction, we have that

𝑥𝑛 − 𝑝
 ≤ max{𝑥0 − 𝑝

 ,
1

𝛾 − 𝛾𝜌

𝛾𝑓 (𝑝) − 𝐵𝑝
} . (25)

Therefore, {𝑥
𝑛
} is bounded and so is {𝑇

𝜆
𝑛

𝑥
𝑛
}. On the other

hand, we estimate
𝑇𝑥𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2

+ 𝑘
(𝐼 − 𝑇) 𝑥

𝑛
− (𝐼 − 𝑇) 𝑝



2

+ 2 ⟨𝑥
𝑛
− 𝑇𝑥
𝑛
, 𝑝 − 𝑇𝑝⟩

=
𝑥𝑛 − 𝑝



2

+ 𝑘
(𝑥𝑛 − 𝑝) − (𝑇𝑥

𝑛
− 𝑝)



2

=
𝑥𝑛 − 𝑝



2

+ 𝑘 (
𝑥𝑛 − 𝑝



2

− 2⟨𝑥
𝑛
− 𝑝, 𝑇𝑥

𝑛
− 𝑝⟩

+
𝑇𝑥𝑛 − 𝑝



2

) ,

(26)

which implies that

(1 − 𝑘)
𝑇𝑥𝑛 − 𝑝



2

≤ (1 + 𝑘)
𝑥𝑛 − 𝑝



2

+ 2𝑘
𝑥𝑛 − 𝑝


𝑇𝑥𝑛 − 𝑝

 .

(27)

From (27), we can obtain

0 ≥ (1 − 𝑘)
𝑇𝑥𝑛 − 𝑝



2

− (1 + 𝑘)
𝑥𝑛 − 𝑝



2

− 2𝑘
𝑥𝑛 − 𝑝


𝑇𝑥𝑛 − 𝑝



= (1 − 𝑘) (
𝑇𝑥𝑛 − 𝑝



2

+
𝑥𝑛 − 𝑝


𝑇𝑥𝑛 − 𝑝

)

− (1 + 𝑘) (
𝑥𝑛 − 𝑝



2

+
𝑥𝑛 − 𝑝


𝑇𝑥𝑛 − 𝑝

)

= (1 − 𝑘)
𝑇𝑥𝑛 − 𝑝

 (
𝑇𝑥𝑛 − 𝑝

 +
𝑥𝑛 − 𝑝

)

− (1 + 𝑘)
𝑥𝑛 − 𝑝

 (
𝑥𝑛 − 𝑝

 +
𝑇𝑥𝑛 − 𝑝

) .

(28)

It follows that

𝑇𝑥𝑛 − 𝑝
 ≤

1 + 𝑘

1 − 𝑘

𝑥𝑛 − 𝑝
 .

(29)

Combining (25) and (29), we conclude that {𝑇𝑥
𝑛
} is bounded.

Next, we will show that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0. To do

this, define a sequence {𝑧
𝑛
} by

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑧
𝑛
, 𝑛 ≥ 1. (30)

Observe that

𝑧
𝑛+1

− 𝑧
𝑛

=
𝑥
𝑛+2

− 𝛽
𝑛+1

𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

𝛾𝑓 (𝑥
𝑛+1

) + [(1 − 𝛽
𝑛+1

) 𝐼 − 𝛼
𝑛+1

𝐵]𝑤
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + [(1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐵]𝑤
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

1 − 𝛽
𝑛+1

[𝛾𝑓 (𝑥
𝑛+1

) − 𝐵𝑤
𝑛+1

] + (𝑤
𝑛+1

− 𝑤
𝑛
)

−
𝛼
𝑛

1 − 𝛽
𝑛

[𝛾𝑓 (𝑥
𝑛
) − 𝐵𝑤

𝑛
] ,

(31)

where 𝑤
𝑛
= 𝑇
𝜆
𝑛

𝑥
𝑛
, and

𝑤𝑛+1 − 𝑤
𝑛



≤
(𝐼 − 𝜆

𝑛+1
(𝐼 − 𝑇)) 𝑥

𝑛+1
− (𝐼 − 𝜆

𝑛
(𝐼 − 𝑇)) 𝑥

𝑛



=
𝑥𝑛+1 − 𝑥

𝑛
− 𝜆
𝑛+1

(𝐼 − 𝑇) 𝑥
𝑛+1

+ 𝜆
𝑛
(𝐼 − 𝑇) 𝑥

𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 + 𝜆
𝑛+1

(𝐼 − 𝑇) 𝑥
𝑛+1

− (𝐼 − 𝑇) 𝑥
𝑛



+
𝜆𝑛+1 − 𝜆

𝑛


(𝐼 − 𝑇) 𝑥

𝑛

 .

(32)
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From (31) and (32), we obtain
𝑧𝑛+1 − 𝑧

𝑛



≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

𝛾𝑓 (𝑥
𝑛+1

) − 𝐵𝑤
𝑛+1



+
𝑤𝑛+1 − 𝑤

𝑛

 +
𝛼
𝑛

1 − 𝛽
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐵𝑤

𝑛



≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

𝛾𝑓 (𝑥
𝑛+1

) − 𝐵𝑤
𝑛+1



+
𝑥𝑛+1 − 𝑥

𝑛

 +
𝛼
𝑛

1 − 𝛽
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐵𝑤

𝑛



+ 𝜆
𝑛+1

(𝐼 − 𝑇) 𝑥
𝑛+1

− (𝐼 − 𝑇) 𝑥
𝑛



+
𝜆𝑛+1 − 𝜆

𝑛


(𝐼 − 𝑇) 𝑥

𝑛

 .

(33)

It follows from conditions (i)–(iii) and Lemma 2 that

lim
𝑛→∞

𝑧𝑛 − 𝑥
𝑛

 = 0. (34)

From (30) and (34) and condition (ii), we have

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = lim
𝑛→∞

(1 − 𝛽
𝑛
)
𝑧𝑛 − 𝑥

𝑛

 = 0. (35)

Moreover, note that 𝑤
𝑛
= 𝑇
𝜆
𝑛

𝑥
𝑛
and

𝑥𝑛 − 𝑤
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑤

𝑛



=
𝑥𝑛 − 𝑥

𝑛+1



+
𝛼𝑛𝛾𝑓 (𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐵]𝑤
𝑛
− 𝑤
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 + 𝛼
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐵𝑤

𝑛

 + 𝛽
𝑛

𝑥𝑛 − 𝑤
𝑛

 ,

(36)

which implies that

𝑥𝑛 − 𝑤
𝑛

 ≤
1

1 − 𝛽
𝑛

𝑥𝑛 − 𝑥
𝑛+1

 +
𝛼
𝑛

1 − 𝛽
𝑛

𝛾𝑓 (𝑥
𝑛
) − 𝐵𝑤

𝑛

 .

(37)

Combining conditions (i)-(ii) and (35), we obtain

lim
𝑛→∞

𝑥𝑛 − 𝑤
𝑛

 = lim
𝑛→∞


𝑥
𝑛
− 𝑇
𝜆
𝑛

𝑥
𝑛


= 0. (38)

That is,

lim
𝑛→∞

𝑥𝑛 − 𝑃
𝐶
[𝐼 − 𝜆

𝑛
(𝐼 − 𝑇)] 𝑥

𝑛

 = 0. (39)

Next, wewill prove that lim sup
𝑛→∞

⟨𝛾𝑓(𝑞)−𝐵𝑞, 𝑥
𝑛
−𝑞⟩ ≤

0, where 𝑞 = 𝑃
𝐹(𝑇)

(𝐼 − 𝐵 + 𝛾𝑓)𝑞. To show this inequality, take
a subsequence {𝑥

𝑛
𝑗

} of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥
𝑛
− 𝑞⟩

= lim
𝑗→∞

⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥
𝑛
𝑗

− 𝑞⟩ .

(40)

Without loss of generality, we may assume that {𝑥
𝑛
𝑗

} con-
verges weakly to 𝑤; that is, 𝑥

𝑛
𝑗

⇀ 𝑤 as 𝑗 → ∞, where
𝑤 ∈ 𝐶. We will show that 𝑤 ∈ 𝐹(𝑇). From Lemmas 5 and
7, we have 𝐹(𝑇) = 𝐹(𝑇

𝜆
𝑛
𝑗

) = 𝐹(𝑃
𝐶
[𝐼 − 𝜆

𝑛
𝑗

(𝐼 − 𝑇)]). Assume
that 𝑤 ̸= 𝑃

𝐶
[𝐼 − 𝜆

𝑛
𝑗

(𝐼 − 𝑇)]𝑤. By condition (iii), (38), and
Opial’s property, we obtain

lim inf
𝑗→∞


𝑥
𝑛
𝑗

− 𝑤


< lim inf
𝑗→∞


𝑥
𝑛
𝑗

− 𝑃
𝐶
[𝐼 − 𝜆

𝑛
𝑗

(𝐼 − 𝑇)]𝑤


≤ lim inf
𝑗→∞

(


𝑥
𝑛
𝑗

− 𝑇
𝜆
𝑛
𝑗

𝑥
𝑛
𝑗



+

𝑃
𝐶
[𝐼 − 𝜆

𝑛
𝑗

(𝐼 − 𝑇)] 𝑥
𝑛
𝑗

−𝑃
𝐶
[𝐼 − 𝜆

𝑛
𝑗

(𝐼 − 𝑇)]𝑤

)

≤ lim inf
𝑗→∞

(


𝑥
𝑛
𝑗

− 𝑇
𝜆
𝑛
𝑗

𝑥
𝑛
𝑗



+

𝑥
𝑛
𝑗

− 𝑤


+𝜆
𝑛
𝑗


(𝐼 − 𝑇) 𝑥

𝑛
𝑗

− (𝐼 − 𝑇)𝑤

)

≤ lim inf
𝑗→∞


𝑥
𝑛
𝑗

− 𝑤

.

(41)

This is a contradiction. Then 𝑤 ∈ 𝐹(𝑇). Since 𝑥
𝑛
𝑗

⇀ 𝑤 as
𝑗 → ∞, we have

lim sup
𝑛→∞

⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥
𝑛
− 𝑞⟩

= lim
𝑗→∞

⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥
𝑛
𝑗

− 𝑞⟩

= ⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑤 − 𝑞⟩ ≤ 0.

(42)

On the other hand, we will show the uniqueness of a solution
of the variational inequality

⟨(𝐵 − 𝛾𝑓) 𝑥, 𝑥 − 𝑤⟩ ≤ 0, 𝑤 ∈ 𝐹 (𝑇) . (43)

Suppose 𝑞 ∈ 𝐹(𝑇) and 𝑞 ∈ 𝐹(𝑇) both are solutions to (43);
then

⟨(𝐵 − 𝛾𝑓) 𝑞, 𝑞 − 𝑞⟩ ≤ 0,

⟨(𝐵 − 𝛾𝑓) 𝑞, 𝑞 − 𝑞⟩ ≤ 0.

(44)

Adding up (44), we get

⟨(𝐵 − 𝛾𝑓) 𝑞 − (𝐵 − 𝛾𝑓) 𝑞, 𝑞 − 𝑞⟩ ≤ 0. (45)

From Lemma 4, the strongmonotonicity of 𝐵−𝛾𝑓, we obtain
𝑞 = 𝑞 and the uniqueness is proved.
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Finally, we show that {𝑥
𝑛
} converges strongly to 𝑞 as 𝑛 →

∞. From (11), (23), and Lemma 1, we have (note that 𝑤
𝑛
=

𝑇
𝜆
𝑛

𝑥
𝑛
)

𝑥𝑛+1 − 𝑞


2

= ⟨𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ [(1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐵]𝑤
𝑛
− 𝑞, 𝑥

𝑛+1
− 𝑞⟩

= 𝛼
𝑛
⟨𝛾𝑓 (𝑥

𝑛
) − 𝐵𝑞, 𝑥

𝑛+1
− 𝑞⟩

+ ⟨[(1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐵] (𝑤
𝑛
− 𝑞) , 𝑥

𝑛+1
− 𝑞⟩

+ 𝛽
𝑛
⟨𝑥
𝑛
− 𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤ 𝛼
𝑛
𝛾 ⟨𝑓 (𝑥

𝑛
) − 𝑓 (𝑞) , 𝑥

𝑛+1
− 𝑞⟩

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥

𝑛+1
− 𝑞⟩

+ 𝛽
𝑛

𝑥𝑛 − 𝑞

𝑥𝑛+1 − 𝑞



+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)

𝑤𝑛 − 𝑞

𝑥𝑛+1 − 𝑞



≤ 𝛼
𝑛
𝛾𝜌

𝑥𝑛 − 𝑞

𝑥𝑛+1 − 𝑞



+ 𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥

𝑛+1
− 𝑞⟩

+ (1 − 𝛼
𝑛
𝛾)

𝑥𝑛 − 𝑞

𝑥𝑛+1 − 𝑞



= [1 − (𝛾 − 𝛾𝜌) 𝛼
𝑛
]
𝑥𝑛 − 𝑞


𝑥𝑛+1 − 𝑞



+ 𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤
1 − (𝛾 − 𝛾𝜌) 𝛼

𝑛

2
(
𝑥𝑛 − 𝑞



2

+
𝑥𝑛+1 − 𝑞



2

)

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥

𝑛+1
− 𝑞⟩

≤
1 − (𝛾 − 𝛾𝜌) 𝛼

𝑛

2

𝑥𝑛 − 𝑞


2

+
1

2

𝑥𝑛+1 − 𝑞


2

+ 𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥

𝑛+1
− 𝑞⟩ .

(46)

It follows that

𝑥𝑛+1 − 𝑞


2

≤ [1 − (𝛾 − 𝛾𝜌) 𝛼
𝑛
]
𝑥𝑛 − 𝑞



2

+ 2𝛼
𝑛
⟨𝛾𝑓 (𝑞) − 𝐵𝑞, 𝑥

𝑛+1
− 𝑞⟩ .

(47)

Together with 0 < 𝛾 < 𝛾/𝜌, condition (i), and (42), we can
arrive at the desired conclusion lim

𝑛→∞
‖𝑥
𝑛
− 𝑞‖ = 0 by

Lemma 8. This completes the proof.

Theorem 10. Let 𝐶 be a nonempty closed convex subset of
a Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly
pseudononspreadingmapping such that𝐹(𝑇) ̸= 0. Let𝑓 : 𝐶 →

𝐶 be a contraction with a coefficient 𝜌 ∈ (0, 1). Let {𝑥
𝑛
} be a

sequence generated by 𝑥
0
∈ 𝐶 in the following manner:

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
− 𝛽
𝑛
) 𝑇
𝜆
𝑛

𝑥
𝑛
, 𝑛 ≥ 1,

(48)

where {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝜆

𝑛
} are sequences in (0,1) satisfying the

following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iii) 𝜆
𝑛
∈ (0, 1 − 𝑘) and lim

𝑛→∞
𝜆
𝑛
= 0.

Then the sequence {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹(𝑇), which

is the unique solution of the following variational inequality:

⟨(𝐼 − 𝑓) 𝑞, 𝑞 − 𝑤⟩ ≤ 0, ∀ 𝑤 ∈ 𝐹 (𝑇) . (49)

Proof. Putting 𝐵 = 𝐼 and 𝛾 = 1, general iterative scheme
(11) reduces to viscosity iteration (48).The desired conclusion
follows immediately from Theorem 9. This completes the
proof.

Theorem 11. Let 𝐶 be a nonempty closed convex subset of a
Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐶 be a nonspreading
mapping (or quasinonexpansive) such that 𝐹(𝑇) ̸= 0. Let
𝑓 : 𝐶 → 𝐶 be a contraction with a coefficient 𝜌 ∈ (0, 1) and
let 𝐵 be a strongly positive bounded linear operator with 𝛾 > 0

and 0 < 𝛾 < 𝛾/𝜌. Let {𝑥
𝑛
} be a sequence generated by 𝑥

0
∈ 𝐶

in the following manner:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐵]𝑇
𝜆
𝑛

𝑥
𝑛
,

𝑛 ≥ 1,

(50)

where {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0,1) satisfying the

following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iii) 𝜆
𝑛
∈ (0, 1) and lim

𝑛→∞
𝜆
𝑛
= 0.

Then the sequence {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹(𝑇), which

is the unique solution of the following variational inequality:

⟨(𝐵 − 𝛾𝑓) 𝑞, 𝑞 − 𝑤⟩ ≤ 0, ∀ 𝑤 ∈ 𝐹 (𝑇) . (51)

Proof. Clearly, every nonspreading mapping 𝑇 is 0-strictly
pseudononspreading, which is also quasinonexpansive.
Therefore, the desired conclusion follows immediately from
Theorem 9. This completes the proof.

Remark 12. Theorems 9 and 10 extend the Halpern type
methods of [14, 15] and viscosity methods of Moudafi [17] to
more general unified general iterative methods for 𝑘-strictly
pseudononspreading mapping, which also solves a class of
variational inequalities related to an optimality problem.

Remark 13. Theorems 9 and 10 improve and extend the
main results of Kangtunyakarn [16] for 𝑘-strictly pseudonon-
spreading mapping in different directions.

Remark 14. Theauxiliarymapping𝑇
𝛽
of Osilike and Isiogugu

[15] is generalized to the averaged mapping 𝑇
𝜆
𝑛

presented in
scheme (11) with variable coefficient and projection operator
based on the equivalence between variational inequality and
fixed point problem.
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