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This paper deals with stability and Hopf bifurcation analyses of a mathematical model of HIV infection of CD4+ T-cells.Themodel
is based on a system of delay differential equations with logistic growth term and antiretroviral treatment with a discrete time delay,
which plays a main role in changing the stability of each steady state. By fixing the time delay as a bifurcation parameter, we get a
limit cycle bifurcation about the infected steady state.We study the effect of the time delay on the stability of the endemically infected
equilibrium.We derive explicit formulae to determine the stability and direction of the limit cycles by using center manifold theory
and normal form method. Numerical simulations are presented to illustrate the results.

1. Introduction

Since 1980, the human immunodeficiency virus (HIV) or
the associated syndrome of opportunistic infections that
causes acquired immunodeficiency syndrome (AIDS) has
been considered as one of the most serious global public
health menaces. When HIV enters the body, its main target
is the CD4 lymphocytes, also called CD4 T-cells (including
CD4+ T-cells). When a CD4 cell is infected with HIV, the
virus goes through multiple steps to reproduce itself and
create many more virus particles. The AIDS term, which
is known as the late stage of HIV, covers the range of
infections and illnesses which can result from a weakened
immune system caused by HIV. Based on the clinical studies,
it is known that, for a normal person, the CD4+ T-cells
count is around 1000mm−3 and for HIV infected patient it
gradually decreases to 200mm−3 or below, which leads to
AIDS. However, this may take several years for the number
of CD4 T-cells to reduce to a level where the immune system
is weakened [1–6].

Mathematical models, usingdelay differential equations
(DDEs), have provided insights in understanding the dynam-
ics of HIV infection. Discrete or continuous time delays

have been introduced to the models to describe the time
between infection of a CD4+ T-cell and the emission of
viral particles on a cellular level [7–13]. In general, DDEs
exhibit much more complicated dynamics than ODEs since
the time delay could cause a stable equilibrium to become
unstable and cause the populations to fluctuate [14–16]. In
studying the viral clearance rates, Perelson et al. [17] assumed
that there are two types of delays that occur between the
administration of drug and the observed decline in viral load:
a pharmacological delay that occurs between the ingestion of
drug and its appearancewithin cells and an intracellular delay
that is between initial infection of a cell byHIVand the release
of new virion. In this paper, we incorporate an intracellular
delay to the model to describe the time between infection of
a CD4+ T-cell and the emission of viral particles on a cellular
level [18]. We study the impact of the presence of such time
delay on the dynamics of the model.

The outline of the present paper is as follows. In Section 2,
we describe the model. In Section 3, we study the qualitative
behavior of the model via stability of the steady states
and Hopf bifurcation when time delay is considered as a
bifurcation parameter. In Section 4, we provide an explicit
formula to determine the direction of bifurcating periodic
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solution by applying center manifold theory and normal
form method. We provide some numerical simulations to
demonstrate the effectiveness of the analysis in Section 5 and
we conclude in Section 6.

2. Description of the Model

Let us start the analysis with some basic models of the
dynamics of target (uninfected) cells and infected CD4+ T-
cells by HIV. As a first approximation, the dynamics between
HIV and the macrophage population was described by the
simplest model of infection dynamics presented in [19–21].
Denoting uninfected cells by 𝑥(𝑡) and infected cells by 𝑦(𝑡)
and assuming that viruses are transmitted mainly by cell to
cell contact, the model is given by

𝑥̇ (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) − 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) 𝑦 (𝑡) − 𝛿
2
𝑦 (𝑡) .

(1)

The target (uninfected) CD4+ T-cells are produced at a rate
Λ, die at a rate 𝛿

1
, and become infected by virus at a rate 𝛽.

The infected host cells die at a rate 𝛿
2
. The basic reproductive

ratio of the virus is then given by R
0
= Λ𝛽/𝛿

1
𝛿
2
. If there is

no infection or if R
0
< 1, there is only trivial equilibrium

(E
0
= (Λ/𝛿

1
, 0)) with no virus-producing cells. Whereas if

R
0
> 1, the virus can establish an infection and the system

converges to the equilibrium with both uninfected cells and
infected cells, E

1
= (𝛿
2
/𝛽, Λ/𝛿

2
− 𝛿
1
/𝛽).

However, inmost viral infections, the CTL response plays
a crucial part in antiviral defence by attacking viral infected
cells [22, 23]. As the the cytotoxic T-lymphocyte (CTL)
immune response is necessary to eliminate or control the
viral infection, we incorporated the antiviral CTL immune
response into the basic model (1). Therefore, if we add CTL
response, which is denoted by 𝑧(𝑡), into model (1) (see [19]),
then the extended model is

𝑥̇ (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) − 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) 𝑦 (𝑡) − 𝛿
2
𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

𝑧̇ (𝑡) = 𝑐𝑞𝑦 (𝑡) 𝑧 (𝑡) − ℎ𝑧 (𝑡) .

(2)

Thus, CTLs proliferate in response to antigen at a rate 𝑐, die
at a rate ℎ, and lyse infected cells at a rate 𝑝. We assume that
the CTL pool consists of two populations: the precursors𝑤(𝑡)
and the effectors 𝑧(𝑡). In otherwords, we assume that there are
primary and secondary responses to viral infections. Then,
the model (2) becomes

𝑥̇ (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) − 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = 𝛽𝑥 (𝑡) 𝑦 (𝑡) − 𝛿
2
𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

𝑤̇ (𝑡) = 𝑐 (1 − 𝑞) 𝑦 (𝑡) 𝑤 (𝑡) − 𝑏𝑤 (𝑡) ,

𝑧̇ (𝑡) = 𝑐𝑞𝑦 (𝑡) 𝑤 (𝑡) − ℎ𝑧 (𝑡) .

(3)

The infected cells are killed by CTL effector cells at a rate
𝑝𝑦𝑧. Upon contact with antigen, CTLp proliferate at a rate
𝑐𝑦(𝑡)𝑤(𝑡) and differentiate into effector cells CTLe at a rate
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Figure 1: A simplified model of virus-CTL interaction. The virus
dynamics is described by the basic model of Nowak and Bangham
[19]. The uninfected target cells are produced at a rate Λ and die
at a rate 𝛿

1
𝑥. They become infected by the virus at a rate 𝛽𝑥𝑦.

The infected cells produce new virus particle and die at a rate 𝛿
2
𝑦.

When CTL
𝑝
recognize antigen on the surface of infected cells, they

become activated and expand at a rate 𝑐𝑦𝑤, decay at a rate 𝑏𝑤, and
differentaite into efector cells at a rate 𝑐𝑞𝑤𝑦. The effector cells lyse
the infected cells at a rate 𝑝𝑦𝑧.

𝑐𝑞𝑦(𝑡)𝑤(𝑡). CTL precursors die at a rate 𝑏𝑤, and effectors die
at a rate ℎ𝑧(𝑡); see Figure 1.

Since the proliferation of CD4+ T-cells is density depen-
dent, that is, the rate of proliferation decreases as T-cells
increase and reach the carrying capacity, we then extend
the above basic viral infection model to include the density
dependent growth of the CD4+ T-cell population (see [24–
26]). It is also known that HIV infection leads to low levels of
CD4+ T-cells via three main mechanisms: direct viral killing
of infected cells, increased rates of apoptosis in infected
cells, and killing of infected CD4+ T-cells by cytotoxic T-
lymphocytes [26]. Hence, it is reasonable to include apoptosis
of infected cells. An average of 1010 viral particles is produced
by infected cells per day. The treatment with single antiviral
drug is considered to be failed, so that the combination
of antiviral drugs is needed for the better treatment [25].
Therefore, in the below revised model, we combine the
antiretroviral drugs, namely, reverse transcriptase inhibitor
(RTI) and protease inhibitor (PI) to make the model realistic
(see [27–29]). RTIs can block the infection of target T-cells
by infectious virus, and PIs cause infected cells to produce
noninfectious virus particles. The modified model takes the
form

𝑥̇ (𝑡) = Λ − 𝛿
1
𝑥 (𝑡) + 𝑟 (1 −

𝑥 (𝑡) + 𝑦 (𝑡)

𝑇max
)𝑥 (𝑡)

− (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡)

− 𝛿
2
𝑦 (𝑡) − 𝑒

1
𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,
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Table 1: Parameter definitions and estimations used in the underlying model.

Parameter Notes Estimated Value Range Source
Λ Source of uninfected CD4+ T-cells 10 0–10 [26]
𝛽 Rate of infection 0.1 0.00001–0.5 [26]
𝑇max Total carrying capacity 1500 1500 [26]
𝑟 Logistic growth term 0.03 0.03–3 [26]
𝛿
1

Mortality rate of CD4+ T-cells 0.06 0.007–0.1 [26]
𝜖 Antiretroviral (RTI) therapy 0.9 0-1 see text
𝛿
2

Infected cells died out naturally 0.3 0.2–1.4 [26]
𝑒
1

Apoptosis rate of infected cells 0.2 0.2 [26]
𝑝 Clearance rate of infected cells 1 0.001–1 [26]
𝜂 Protease inhibitor therapy 0.9 [0, 1] see text
𝑞 Rate of differentiation of CTLs 0.02 Assumed —
𝑏 Death rate of CTL precursors 0.02 0.005–0.15 [26]
𝑐 Proliferation of CTLs responsiveness 0.1 0.001–1 [26]
ℎ Mortality rate or CTL effectors 0.1 0.005–0.15 [26]

𝑤̇ (𝑡) = 𝑐𝑦 (𝑡) 𝑤 (𝑡) − 𝑐𝑞𝑦 (𝑡) 𝑤 (𝑡) − 𝑏𝑤 (𝑡) ,

𝑧̇ (𝑡) = 𝑐𝑞𝑦 (𝑡) 𝑤 (𝑡) − ℎ𝑧 (𝑡) .

(4)

Thefirst equation ofmodel (4) represents the rate of change in
the count of healthy CD4+ T-cells that produced at rateΛ and
become infected at rate 𝛽, with the mortality 𝛿

1
. We assume

that the uninfected CD4+ T-cells proliferate logistically, thus
the growth rate 𝑟 is multiplied by the term (1 − (𝑥 + 𝑦)/𝑇max)
and this term approaches zero when the total number of T-
cells approaches the carrying capacity 𝑇max. The effects of
combination of RTI and PI antiviral drugs are represented
by the term (1 − 𝜖)(1 − 𝜂)𝛽𝑥𝑦, where (1 − 𝜖), 0 < 𝜖 < 1,
represents the effects of RTI and (1−𝜂), 0 < 𝜂 < 1, represents
the effects of PI. The second equation of model (4) denotes
the rate of change in the count of infected CD4+ T-cells.
The infected CD4+ T-cells decay at a rate 𝛿

2
and 𝑒
1
denotes

apoptosis rate of infected cell; infected cells are killed by CTL
effectors at a rate 𝑝. The third equation of the model denotes
the rate of change in the CTLp population; proliferation
rate of the CTLp is given by 𝑐 and is proportional to the
infected cells𝑦; CTLp die at a rate 𝑏 and differentiate intoCTL
effectors at a rate 𝑐𝑞.The last equation of themodel represents
the concentration of CTL effectors, which die at a rate ℎ.
In reality, the specific immune system is not immediately
effective following invasion by a novel pathogen. There may
be an explicit time delay between infection and immune
initiation and there may be a gradual build-up in immune
efficacy during which the immune response develops, before
reaching maximal specificity to the pathogen ([8, 30, 31]). In
order to make model (4) more realistic, time delay in the
immune response should be included in the followingmodel:

𝑥̇ (𝑡) = Λ − (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡)

+ 𝑟 (1 −

𝑥 (𝑡) + 𝑦 (𝑡)

𝑇max
)𝑥 (𝑡) − 𝛿

1
𝑥 (𝑡) ,

̇𝑦 (𝑡) = (1 − 𝜖) (1 − 𝜂) 𝛽𝑥 (𝑡) 𝑦 (𝑡)

− (𝛿
2
+ 𝑒
1
) 𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

𝑤̇ (𝑡) = 𝑐 (1 − 𝑞) 𝑦 (𝑡 − 𝜏)𝑤 (𝑡 − 𝜏) − 𝑏𝑤 (𝑡)

𝑧̇ (𝑡) = 𝑐𝑞𝑦 (𝑡 − 𝜏)𝑤 (𝑡 − 𝜏) − ℎ𝑧 (𝑡) .

(5)

The range of parameter values of the model are given in
Table 1.

We start our analysis by presenting some notations that
will be used in the sequel. Let 𝐶 = 𝐶([−𝜏, 0],R4

+
) be the

Banach space of continuous functions mapping the interval
[−𝜏, 0] intoR4

+
, whereR4

+
= (𝑥, 𝑦, 𝑤, 𝑧); the initial conditions

are given by

𝑥 (𝜃) = 𝜑
1
(𝜃) ≥ 0, 𝑦 (𝜃) = 𝜑

2
(𝜃) ≥ 0,

𝑤 (𝜃) = 𝜑
3
(𝜃) ≥ 0, 𝑧 (𝜃) = 𝜑

4
(𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0] ,

(6)

where 𝜑
𝑖
(𝜃) ∈ C1 are smooth functions, for all 𝑖 =

1, 2, 3, 4. From the fundamental theory of functional dif-
ferential equations (see [32, 33]), it is easy to see that the
solutions (𝑥(𝑡), 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡)) of system (5) with the initial
conditions as stated above exist for all 𝑡 ≥ 0 and are unique. It
can be shown that these solutions exist for all 𝑡 > 0 and stay
nonnegative. In fact, if 𝑥(0) > 0, then 𝑥(𝑡) > 0 for all 𝑡 > 0.
The same argument is true for the 𝑦, 𝑤, and 𝑧 components.
Hence, the interior R4

+
is invariant for system (5).

3. Steady States

We can obtain the steady state values by setting 𝑥̇ = ̇𝑦 =

𝑤̇ = 𝑧̇ = 0. The steady state value of the infection-free
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steady sate E
0
is given by E

0
= ((𝑇max/2𝑟)(𝑟 − 𝛿1 +

√(𝑟 − 𝛿
1
)
2

+ 4𝑟Λ/𝑇max), 0, 0, 0), while the infected steady
state E

+
= (𝑥
∗
, 𝑦
∗
, 𝑤
∗
, 𝑧
∗
) is given by

𝑦
∗

=

𝑏

𝑐 (1 − 𝑞)

, 𝑤
∗

=

ℎ (1 − 𝑞) 𝑧
∗

𝑞𝑏

,

𝑧
∗

=

(1 − 𝜖) (1 − 𝜂) 𝛽𝑥
∗
− (𝛿
2
+ 𝑒
1
)

𝑝

,

(7)

and 𝑥∗ is given by the following quadratic equation:

𝑐
1
𝑥
2

+ 𝑐
2
𝑥 − 𝑐
3
= 0, (8)

where 𝑐
1
= 𝑐(1 − 𝑞)𝑟, 𝑐

2
= 𝑇max𝑏𝛽(1 − 𝜖)(1 − 𝜂) + 𝑏𝑟 − 𝑐(1 −

𝑞)𝑇max(𝑟 − 𝛿1), 𝑐3 = 𝑐(1 − 𝑞)Λ𝑇max.

3.1. Stability and Hopf Bifurcation Analysis of Infected Steady
State E

+
. In order to study full dynamics of model (4) by

using time delay as a bifurcation parameter, we need to
linearize themodel around the steady stateE

+
and determine

the characteristic equation of the Jacobian matrix. The roots
of the characteristic equation determine the asymptotic
stability and existence of Hopf bifurcation for the model. The
characteristic equation of the linearized system is given by

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝐴
1
𝑦
∗
+ 𝑟 −

2𝑟

𝑇max
𝑥
∗
−

𝑟

𝑇max
𝑦
∗
− 𝛿
1
− 𝜆 −𝐴

1
𝑥
∗
−

𝑟

𝑇max
𝑥
∗

0 0

𝐴
1
𝑦
∗

𝐴
1
𝑥
∗
− (𝛿
2
+ 𝑒
1
) − 𝑝𝑧

∗
− 𝜆 0 −𝑝𝑦

∗

0 𝑐 (1 − 𝑞) 𝑒
−𝜆𝜏
𝑤
∗

𝑐 (1 − 𝑞) 𝑒
−𝜆𝜏
𝑦
∗
− 𝑏 − 𝜆 0

0 𝑐𝑞𝑒
−𝜆𝜏
𝑤
∗

𝑐𝑞𝑒
−𝜆𝜏
𝑦
∗

−ℎ − 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, (9)

which is equivalent to the equation

𝜆
4

+ 𝑝
1
𝜆
3

+ 𝑝
2
𝜆
2

+ 𝑝
3
𝜆 + 𝑝
4

+ 𝑒
−𝜆𝜏

(𝑞
1
𝜆
3

+ 𝑞
2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞
4
) = 0,

(10)

where 𝐴
1
= (1 − 𝜖)(1 − 𝜂)𝛽 and

𝑝
1
= − 𝑎

1
− 𝑎
4
− 𝑎
8
− 𝑎
11
,

𝑝
2
= 𝑎
1
𝑎
8
+ 𝑎
8
𝑎
11
+ 𝑎
1
𝑎
11
+ 𝑎
4
𝑎
8
+ 𝑎
4
𝑎
11
+ 𝑎
1
𝑎
4
− 𝑎
2
𝑎
3
,

𝑝
3
= 𝑎
2
𝑎
3
𝑎
8
+ 𝑎
2
𝑎
3
𝑎
11
− 𝑎
1
𝑎
8
𝑎
11

− 𝑎
4
𝑎
8
𝑎
11
− 𝑎
1
𝑎
4
𝑎
8
− 𝑎
1
𝑎
4
𝑎
11
,

𝑝
4
= 𝑎
1
𝑎
4
𝑎
8
𝑎
11
− 𝑎
2
𝑎
3
𝑎
8
𝑎
11
,

𝑞
1
= − 𝑎

7
,

𝑞
2
= 𝑎
1
𝑎
7
+ 𝑎
7
𝑎
11
+ 𝑎
4
𝑎
7
− 𝑎
5
𝑎
9
,

𝑞
3
= 𝑎
5
𝑎
8
𝑎
9
+ 𝑎
1
𝑎
5
𝑎
9
+ 𝑎
2
𝑎
3
𝑎
7
− 𝑎
1
𝑎
7
𝑎
11

− 𝑎
4
𝑎
7
𝑎
11
− 𝑎
1
𝑎
4
𝑎
7
,

𝑞
4
= 𝑎
1
𝑎
4
𝑎
7
𝑎
11
− 𝑎
1
𝑎
5
𝑎
8
𝑎
9
− 𝑎
2
𝑎
3
𝑎
7
𝑎
11
,

𝑎
1
= − (1 − 𝜖) (1 − 𝜂) 𝛽𝑦

∗

+ 𝑟 −

2𝑟𝑥
∗

𝑇max
−

𝑟𝑦
∗

𝑇max
− 𝛿
1
,

𝑎
2
= − (1 − 𝜖) (1 − 𝜂) 𝛽𝑥

∗

−

𝑟𝑥
∗

𝑇max
,

𝑎
3
= (1 − 𝜖) (1 − 𝜂) 𝛽𝑦

∗

,

𝑎
4
= (1 − 𝜖) (1 − 𝜂) 𝛽𝑥

∗

− (𝛿
2
+ 𝑒
1
) − 𝑝𝑧

∗

,

𝑎
5
= − 𝑝𝑦

∗

,

𝑎
6
= 𝑐 (1 − 𝑞)𝑤

∗

,

𝑎
7
= 𝑐 (1 − 𝑞) 𝑦

∗

,

𝑎
8
= − 𝑏,

𝑎
9
= 𝑐𝑞𝑤

∗

,

𝑎
10
= 𝑐𝑞𝑦

∗

,

𝑎
11
= − ℎ.

(11)

Let us consider the following equation:

𝜑 (𝜆, 𝜏) = 𝜆
4

+ 𝑝
1
𝜆
3

+ 𝑝
2
𝜆
2

+ 𝑝
3
𝜆 + 𝑝
4

+ (𝑞
1
𝜆
3

+ 𝑞
2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞
4
) 𝑒
−𝜆𝜏

.

(12)

For the nondelayed model (say 𝜏 = 0), from (10), we have

𝜆
4

+ 𝐷
1
𝜆
3

+ 𝐷
2
𝜆
2

+ 𝐷
3
𝜆 + 𝐷

4
= 0, (13)

where

𝐷
1
= 𝑝
1
+ 𝑞
1
, 𝐷

2
= 𝑝
2
+ 𝑞
2
,

𝐷
3
= 𝑝
3
+ 𝑞
3
, 𝐷

4
= 𝑝
4
+ 𝑞
4
.

(14)

Lemma 1. For 𝜏 = 0, the unique nontrivial equilibrium is
locally asymptotically stable if the real parts of all the roots of
(13) are negative.

Proof. The proof of the above lemma is based on holding
the following conditions: 𝐷

1
> 0, 𝐷

3
> 0, 𝐷

4
> 0, and

𝐷
1
𝐷
2
𝐷
3
> 𝐷
2

1
𝐷
4
+ 𝐷
2

3
, as proposed by Routh-Hurwitz

criterion. We conclude that equilibriumE
+
is locally asymp-

totically stable if and only if all the roots of the characteristic
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equation (13) have negative real parts which depends on
the numerical values of parameters that are shown in the
numerical exploration.

3.2. Existence of Hopf Bifurcation. We here study the impact
of the time-delay parameter on the stability of HIV infection
of CD4+ T-cells. We deduce criteria that ensure the asymp-
totic stability of infected steady state E

+
, for all 𝜏 > 0. We

arrive at the following theorem.

Theorem 2. Necessary and sufficient conditions for the
infected equilibriumE

+
to be asymptotically stable for all delay

𝜏 ≥ 0 are as follows

(i) the real parts of all the roots of 𝜑(𝜆, 𝜏) = 0 are negative;

(ii) for all 𝜔 and 𝜏 ≥ 0, 𝜑(𝑖𝜔, 𝜏) ̸= 0, where 𝑖 = √−1.

Proof. Assume that Lemma 1 is true. Now, for 𝜔 = 0, we have

𝜑 (0, 𝜏) = 𝐷
4
= 𝑝
4
+ 𝑞
4
̸= 0. (15)

Substituting 𝜆 = 𝑖𝜔 (𝜔 > 0) into (5) and separating the real
and imaginary parts of the equations yields

(𝜔
4

− 𝑝
2
𝜔
2

+ 𝑝
4
) + (−𝑞

2
𝜔
2

+ 𝑞
4
) cos (𝜔𝜏)

+ (−𝑞
1
𝜔
3

+ 𝑞
3
𝜔) sin (𝜔𝜏) = 0,

(−𝑝
1
𝜔
3

+ 𝑝
3
𝜔) + (−𝑞

1
𝜔
3

+ 𝑞
3
𝜔) cos (𝜔𝜏)

− (−𝑞
2
𝜔
2

+ 𝑞
4
) sin (𝜔𝜏) = 0.

(16)

After some mathematical manipulations, we obtain the fol-
lowing equations

cos (𝜔𝜏)

= ((𝑞
2
− 𝑝
1
𝑞
1
) 𝜔
6

+ (𝑝
3
𝑞
1
− 𝑞
4
− 𝑝
2
𝑞
2
+ 𝑝
1
𝑞
3
) 𝜔
4

+ (𝑝
2
𝑞
4
+ 𝑝
4
𝑞
2
− 𝑝
3
𝑞
3
) 𝜔
2

− 𝑝
4
𝑞
4
)

× (𝑞
2

1
𝜔
6

+ (𝑞
2

2
− 2𝑞
1
𝑞
3
) 𝜔
4

+ (𝑞
2

3
− 2𝑞
2
𝑞
4
) 𝜔
2

+ 𝑞
2

4
)

−1

,

sin (𝜔𝜏)

= (𝑞
1
𝜔
7

+ (𝑝
1
𝑞
2
− 𝑞
3
− 𝑝
2
𝑞
1
) 𝜔
5

+ (𝑝
2
𝑞
3
+ 𝑝
4
𝑞
1
− 𝑝
3
𝑞
2
− 𝑝
1
𝑞
4
) 𝜔
3

+ (𝑝
3
𝑞
4
− 𝑝
4
𝑞
3
) 𝜔)

× (𝑞
2

1
𝜔
6

+ (𝑞
2

2
− 2𝑞
1
𝑞
3
) 𝜔
4

+ (𝑞
2

3
− 2𝑞
2
𝑞
4
) 𝜔
2

+ 𝑞
2

4
)

−1

.

(17)

Let

𝑏
1
= 𝑞
2
− 𝑝
1
𝑞
1
, 𝑏

2
= 𝑝
3
𝑞
1
− 𝑞
4
− 𝑝
2
𝑞
2
+ 𝑝
1
𝑞
3
,

𝑏
3
= 𝑝
2
𝑞
4
+ 𝑝
4
𝑞
2
− 𝑝
3
𝑞
3
, 𝑏

4
= −𝑝
4
𝑞
4
,

𝑏
5
= 𝑞
2

1
, 𝑏

6
= 𝑞
2

2
− 2𝑞
1
𝑞
3
,

𝑏
7
= 𝑞
2

3
− 2𝑞
2
𝑞
4
, 𝑏

8
= 𝑞
2

4
,

𝑏
9
= 𝑞
1
, 𝑏

10
= 𝑝
1
𝑞
2
− 𝑞
3
− 𝑝
2
𝑞
1
,

𝑏
11
= 𝑝
2
𝑞
3
+ 𝑝
4
𝑞
1
− 𝑝
3
𝑞
2
− 𝑝
1
𝑞
4
, 𝑏

12
= 𝑝
3
𝑞
4
− 𝑝
4
𝑞
3
.

(18)

From (16), we have

𝜔
8

+ 𝑐
1
𝜔
6

+ 𝑐
2
𝜔
4

+ 𝑐
3
𝜔
2

+ 𝑐
4
= 0, (19)

where

𝑐
1
= 𝑝
2

1
− 2𝑝
2
− 𝑞
2

1
, 𝑐

2
= 𝑝
2

2
− 2𝑝
1
𝑝
3
+ 2𝑞
1
𝑞
3
+ 2𝑝
4
−𝑞
2

2
,

𝑐
3
= 𝑝
2

3
− 2𝑝
2
𝑝
4
+ 2𝑞
2
𝑞
4
− 𝑞
2

3
, 𝑐

4
= 𝑝
2

4
− 𝑞
2

4
.

(20)

The conditions (i) and (ii) of Theorem 2 hold if and only if
(19) has no real positive root.

Let𝑚 = 𝜔2; then (19) takes the form

𝑚
4

+ 𝑐
1
𝑚
3

+ 𝑐
2
𝑚
2

+ 𝑐
3
𝑚 + 𝑐
4
= 0. (21)

If 𝑐
4
< 0, then (19) has at least one positive root. In the case

when (19) has four positive roots, we have

𝜔
1
= √𝑚

1
, 𝜔

2
= √𝑚

2
,

𝜔
3
= √𝑚

3
, 𝜔

4
= √𝑚

4
.

(22)

From (16), we have

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

{arcsin
𝑏
9
𝜔
7

𝑘
+ 𝑏
10
𝜔
5

𝑘
+ 𝑏
11
𝜔
3

𝑘
+ 𝑏
12
𝜔
𝑘

𝑏
5
𝜔
6

𝑘
+ 𝑏
6
𝜔
4

𝑘
+ 𝑏
7
𝜔
2

𝑘
+ 𝑏
8

+ 2𝑗𝜋} ,

(23)

where 𝑘 = 1, 2, 3, 4 and 𝑗 = 0, 1, 2, . . .; we choose 𝜏
0
=

min(𝜏(𝑗)
𝑘
).

To establish Hopf bifurcation at 𝜏 = 𝜏
0
, we need to show

that

R(
𝑑𝜆

𝑑𝜏

)

𝜏=𝜏0

̸= 0. (24)

By differentiating (10) with respect to 𝜏, we can get

𝑑𝜆

𝑑𝜏

= 𝜆𝑒
−𝜆𝜏

(𝑞
1
𝜆
3

+ 𝑞
2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞
4
)

× ( (4𝜆
3

+ 3𝑝
1
𝜆
2

+ 2𝑝
2
𝜆 + 𝑝
3
) + 𝑒
−𝜆𝜏

× [(3𝑞
1
𝜆
2

+ 2𝑞
2
𝜆 + 𝑞
3
)

− 𝜏 (𝑞
1
𝜆
3

+ 𝑞
2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞
4
)] )

−1

.

(25)
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It follows that

(

𝑑𝜆

𝑑𝜏

)

−1

= ((4𝜆
3

+ 3𝑝
1
𝜆
2

+ 2𝑝
2
𝜆 + 𝑝
3
) + 𝑒
−𝜆𝜏

× [(3𝑞
1
𝜆
2

+ 2𝑞
2
𝜆 + 𝑞
3
)

−𝜏 (𝑞
1
𝜆
3

+ 𝑞
2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞
4
)])

× (𝜆𝑒
−𝜆𝜏

(𝑞
1
𝜆
3

+ 𝑞
2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞
4
))

−1

.

(26)

Then, by combining (10), we get

(

𝑑𝜆

𝑑𝜏

)

−1

= ((4𝜆
3

+ 3𝑝
1
𝜆
2

+ 2𝑝
2
𝜆 + 𝑝
3
)

+ 𝑒
−𝜆𝜏

(3𝑞
1
𝜆
2

+ 2𝑞
2
𝜆 + 𝑞
3
))

× (𝜆𝑒
−𝜆𝜏

(𝑞
1
𝜆
3

+ 𝑞
2
𝜆
2

+ 𝑞
3
𝜆 + 𝑞
4
))

−1

−

𝜏

𝜆

.

(27)

Substituting 𝜆 = 𝑖𝜔
0
in (27) (where 𝜔

0
> 0 and 𝑖 = √−1)

yields

(

𝑑𝜆

𝑑𝜏

)

−1󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

=

𝑑
1
+ 𝑖𝑑
2

𝑑
3
+ 𝑖𝑑
4

−

𝜏

𝜆

, (28)

where

𝑑
1
= (𝑝
3
− 3𝑝
1
𝜔
2

0
) + (𝑞

3
− 3𝑞
1
𝜔
2

0
) cos (𝜔

0
𝜏
0
)

+ 2𝑞
2
𝜔
0
sin (𝜔

0
𝜏
0
) ,

𝑑
2
= (2𝑝

2
𝜔
0
− 4𝜔
3

) + 2𝑞
2
𝜔
0
cos (𝜔

0
𝜏
0
)

− (𝑞
3
− 3𝑞
1
𝜔
2

0
) sin (𝜔

0
𝜏
0
) ,

𝑑
3
=(𝑞
1
𝜔
4

0
− 𝑞
3
𝜔
2

0
) cos (𝜔

0
𝜏
0
) + (𝑞

4
𝜔
0
− 𝑞
2
𝜔
3

0
) sin (𝜔

0
𝜏
0
) ,

𝑑
4
=(𝑞
4
𝜔
0
− 𝑞
2
𝜔
3

0
) cos (𝜔

0
𝜏
0
) − (𝑞

1
𝜔
4

0
− 𝑞
3
𝜔
2

0
) sin (𝜔

0
𝜏
0
) .

(29)

Thus,

R(
𝑑𝜆

𝑑𝜏

)

−1󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

=

𝑑
1
𝑑
3
+ 𝑑
2
𝑑
4

𝑑
2

3
+ 𝑑
2

4

. (30)

Notice that

sign(R𝑑𝜆(𝑡)
𝑑𝜏

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

= sign(R(𝑑𝜆
𝑑𝜏

)

−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏=𝜏0

. (31)

By summarizing the above analysis, we arrive at the following
theorem.

Theorem 3. The infected equilibrium E
+
of the system (5) is

asymptotically stable for 𝜏 ∈ [0, 𝜏
0
) and it undergoes Hopf

bifurcation at 𝜏 = 𝜏
0
.

4. Direction and Stability of Bifurcating
Periodic Solutions

In the previous section, we obtained conditions for Hopf
bifurcation to occur when 𝜏

0
= 𝜏
(𝑗)

𝑘
, 𝑗 = 0, 1, 2, . . .. It is

also important to derive explicit formulae from which we
can determine the direction, stability, and period of periodic
solutions bifurcating around the infected equilibrium E

+
at

the critical value 𝜏
0
. We use the cafeteria of normal forms

and center manifold proposed by Hassard [34]. We assume
that the model (5) undergoes Hopf bifurcation at the infected
equilibrium E

+
when 𝜏

0
= 𝜏
(𝑗)

𝑘
, 𝑗 = 0, 1, 2, . . ., and

then ±𝑖𝜔
0
are the corresponding purely imaginary roots of

the characteristic equation at the infected equilibrium E
+
.

Assume also that

(𝑋
1
(𝑡) , 𝑋

2
(𝑡) , 𝑋

3
(𝑡) , 𝑋

4
(𝑡))
𝑇

= (𝑥 (𝑡) − 𝑥
∗

, 𝑦 (𝑡) − 𝑦
∗

(𝑡) ,

𝑤 (𝑡) −𝑤
∗

(𝑡) , 𝑧 (𝑡) − 𝑧
∗

(𝑡))
𝑇

;

(32)

then usingTaylors expansion for system (3) at the equilibrium
point yields

𝑋̇
1
= 𝑘
11
𝑋
1
(𝑡) + 𝑘

12
𝑋
2
(𝑡)

+ 𝑘
13
𝑋
1
(𝑡) 𝑋
1
(𝑡) + 𝑘

14
𝑋
1
(𝑡) 𝑋
2
(𝑡) ,

𝑋̇
2
= 𝑘
21
𝑋
1
(𝑡) + 𝑘

22
𝑋
2
(𝑡) + 𝑘

23
𝑋
4
(𝑡)

+ 𝑘
24
𝑋
1
(𝑡) 𝑋
2
(𝑡) + 𝑘

25
𝑋
2
(𝑡) 𝑋
4
(𝑡) ,

𝑋̇
3
= 𝑘
31
𝑋
3
(𝑡) + 𝑘

32
𝑋
2
(𝑡 − 𝜏)

+ 𝑘
33
𝑋
3
(𝑡 − 𝜏) + 𝑘

34
𝑋
2
(𝑡 − 𝜏)𝑋

3
(𝑡 − 𝜏) ,

𝑋̇
4
= 𝑘
41
𝑋
4
(𝑡) + 𝑘

42
𝑋
2
(𝑡 − 𝜏)

+ 𝑘
43
𝑋
3
(𝑡 − 𝜏) + 𝑘

44
𝑋
2
(𝑡 − 𝜏)𝑋

3
(𝑡 − 𝜏) .

(33)

Here,

𝑘
11
= − 𝐴

1
𝑦
∗

+ 𝑟 −

2𝑟𝑥
∗

𝑇max
−

𝑟𝑦
∗

𝑇max
− 𝛿
1
,

𝑘
12
= − 𝐴

1
𝑥
∗

−

𝑟𝑥
∗

𝑇max
,

𝑘
13
= −

2𝑟

𝑇max
,

𝑘
14
= −

𝑟

𝑇max
− 𝐴
1
,

𝑘
21
= 𝐴
1
𝑦
∗

,

𝑘
22
= 𝐴
1
𝑥
∗

− 𝐴
2
− 𝑝𝑧
∗

,

𝑘
23
= − 𝑝𝑦

∗

,

𝑘
24
= 𝐴
1
,

𝑘
25
= − 𝑝,
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𝑘
31
= − 𝑏,

𝑘
32
= 𝑐 (1 − 𝑞)𝑤

∗

,

𝑘
33
= 𝑐 (1 − 𝑞) 𝑦

∗

,

𝑘
34
= 𝑐 (1 − 𝑞) ,

𝑘
41
= − ℎ,

𝑘
42
= 𝑐𝑞𝑤

∗

,

𝑘
43
= 𝑐𝑞𝑦

∗

,

𝑘
44
= 𝑐𝑞.

(34)

For convenience, let 𝜏 = 𝜏
0
+ 𝜇 and 𝑢

𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) for

𝜃 ∈ [−𝜏, 0]. Denote𝐶𝑘([−𝜏, 0],R4) = {𝜙 | 𝜙 : [−𝜏, 0] → R4};
𝜙 has 𝑘-order continuous derivative. For initial conditions
𝜙(𝜃) = (𝜙

1
(𝜃), 𝜙
2
(𝜃), 𝜙
3
(𝜃), 𝜙
4
(𝜃))
𝑇

∈ 𝐶([−𝜏, 0],R4), (33) can
be rewritten as

𝑢̇ (𝑡) = 𝐿
𝜇
(𝑢
𝑡
) + 𝐹 (𝑢

𝑡
, 𝜇) , (35)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), 𝑢
3
(𝑡), 𝑢
4
(𝑡))
𝑇

∈ 𝐶, 𝐿
𝜇
: 𝐶 → R4,

and 𝐹 : 𝐶 → R4 are given, respectively, by

𝐿
𝜇
𝜙 = (𝜏

0
+ 𝜇)𝐺

1
𝜙 (0) + (𝜏

0
+ 𝜇)𝐺

2
𝜙 (−𝜏) ,

𝐹 (𝜙, 𝜇) = (𝜏
0
+ 𝜇) (𝐹

1
, 𝐹
2
, 𝐹
3
, 𝐹
4
)
𝑇

.

(36)

𝐿
𝜇
is one parameter family of bounded linear operators in 𝐶

and

𝐺
1
= (

𝑘
11
𝑘
12

0 0

𝑘
21
𝑘
22

0 𝑘
24

0 0 𝑘
31

0

0 0 0 𝑘
41

),

𝐺
2
= (

0 0 0 0

0 0 0 0

0 𝑘
32
𝑘
33
0

0 𝑘
42
𝑘
43
0

),

𝐹 =
(
(

(

𝑘
13
𝜙
1
(0) 𝜙
1
(0) + 𝑘

14
𝜙
1
(0) 𝜙
2
(0)

𝑘
24
𝜙
1
(0) 𝜙
2
(0) + 𝑘

25
𝜙
2
(0) 𝜙
4
(0)

𝑘
34
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

𝑘
44
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

)
)

)

.

(37)

From the discussion in the above section, we know that if
𝜇 = 0, then model (5) undergoes a Hopf bifurcation at the
infected equilibrium E

+
, and the associated characteristic

equation of model (5) has a pair of purely imaginary roots

±𝑖𝜏
0
𝜔
0
. By Reisz representation, there exists a function 𝜂(𝜃, 𝜇)

of bounded variation for 𝜃 ∈ [−𝜏, 0] such that

𝐿
𝜇
𝜙 = ∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) . (38)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏
0
+ 𝜇)𝐺

1
𝛿 (𝜃) + (𝜏

0
+ 𝜇)𝐺

2
𝛿 (𝜃 + 𝜏) , (39)

where 𝛿(𝜃) is Dirac delta function. Next, for 𝜙 ∈ 𝐶
1
([−𝜏,

0],R4), define

𝐴 (𝜇) 𝜙 =

{
{
{
{

{
{
{
{

{

𝑑𝜙

𝑑𝜃

, 𝜃 ∈ [−𝜏, 0)

∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

(40)

𝑅 (𝜇) 𝜙 =

{

{

{

0, 𝜃 = [−𝜏, 0)

𝐹 (𝜙, 𝜇) , 𝜃 = 0.

(41)

Since 𝑢̇(𝑡) = 𝑢̇
𝑡
(𝜃), (35) can be written as

𝑢̇
𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (42)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃), 𝜃 ∈ [−𝜏, 0]. For 𝜓 ∈ 𝐶1([0, 𝜏],R4), the

adjoint operator 𝐴∗ of 𝐴 can be defined as

𝐴
∗

𝜓 (𝑠) 𝜙 =

{
{
{
{

{
{
{
{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (−𝜏, 0]

∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝑠 = 0.

(43)

For 𝜙 ∈ 𝐶1([−𝜏, 0],R4) and 𝜓 ∈ 𝐶1([0, 𝜏],R4), in order to
normalize the eigenvalues of operator𝐴 and adjoint operator
𝐴
∗, the following bilinear form is defined by

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

𝜃=−𝜏

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) [𝑑𝜂 (𝜃)] 𝜙 (𝜉) 𝑑𝜉,

(44)

where 𝜂(𝜃) = 𝜂(𝜃, 0) and 𝜓 is complex conjugate of 𝜓. It can
verify that 𝐴∗ and 𝐴(0) are adjoint operators with respect to
this bilinear form.

We assume that±𝑖𝜔
0
are eigenvalues of𝐴(0) and the other

eigenvalues have strictly negative real parts. Thus, they are
also eigenvalues of 𝐴∗. Now we compute the eigenvector 𝑞
of𝐴 corresponding to the eigenvalue 𝑖𝜔

0
and the eigenvector

𝑞
∗ of 𝐴∗ corresponding to the eigenvalue −𝑖𝜔

0
. Suppose that

𝑞(𝜃) = (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇

𝑒
𝑖𝜔0𝜃 is eigenvector of 𝐴(0) associated

with 𝑖𝜔
0
; then, 𝐴(0)𝑞(𝜃) = 𝑖𝜔

0
𝑞(𝜃). It follows from the

definition of 𝐴(0) and (36), (38), and (40) that
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(

𝑘
11
− 𝑖𝜔
0

𝑘
12

0 0

𝑘
21

𝑘
22
− 𝑖𝜔
0

0 𝑘
23

0 𝑘
32
𝑒
−𝑖𝜔0𝜏0

𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0

− 𝑖𝜔
0

0

0 𝑘
42
𝑒
−𝑖𝜔0𝜏0

𝑘
43
𝑒
−𝑖𝜔0𝜏0

𝑘
41
− 𝑖𝜔
0

)𝑞(0) = (

0

0

0

0

). (45)

Solving (45), we can easily obtain 𝑞(0) = (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇,

where

𝑝
1
=

𝑖𝜔
0
− 𝑘
11

𝑘
12

,

𝑝
2
=

𝑘
32
(𝑘
11
− 𝑖𝜔
0
) 𝑒
−𝑖𝜔0𝜏0

𝑘
12
(𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0 − 𝑖𝜔

0
)

,

𝑝
3
=

(𝑘
11
− 𝑖𝜔
0
) (𝑘
22
− 𝑖𝜔
0
) − 𝑘
12
𝑘
21

𝑘
12
𝑘
23

.

(46)

Similarly, suppose that the eigenvector 𝑞∗ of 𝐴∗ correspond-
ing to −𝑖𝜔

0
is 𝑞∗(𝑠) = (1/𝐷)(1, 𝑝∗

1
, 𝑝
∗

2
, 𝑝
∗

3
)
𝑇

𝑒
𝑖𝜔0𝑠, 𝑠 ∈ [0, 𝜏]. By

the definition of 𝐴∗ and (36), (38), and (40), one gets

(

𝑘
11
+ 𝑖𝜔
0

𝑘
21

0 0

𝑘
12

𝑘
22
+ 𝑖𝜔
0

𝑘
32
𝑒
−𝑖𝜔0𝜏0

𝑘
42
𝑒
−𝑖𝜔0𝜏0

0 0 𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0

+ 𝑖𝜔
0
𝑘
43
𝑒
−𝑖𝜔0𝜏0

0 𝑘
23

0 𝑘
41
+ 𝑖𝜔
0

)𝑞
∗

(0) = (

0

0

0

0

). (47)

Solving (47), we easily obtain 𝑞∗(0) = (1/𝐷)(1, 𝑝∗
1
, 𝑝
∗

2
, 𝑝
∗

3
)
𝑇,

where

𝑝
∗

1
= −

𝑘
11
+ 𝑖𝜔
0

𝑘
21

,

𝑝
∗

2
= −

𝑘
23
𝑘
43
(𝑘
11
+ 𝑖𝜔
0
) 𝑒
−𝑖𝜔0𝜏0

𝑘
21
(𝑘
41
+ 𝑖𝜔
0
) (𝑘
31
+ 𝑘
33
𝑒
−𝑖𝜔0𝜏0 + 𝑖𝜔

0
)

,

𝑝
∗

3
=

𝑘
23
(𝑘
11
+ 𝑖𝜔
0
)

𝑘
21
(𝑘
41
+ 𝑖𝜔
0
)

.

(48)

In order to assure that ⟨𝑞∗, 𝑞⟩ = 1, we need to determine the
value of𝐷. From (44), one gets

⟨𝑞
∗

, 𝑞⟩ = 𝑞
∗
𝑇

(0) 𝑞 (0)

− ∫

0

𝜃=−𝜏0

∫

𝜃

𝜉=0

𝑞
∗
𝑇

(𝜉 − 𝜃) [𝑑𝜂 (𝜃)] 𝑞 (𝜉) 𝑑 (𝜉)

=

1

𝐷

(1 + 𝑝
1
𝑝
1

∗

+ 𝑝
2
𝑝
2

∗

+ 𝑝
3
𝑝
3

∗

)

− ∫

0

−𝜏0

∫

𝜃

𝜉=0

1

𝐷

(1, 𝑝
1

∗

, 𝑝
2

∗

𝑝
3

∗

) 𝑒
−𝑖𝜔0(𝜉−𝜃)

× [𝑑𝜂 (𝜃)] (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇

𝑒
𝑖𝜔0𝜉

𝑑𝜉

=

1

𝐷

(1 + 𝑝
1
𝑝
1

∗

+ 𝑝
2
𝑝
2

∗

+ 𝑝
3
𝑝
3

∗

)

− ∫

0

−𝜏0

1

𝐷

(1, 𝑝
1

∗

, 𝑝
2

∗

, 𝑝
3

∗

) 𝜃𝑒
𝑖𝜔0𝜃

× [𝑑𝜂 (𝜃)] (1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇

=

1

𝐷

( (1 + 𝑝
1
𝑝
1

∗

+ 𝑝
2
𝑝
2

∗

+ 𝑝
3
𝑝
3

∗

)

+ 𝜏
0
𝑒
−𝑖𝜔0𝜏0

(1, 𝑝
1

∗

, 𝑝
2

∗

, 𝑝
3

∗

)

× 𝐺
2
(1, 𝑝
1
, 𝑝
2
, 𝑝
3
)
𝑇

)

=

1

𝐷

( (1 + 𝑝
1
𝑝
1

∗

+ 𝑝
2
𝑝
2

∗

+ 𝑝
3
𝑝
3

∗

) + 𝜏
0
𝑒
−𝑖𝜔0𝜏0

× ((𝑘
32
𝑝
2

∗

+ 𝑘
42
𝑝
3

∗

) 𝑝
1

+ (𝑘
33
𝑝
2

∗

+ 𝑘
43
𝑝
3

∗

) 𝑝
2
) ) ;

𝐷 = (1 + 𝑝
1
𝑝
1

∗

+ 𝑝
2
𝑝
2

∗

+ 𝑝
3
𝑝
3

∗

)

+ 𝜏
0
𝑒
−𝑖𝜔0𝜏0

((𝑘
32
𝑝
2

∗

+ 𝑘
42
𝑝
3

∗

) 𝑝
1

+ (𝑘
33
𝑝
2

∗

+ 𝑘
43
𝑝
3

∗

) 𝑝
2
) .

(49)

Let
V (𝑡) = ⟨𝑞∗, 𝑢

𝑡
⟩ ,

𝑊 (𝑡, 𝜃) = 𝑢
𝑡
− V𝑞 − V𝑞 = 𝑢

𝑡
− 2Re (V (𝑡) 𝑞 (𝜃)) .

(50)

On the center manifoldΩ
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (V (𝑡) , V (𝑡) , 𝜃) , (51)
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where

𝑊(V, V, 𝜃) = 𝑊
20
(𝜃)

V2

2

+𝑊
11
(𝜃) VV +𝑊

02
(𝜃)

VV2

2

+ ⋅ ⋅ ⋅ .

(52)

V and V are local coordinates of the center manifoldΩ
0
in the

direction of 𝑞∗ and 𝑞∗, respectively. Note that𝑊 is real if 𝑢
𝑡
is

real. So we only consider real solutions. From (50), we obtain

⟨𝑞
∗

,𝑊⟩ = ⟨𝑞
∗

, 𝑢
𝑡
− V𝑞 − V𝑞⟩

= ⟨𝑞
∗

, 𝑢
𝑡
⟩ − V (𝑡) ⟨𝑞∗, 𝑞⟩ − V (𝑡) ⟨𝑞∗, 𝑞⟩ .

(53)

For the solution 𝑢
𝑡
∈ Ω
0
of (35), from (41) and (44), since

𝜇 = 0, we have

V̇ (𝑡) = ⟨𝑞∗, 𝑢̇
𝑡
⟩

= ⟨𝑞
∗

, 𝐴 (0) 𝑢
𝑡
+ 𝑅 (0) 𝑢

𝑡
⟩

= ⟨𝑞
∗

, 𝐴 (0) 𝑢
𝑡
⟩ + ⟨𝑞

∗

, 𝑅 (0) 𝑢
𝑡
⟩

= ⟨𝐴
∗

𝑞
∗

, 𝑢
𝑡
⟩ + 𝑞
∗
𝑇

(0) 𝐹 (𝑢
𝑡
, 0)

= 𝑖𝜔
0
V (𝑡) + 𝑞∗

𝑇

(0) 𝑓
0
(V, V) .

(54)

Rewrite (54) as

V̇ (𝑡) = 𝑖𝜔
0
V (𝑡) + 𝑔 (V, V) , (55)

where

𝑔 (V, V) = 𝑞∗
𝑇

(0) 𝑓
0
(V, V)

= 𝑞
∗
𝑇

(0) 𝐹 (𝑊 (V, V, 𝜃) + 2Re {V (𝑡) 𝑞 (𝜃) , 0})

= 𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅ .

(56)

Substituting (42) and (54) into (50) yields

𝑊̇ = 𝑢̇ (𝑡) − V̇𝑞 − ̇V 𝑞

= 𝐴𝑢
𝑡
+ 𝑅𝑢
𝑡
− (𝑖𝜔
0
V + 𝑞∗

𝑇

(0) 𝑓
0
(V, V)) 𝑞

− (𝑖𝜔
0
V + 𝑞∗

𝑇

(0) 𝑓
0
(V, V)) 𝑞

= 𝐴𝑢
𝑡
+ 𝑅𝑢
𝑡
− 𝐴V𝑞 − 𝐴V 𝑞

− 2Re (𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞) ,

(57)

𝑊̇=

{
{

{
{

{

𝐴𝑊−2Re (𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞) , 𝜃∈[−𝜏, 0)

𝐴𝑊−2Re (𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞)+𝑓

0
(V, V) , 𝜃=0,

(58)

which can be written as

𝑊̇ = 𝐴𝑊 +𝐻 (V, V, 𝜃) , (59)

where

𝐻(V, V, 𝜃) = 𝐻
20
(𝜃)

V2

2

+ 𝐻
11
(𝜃) VV + 𝐻

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅ .

(60)

On the center manifoldΩ
0
, we have

𝑊̇ = 𝑊VV̇ +𝑊V
̇V. (61)

Substituting (52) and (55) into (61), one obtains

𝑊̇ = (𝑊
20
V +𝑊

11
V + ⋅ ⋅ ⋅ ) (𝑖𝜔

0
V + 𝑔)

+ (𝑊
11
V +𝑊

02
V + ⋅ ⋅ ⋅ ) (−𝑖𝜔

0
V + 𝑔) .

(62)

Substituting (52) and (60) into (59) yields

𝑊̇ = (𝐴𝑊
20
+ 𝐻
20
)

V2

2

+ (𝐴𝑊
11
+ 𝐻
11
) VV

+ (𝐴𝑊
02
+ 𝐻
02
)

V2

2

+ ⋅ ⋅ ⋅ .

(63)

Comparing the coefficients of (62) and (63), one gets

(𝐴 − 𝑖2𝜔
0
)𝑊
20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) ,

(𝐴 + 𝑖2𝜔
0
)𝑊
02
(𝜃) = −𝐻

02
(𝜃) .

(64)

Since 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) = 𝑊(V, V, 𝜃) + V𝑞 + V𝑞, then we have

𝑢
𝑡
=(

𝑢
1
(𝑡 + 𝜃)

𝑢
2
(𝑡 + 𝜃)

𝑢
3
(𝑡 + 𝜃)

𝑢
4
(𝑡 + 𝜃)

)

=(

𝑊
(1)

(V, V, 𝜃)

𝑊
(2)

(V, V, 𝜃)

𝑊
(3)

(V, V, 𝜃)

𝑊
(4)

(V, V, 𝜃)

) + V(

1

𝑝
1

𝑝
2

𝑝
3

)𝑒
𝑖𝜔0𝜃

+ V(

1

𝑝
1

𝑝
2

𝑝
3

)𝑒
−𝑖𝜔0𝜃

.

(65)

Thus, we obtain

𝑢
1
(𝑡 + 𝜃) = 𝑊

(1)

(V, V, 𝜃) + V𝑒𝑖𝜔0𝜃 + V𝑒−𝑖𝜔0𝜃

= (𝑊
(1)

20
(𝜃)

V2

2

+𝑊
(1)

11
(𝜃) VV+𝑊(1)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑒𝑖𝜔0𝜃 + V𝑒−𝑖𝜔0𝜃,
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𝑢
2
(𝑡 + 𝜃) = 𝑊

(2)

(V, V, 𝜃) + V𝑝
1
𝑒
𝑖𝜔0𝜃

+ V𝑝
1
𝑒
−𝑖𝜔0𝜃

= (𝑊
(2)

20
(𝜃)

V2

2

+𝑊
(2)

11
(𝜃) VV +𝑊(2)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑝
1
𝑒
𝑖𝜔0𝜃

+ V𝑝
1
𝑒
−𝑖𝜔0𝜃

,

𝑢
3
(𝑡 + 𝜃) = 𝑊

(3)

(V, V, 𝜃) + V𝑝
2
𝑒
𝑖𝜔0𝜃

+ V𝑝
2
𝑒
−𝑖𝜔0𝜃

= (𝑊
(3)

20
(𝜃)

V2

2

+𝑊
(3)

11
(𝜃) VV +𝑊(3)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑝
2
𝑒
𝑖𝜔0𝜃

+ V𝑝
2
𝑒
−𝑖𝜔0𝜃

,

𝑢
4
(𝑡 + 𝜃) = 𝑊

(4)

(V, V, 𝜃) + V𝑝
3
𝑒
𝑖𝜔0𝜃

+ V𝑝
3
𝑒
−𝑖𝜔0𝜃

= (𝑊
(4)

20
(𝜃)

V2

2

+𝑊
(4)

11
(𝜃) VV +𝑊(4)

02
(𝜃)

V2

2

+ ⋅ ⋅ ⋅)

+ V𝑝
3
𝑒
𝑖𝜔0𝜃

+ V𝑝
3
𝑒
−𝑖𝜔0𝜃

.

(66)

It is obvious that

𝜙
1
(0) = V + V +𝑊(1)

20
(0)

V2

2

+𝑊
(1)

11
(0) VV

+𝑊
(1)

02
(0)

V2

2

+ ⋅ ⋅ ⋅ ,

𝜙
2
(0) = V𝑝

1
+ V𝑝
1
+𝑊
(2)

20
(0)

V2

2

+𝑊
(2)

11
(0) VV

+𝑊
(2)

02
(0)

V2

2

+ ⋅ ⋅ ⋅ ,

𝜙
4
(0) = V𝑝

3
+ V𝑝
3
+𝑊
(4)

20
(0)

V2

2

+𝑊
(4)

11
(0) VV

+𝑊
(4)

02
(0)

V2

2

+ ⋅ ⋅ ⋅ .

(67)

So

𝜙
1
(0) 𝜙
1
(0) = V2 + V2 + 2VV

+

1

2

(4𝑊
(1)

11
(0) + 2𝑊

(1)

20
(0)) V2V + ⋅ ⋅ ⋅ ,

𝜙
1
(0) 𝜙
2
(0) = 𝑝

1
V2 + 𝑝

1
V2 + (𝑝

1
+ 𝑝
1
) VV

+

1

2

(2𝑊
(2)

11
(0) + 𝑊

(2)

20
(0) + 𝑊

(1)

20
(0) 𝑝
1

+2𝑊
(1)

11
(0) 𝑝
1
) V2V + ⋅ ⋅ ⋅ ,

𝜙
2
(0) 𝜙
4
(0) = 𝑝

1
𝑝
3
V2 + 𝑝

1
𝑝
3
V2

+ [𝑝
1
𝑝
3
+ 𝑝
1
𝑝
3
] VV

+

1

2

(2𝑊
(4)

11
(0) 𝑝
1
+𝑊
(4)

20
(0) 𝑝
1

+𝑊
(0)

20
(0) 𝑝
3
+ 2𝑊

(2)

11
(0) 𝑝
3
) V2V ⋅ ⋅ ⋅ ;

(68)

also

𝜙
2
(−𝜏) = V𝑝

1
𝑒
−𝑖𝜔0𝜏

+ V𝑝
1
𝑒
𝑖𝜔0𝜏

+𝑊
(2)

20
(−𝜏)

V2

2

+𝑊
(2)

11
(−𝜏) VV +𝑊(2)

02
(−𝜏)

V2

2

+⋅ ⋅ ⋅ ,

𝜙
3
(−𝜏) = V𝑝

2
𝑒
−𝑖𝜔0𝜏

+ V𝑝
2
𝑒
𝑖𝜔0𝜏

+𝑊
(3)

20
(−𝜏)

V2

2

+𝑊
(3)

11
(−𝜏) VV +𝑊(3)

02
(−𝜏)

V2

2

+ ⋅ ⋅ ⋅

(69)

and hence

𝜙
2
(−𝜏) 𝜙

3
(−𝜏) = 𝑝

1
𝑝
2
𝑒
−2𝑖𝜔0𝜏0V2

+ 𝑝
1
𝑝
2
𝑒
2𝑖𝜔0𝜏0V2 + (𝑝

1
𝑝
2
+ 𝑝
1
𝑝
2
) VV

+

1

2

(2𝑝
1
𝑒
−𝑖𝜔0𝜏0

𝑊
(3)

11
(−𝜏)+𝑝

1
𝑒
𝑖𝜔0𝜏

𝑊
(3)

20
(−𝜏)

+ 2𝑝
2
𝑒
−𝑖𝜔0𝜏0

𝑊
(2)

11
(−𝜏)) V2V + ⋅ ⋅ ⋅ .

(70)

It follows from (54) that

𝑓
0
(V, V) =((

(

𝑘
13
𝜙
1
(0) 𝜙
1
(0) + 𝑘

14
𝜙
1
(0) 𝜙
2
(0)

𝑘
24
𝜙
1
(0) 𝜙
2
(0) + 𝑘

25
𝜙
2
(0) 𝜙
4
(0)

𝑘
34
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

𝑘
44
𝜙
2
(−𝜏) 𝜙

3
(−𝜏)

)
)

)

=
(
(

(

𝐹
11
V2 + 𝐹

12
V2 + 𝐹

13
VV + 𝐹

14
V2V

𝐹
21
V2 + 𝐹

22
V2 + 𝐹

23
VV + 𝐹

24
V2V

𝐹
31
V2 + 𝐹

32
V2 + 𝐹

33
VV + 𝐹

34
V2V

𝐹
41
V2 + 𝐹

42
V2 + 𝐹

43
VV + 𝐹

44
V2V

)
)

)

,

(71)

where

𝐹
11
= 𝑘
13
+ 𝑘
14
𝑝
1
,

𝐹
12
= 𝑘
13
+ 𝑘
14
𝑝
1
,

𝐹
13
= 2𝑘
13
+ 𝑘
14
(𝑝
1
+ 𝑝
1
) ,

𝐹
14
= 𝑘
13
(2𝑊
(1)

11
(0) + 𝑊

(1)

20
(0))

+

1

2

𝑘
14
(2𝑊
(2)

11
(0) + 𝑊

(2)

20
(0)

+𝑊
(1)

20
(0) 𝑝
1
+ 2𝑊

(1)

11
(0) 𝑝
1
) ,

𝐹
21
= 𝑘
24
𝑝
1
+ 𝑘
25
𝑝
1
𝑝
3
,

𝐹
22
= 𝑘
24
𝑝
1
+ 𝑘
25
𝑝
1
𝑝
3
,

𝐹
23
= 𝑘
24
(𝑝
1
+ 𝑝
1
) + 𝑘
25
(𝑝
1
𝑝
3
+ 𝑝
1
𝑝
3
) ,
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𝐹
24
=

1

2

𝑘
24
(2𝑊
(2)

11
(0) + 𝑊

(2)

20
(0) + 𝑊

(1)

20
(0) 𝑝
1

+ 2𝑊
(2)

11
(0) 𝑝
1
)

+

1

2

𝑘
25
(2𝑊
(4)

11
(0) 𝑝
1
+𝑊
(4)

20
(0) 𝑝
1
+𝑊
(2)

20
(0) 𝑝
3

+ 2𝑊
(2)

11
(0) 𝑝
3
) ,

𝐹
31
= 𝑘
34
(𝑝
1
𝑝
2
𝑒
−2𝑖𝜔0𝜏0

) ,

𝐹
32
= 𝑘
34
(𝑝
1
𝑝
2
𝑒
2𝑖𝜔0𝜏0

) ,

𝐹
33
= 𝑘
34
(𝑝
1
𝑝
2
+ 𝑝
1
𝑝
2
) ,

𝐹
34
=

1

2

𝑘
34
(2𝑝
1
𝑒
−𝑖𝜔0𝜏0

𝑊
(3)

11
(−𝜏) + 𝑝

1
𝑒
𝑖𝜔0𝜏0

𝑊
(3)

20
(−𝜏)

+ 2𝑝
2
𝑒
−𝑖𝜔0𝜏0

𝑊
(2)

11
(−𝜏)) ,

𝐹
41
= 𝑘
44
(𝑝
1
𝑝
2
𝑒
−2𝑖𝜔0𝜏0

) ,

𝐹
42
= 𝑘
44
(𝑝
1
𝑝
2
𝑒
2𝑖𝜔0𝜏0

) ,

𝐹
43
= 𝑘
44
(𝑝
1
𝑝
2
+ 𝑝
1
𝑝
2
) ,

𝐹
44
=

1

2

𝑘
44
(2𝑝
1
𝑒
−𝑖𝜔0𝜏0

𝑊
(3)

11
(−𝜏) + 𝑝

1
𝑒
𝑖𝜔0𝜏0

𝑊
(3)

20
(−𝜏)

+ 2𝑝
2
𝑒
−𝑖𝜔0𝜏0

𝑊
(2)

11
(−𝜏)) .

(72)

Since 𝑞∗(0) = (1/𝐷)(1, 𝑝∗
1
, 𝑝
∗

2
, 𝑝
∗

3
)
𝑇, we have

𝑔 (V, V) = 𝑞∗(0)𝑇𝑓
0
(V, V)

=

1

𝐷

(1, 𝑝
∗

1
, 𝑝
∗

2
, 𝑝
∗

3
)

×
(
(

(

𝐹
11
V2 + 𝐹

12
V2 + 𝐹

13
VV + 𝐹

14
V2V

𝐹
21
V2 + 𝐹

22
V2 + 𝐹

23
VV + 𝐹

24
V2V

𝐹
31
V2 + 𝐹

32
V2 + 𝐹

33
VV + 𝐹

34
V2V

𝐹
41
V2 + 𝐹

42
V2 + 𝐹

43
VV + 𝐹

44
V2V

)
)

)

=

1

𝐷

( (𝐹
11
+ 𝐹
21
𝑝
∗

1
+ 𝐹
31
𝑝
∗

2
+ 𝐹
41
𝑝
∗

3
) V2

+ (𝐹
12
+ 𝐹
22
𝑝
∗

1
+ 𝐹
32
𝑝
∗

2
+ 𝐹
42
𝑝
∗

3
) V2

+ (𝐹
13
+ 𝐹
23
𝑝
∗

1
+ 𝐹
33
𝑝
∗

2
+ 𝐹
43
𝑝
∗

3
) VV

+ (𝐹
14
+ 𝐹
24
𝑝
∗

1
+ 𝐹
34
𝑝
∗

2
+ 𝐹
44
𝑝
∗

3
) V2V) .

(73)

Comparing the coefficients of the above equation with those
in (61), we have

𝑔
20
=

2

𝐷

(𝐹
11
+ 𝐹
21
𝑝
∗

1
+ 𝐹
31
𝑝
∗

2
+ 𝐹
41
𝑝
∗

3
) ,

𝑔
11
=

1

𝐷

(𝐹
13
+ 𝐹
23
𝑝
∗

1
+ 𝐹
33
𝑝
∗

2
+ 𝐹
43
𝑝
∗

3
) ,

𝑔
02
=

2

𝐷

(𝐹
12
+ 𝐹
22
𝑝
∗

1
+ 𝐹
32
𝑝
∗

2
+ 𝐹
42
𝑝
∗

3
) ,

𝑔
21
=

2

𝐷

(𝐹
14
+ 𝐹
24
𝑝
∗

1
+ 𝐹
34
𝑝
∗

2
+ 𝐹
44
𝑝
∗

3
) .

(74)

We need to compute 𝑊
20
(𝜃) and 𝑊

11
(𝜃) for 𝜃 ∈ [−𝜏, 0).

Equations (62) and (63) imply that

𝐻(V, V, 𝜃) = −2Re {𝑞∗𝑇 (0) 𝑓
0
(V, V) 𝑞 (𝜃)}

= −2Re {𝑔 (V, V) 𝑞 (𝜃)}

= −𝑔 (V, V) 𝑞 (𝜃) − 𝑔 (V, V) 𝑞 (𝜃) ,

𝐻 (V, V, 𝜃) = −(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅ ) 𝑞 (𝜃)

−(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅) 𝑞 (𝜃) .

(75)

Comparing the coefficients of the above equation with (60),
we have

𝐻
20
(𝜃) = − 𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = − 𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) ,

𝐻
02
(𝜃) = − 𝑔

02
𝑞 (𝜃) − 𝑔

20
𝑞 (𝜃) .

(76)

It follows from (40) and (64) that

𝑊̇ (𝜃) = 𝐴𝑊
20
= 2𝑖𝜔
0
𝑊
20
(𝜃) − 𝐻

20
(𝜃)

= 2𝑖𝜔
0
𝑊
20
(𝜃) + 𝑔

20
𝑞 (0) 𝑒

𝑖𝜔0𝜃

+ 𝑔
02
𝑞 (0) 𝑒

−𝑖𝜔0𝜃

.

(77)

By solving the above equation for𝑊
20
(𝜃) and for𝑊

11
(𝜃), one

obtains

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔0𝜃

+

𝑖𝑔
02

3𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔0𝜃

+ 𝐸
1
𝑒
2𝑖𝜔0𝜃

,

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
𝑖𝜔0𝜃

+

𝑖𝑔
11

𝜔
0

𝑞 (0) 𝑒
−𝑖𝜔0𝜃

+ 𝐸
2
,

(78)

where 𝐸
1
and 𝐸

2
can be determined by setting 𝜃 = 0 in

𝐻(V, V, 𝜃).
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In fact, we have

𝐻(V, V, 0) = −2Re {𝑞∗𝑇 (0) 𝑓
0
(V, V𝑞)} + 𝑓

0
(V, V)

= −(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
21

V2V
2

⋅ ⋅ ⋅ ) 𝑞 (0)

−(𝑔
20

V2

2

+ 𝑔
11
VV + 𝑔

02

V2

2

+ 𝑔
20

V2V
2

+ ⋅ ⋅ ⋅)𝑞 (0)

+
(
(

(

𝐹
11
V2 + 𝐹

12
V2 + 𝐹

13
VV + 𝐹

14
V2V

𝐹
21
V2 + 𝐹

22
V2 + 𝐹

23
VV + 𝐹

24
V2V

𝐹
31
V2 + 𝐹

32
V2 + 𝐹

33
VV + 𝐹

34
V2V

𝐹
41
V2 + 𝐹

42
V2 + 𝐹

43
VV + 𝐹

44
V2V

)
)

)

;

(79)

comparing the coefficients of the above equations with those
in (61), it follows that

𝐻
20
(0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0) + (𝐹

11
, 𝐹
21
, 𝐹
31
, 𝐹
41
)
𝑇

,

𝐻
11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) + (𝐹

13
, 𝐹
23
, 𝐹
33
, 𝐹
43
)
𝑇

.

(80)

By the definition of 𝐴 and (40) and (64), we get

∫

0

−𝜏0

𝑑𝜂 (𝜃)𝑊
20
(𝜃) = 𝐴𝑊

20
(0) = 2𝑖𝜔

0
𝑊
20
(0) − 𝐻

20
(0) ,

∫

0

−𝜏0

𝑑𝜂 (𝜃)𝑊
11
(𝜃) = 𝐴𝑊

11
(0) = −𝐻

11
(0) .

(81)

One can notice that

(𝑖𝜔
0
𝐼 − ∫

0

−𝜏0

𝑒
𝑖𝜔0𝜃

𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔
0
𝐼 − ∫

0

−𝜏0

𝑒
−𝑖𝜔0𝜃

𝑑𝜂 (𝜃)) 𝑞 (0) = 0.

(82)

Thus, we obtain

(2𝑖𝜔
0
𝐼 − ∫

0

−𝜏0

𝑒
2𝑖𝑤0𝜃

𝑑𝜂 (𝜃))𝐸
1
= (𝐹
11
, 𝐹
21
, 𝐹
31
, 𝐹
41
)
𝑇

(∫

0

−𝜏0

𝑑𝜂 (𝜃))𝐸
2
= −(𝐹

13
, 𝐹
23
, 𝐹
33
, 𝐹
43
)
𝑇

,

(83)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸
(2)

1
, 𝐸
(3)

1
, 𝐸
(4)

1
)
𝑇, 𝐸
2
= (𝐸

(1)

2
, 𝐸
(2)

2
, 𝐸
(3)

2
,

𝐸
(4)

2
)
𝑇; the above equation can be written as

(

2𝑖𝜔
0
− 𝑘
11

−𝑘
12

0 0

−𝑘
21

2𝑖𝜔
0
− 𝑘
22

0 −𝑘
23

0 −𝑘
32
𝑒
−𝑖𝑤0𝜏0

2𝑖𝜔
0
− 𝑘
31
− 𝑘
33
𝑒
−𝑖𝜔0𝜏0

0

0 −𝑘
42
𝑒
−𝑖𝜔0𝜏0

−𝑘
43
𝑒
−𝑖𝜔0𝜏0

2𝑖𝜔
0
− 𝑘
41

)𝐸
1
=(

𝐹
11

𝐹
21

𝐹
31

𝐹
41

),

(

𝑘
11
𝑘
12

0 0

𝑘
21
𝑘
22

0 𝑘
23

0 𝑘
32
𝑘
31

0

0 𝑘
42
𝑘
43
𝑘
41

)𝐸
2
=(

𝐹
13

𝐹
23

𝐹
33

𝐹
43

).

(84)

From (78), (84), we can calculate 𝑔
21
, and we can derive the

following parameters:

𝐶
1
(0) =

𝑖

2𝜔
0

(𝑔
20
𝑔
11
− 2
󵄨
󵄨
󵄨
󵄨
𝑔
11

󵄨
󵄨
󵄨
󵄨

2

−

1

3

󵄨
󵄨
󵄨
󵄨
𝑔
02

󵄨
󵄨
󵄨
󵄨

2

) +

𝑔
21

2

,

𝜇
2
= −

Re (𝐶
1
(0))

Re (𝜆󸀠 (𝜏
0
))

,

𝛽
2
= 2Re𝐶

1
(0) ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im 𝜆 (𝜏

0
)

𝜔
0

.

(85)

We arrive at the following theorem.

Theorem 4. The periodic solution is supercritical (subcritical)
if 𝜇
2
> 0 (𝜇

2
< 0); the bifurcating periodic solutions are

orbitally asymptotically stable with asymptotical phase (unsta-
ble) if 𝛽

2
< 0 (𝛽

2
> 0); the period of the bifurcating periodic

solution increases (decreases) if 𝑇
2
> 0 (𝑇

2
< 0).

5. Numerical Simulations

In this section, we provide some simulations of model (4)
to exhibit the impact of discrete time delay in the model.
We consider the parameters values: Λ = 10, 𝛿

1
= 0.06,

𝛿
2
= 0.3, 𝑒

1
= 0.2, 𝛽 = 0.1, 𝑝 = 1, 𝑐 = 0.1, 𝑏 = 0.02,

𝑞 = 0.02, 𝜂 ∈ [0, 1], ℎ = 0.1, 𝑟 = 0.03, 𝜖 ∈ [0, 1], and
𝑇max = 1500. According to the given parameters’ values, the
threshold critical value 𝜏

0
= 0.4957 from the formula (21)

exists. The steady state E
+
exists and is asymptotically stable

(see Figure 1). We may notice that the solution converges to
the equilibriumE

+
with damping oscillations as the value of 𝜏
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Figure 2: Each panel (from (a) to (h)) shows the time evolution and trajectory of model (4) when 𝜏(= 0.4) < 𝜏
0
(critical value) and the effect

of therapies is considered to be 𝜖 = 0.9 and 𝜂 = 0.2. It shows that the endemic steady state E
+
of model is asymptotically stable.

increases. Once the delay 𝜏 crosses the critical value 𝜏
0
, then

the model shows the existence of Hopf bifurcation which is
depicted in the Figure 2. In Figure 3, we consider the efficacy
of antiretroviral value is 0.9, which may be responsible for
the loss of stability. The asymptotic behavior to the infection-
free steady state, when we consider antiviral treatment (with

𝜖 = 0.9, 𝜂 = 0.9, and time delay 𝜏 = 15), is shown
in Figure 4. According to Theorem 4, the parameters 𝐶

1
=

−2.1108𝑒+004+1.1224𝑒+005𝑖, 𝜆󸀠 = −12.1371−0.6438𝑖, 𝜇
2
=

−1.7391𝑒+003, 𝛽
2
= −4.2215𝑒+004, and𝑇

2
= −2.8052𝑒+005

are estimated. Based on these values one can conclude that
bifurcating periodic solutions are unstable and decreases in
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Figure 3: It shows the numerical simulations of model (4), when the time delay of immune activation exceeds the critical value, 𝜏 = 0.5 > 𝜏
0
.

The endemic steady state E
+
of the model undergoes Hopf bifurcation; stability switch and periodic solutions appear.

the period of bifurcating periodic solutions. The existence of
periodic solution is subcritical. For numerical treatment of
DDEs and related issues; we refer the readers to [35, 36].

Several packages and types of software are available for
the numerical integration and/or the study of bifurcations in

delay differential equations (see, e.g., [37, 38]. In this paper
we utilize MIDDE code [39]) which is suitable to simulate
stiff and nonstiff delay differential equations and Volterra
delay integrodifferential equations, using monoimplicit RK
methods.
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Figure 4: It shows the numerical simulations of model (4), when the efficacy rate of antiretroviral treatments is considered to be low; that is,
𝜖 = 0.2 and 𝜂 = 0.2. It shows that the equilibrium E

+
of the model undergoes Hopf bifurcation with oscillatory behavior in solutions even

though the delay value is less than the critical value (𝜏 = 0.4 < 𝜏
0
).
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Figure 5: It shows the numerical simulations model (4) when the efficacy rate of antiretroviral treatment is at expected level, 𝜖 = 0.9 and
𝜂 = 0.9, and the delay value exceeds the critical value 𝜏 = 15 > 𝜏

0
. The solution always lies within the feasible region and the infection-free

steady state E
0
is asymptotically stable.

6. Concluding Remarks

In this manuscript, we provided a conceptual CD4+ T-cell
infection model which includes the logistic growth term
alongwith two different types of antiretroviral drug therapies.
The model includes a discrete time delay in the immune
activation response, which plays an important role in the
dynamics of the model. The infection-free and endemic
steady states of the model are determined (Figure 5). The
stability of steady states is analyzed. We deduced a formula
that determines the critical value (branch value) 𝜏

0
. Necessary

and sufficient conditions for the equilibrium to be asymp-
totically stable for all positive delay values are proved. We
have seen that if the time delay exceeds the critical value
𝜏
0
, model (4) undergoes a Hopf bifurcation. The direction

and stability of bifurcating periodic solutions are deduced
in explicit formulae, using center manifold and normal
forms. We also presented some numerical simulations to
the underlying model to investigate the obtained results and
theory. We have seen also that the antiretroviral treatments
help to increase the level of uninfected CD4+ T-cells. The
theoretical results that were confirmed by the numerical
simulations show that the delayed CTL response can lead
to complex bifurcations, and, in particular, the coexistence
of multiple stable periodic solutions. When the time delay
exceeds the critical (threshold) value, we may get subcritical
behaviour that leads to a loss of uninfected CD4+ T-cells.
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