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2 Instytut Matematyki, Uniwersytet Jagielloński, Ulica Łojasiewicza 6, 30-348 Kraków, Poland

Correspondence should be addressed to Piotr Budzyński; piotr.budzynski@ur.krakow.pl

Received 15 October 2013; Accepted 3 December 2013; Published 19 February 2014

Academic Editor: Henryk Hudzik
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It is shown that for every positive integern there exists a subnormalweighted shift on a directed tree (with orwithout root)whosenth
power is densely defined while its (𝑛+1)th power is not. As a consequence, for every positive integer n there exists a nonsymmetric
subnormal composition operator C in an L2-space over a 𝜎-finite measure space such that C𝑛 is densely defined and 𝐶

𝑛+1 is not.

1. Introduction

The question of when powers of a closed densely defined
linear operator are densely defined has attracted considerable
attention. In 1940 Naimark gave a surprising example of a
closed symmetric operator whose square has trivial domain
(see [1]; see also [2] for a different construction). More
than four decades later, Schmüdgen discovered another
pathological behaviour of domains of powers of symmetric
operators (cf. [3]). It is well known that symmetric operators
are subnormal (cf. [4, Theorem 1 in Appendix I.2]). Hence,
closed subnormal operators may have nondensely defined
powers. In turn, quasinormal operators, which are subnormal
as well (see [5, 6]), have all powers densely defined (cf. [6]).
In the present paper we discuss the above question in the
context of subnormal weighted shifts on directed trees and
subnormal composition operators in 𝐿

2-spaces (over 𝜎-finite
measure spaces).

As recently shown (cf. [7, Proposition 3.1]), formally
normal (in particular symmetric) weighted shifts on directed
trees are automatically bounded and normal (in general,
formally normal operators are not subnormal, cf. [8]). The
same applies to symmetric composition operators in 𝐿

2-
spaces (cf. [9, Proposition B.1]). Formally normal composi-
tion operators in 𝐿

2-spaces, which may be unbounded (see
[9, Appendix C]), are still normal (cf. [10,Theorem 9.4]). As a

consequence, all powers of such operators are densely defined
(see, e.g., [11, Corollary 5.28]).

The above discussion suggests the question of whether for
every positive integer 𝑛 there exists a subnormal weighted
shift on a directed tree whose 𝑛th power is densely defined
while its (𝑛 + 1)th power is not. A similar question can
be asked for composition operators in 𝐿

2-spaces. To answer
both of them, we proceed as follows. First, by applying a
recently established criterion for subnormality of weighted
composition operators in 𝐿

2-spaces which makes no appeal
to density of 𝐶

∞-vectors (see Theorem 1), we show that
a densely defined weighted shift on a directed tree which
admits a consistent system of probability measures (i.e., a
system {𝜇V}V∈𝑉 of Borel probability measures on R

+
which

satisfies (6)) is subnormal and, what is more, its 𝑛th power is
densely defined if and only if all moments of these measures
up to degree 𝑛 are finite (cf. Theorem 3). The particular
case of directed trees with one branching vertex is examined
in Theorem 5 and Corollary 6. Using these two results, we
answer both questions in the affirmative (see Example 1 and
Remark 8). It is worth pointing out that though directed trees
with one branching vertex have simple structure, they provide
many examples which are important in operator theory (see
e.g., [12, 13]).

Now we introduce some notation and terminology. In
what follows, Z, Z

+
, N, R

+
, and C stand for the sets of
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integers, nonnegative integers, positive integers, nonnegative
real numbers and complex numbers, respectively. Set R

+
=

R
+
∪ {∞}. We write B(R

+
) for the 𝜎-algebra of all Borel

subsets of R
+
. Given 𝑡 ∈ R

+
, we denote by 𝛿

𝑡
the Borel

probability measure on R
+
concentrated on {𝑡}.

The domain of an operator 𝐴 in a complex Hilbert space
H is denoted byD(𝐴) (all operators considered in this paper
are linear). Set D∞(𝐴) = ⋂

∞

𝑛=0
D(𝐴
𝑛
). Recall that a closed

densely defined operator𝐴 inH is said to be normal if𝐴𝐴
∗
=

𝐴
∗
𝐴 (see [11, 14, 15] for more on this class of operators). We

say that a densely defined operator 𝐴 in H is subnormal if
there exist a complex Hilbert spaceK and a normal operator
𝑁 inK such thatH ⊆ K (isometric embedding) and 𝐴ℎ =

𝑁ℎ for all ℎ ∈ D(𝑆). We refer the reader to [6, 16–19] for
the foundations of the theory of bounded and unbounded
subnormal operators, respectively.

2. Weighted Composition Operators

Assume that (𝑋,A, ]) is a𝜎-finitemeasure space,𝑤 : 𝑋 → C

is an A-measurable function, and 𝜙 : 𝑋 → 𝑋 is an A-
measurable mapping. Define the 𝜎-finite measure ]

𝑤
: A →

R
+
by ]
𝑤
(Δ) = ∫

Δ
|𝑤|
2
𝑑] for Δ ∈ A. Let ]

𝑤
∘ 𝜙
−1

: A → R
+

be the measure given by ]
𝑤
∘ 𝜙
−1
(Δ) = ]

𝑤
(𝜙
−1
(Δ)) for Δ ∈ A.

Assume that ]
𝑤
∘ 𝜙
−1 is absolutely continuous with respect

to ]. By the Radon-Nikodym theorem (cf. [20, Theorem
2.2.1]), there exists a unique (up to a.e. []] equivalence) A-
measurable function h = h

𝜙,𝑤
: 𝑋 → R

+
such that

]
𝑤
∘ 𝜙
−1

(Δ) = ∫

Δ

h 𝑑], Δ ∈ A. (1)

Then the operator C = C
𝜙,𝑤

in 𝐿
2
(]), given by

D (C) = {𝑓 ∈ 𝐿
2
(]) : 𝑤 ⋅ (𝑓 ∘ 𝜙) ∈ 𝐿

2
(])} ,

C𝑓 = 𝑤 ⋅ (𝑓 ∘ 𝜙) , 𝑓 ∈ D (C) ,

(2)

is well defined (cf. [21, Proposition 7]). Call C a weighted
composition operator. By [21, Proposition 10], C is densely
defined if and only if h < ∞ a.e. []]; moreover, if this is the
case, then ]

𝑤
|
𝜙
−1

(A) is 𝜎-finite and, by the Radon-Nikodym
theorem, for every A-measurable function 𝑓 : 𝑋 → R

+

there exists a unique (up to a.e. []
𝑤
] equivalence) 𝜙

−1
(A)-

measurable function E(𝑓) = E
𝜙,𝑤

(𝑓) : 𝑋 → R
+
such that

∫

𝜙
−1

(Δ)

𝑓𝑑]
𝑤
= ∫

𝜙
−1

(Δ)

E (𝑓) 𝑑]
𝑤
, Δ ∈ A. (3)

We call E(𝑓) the conditional expectation of 𝑓 with respect
to 𝜙
−1
(A) (see [21] for more information). A mapping 𝑃 :

𝑋 × B(R
+
) → [0, 1] is called an A-measurable family of

probability measures if the set-function 𝑃(𝑥, ⋅) is a probability
measure for every 𝑥 ∈ 𝑋 and the function 𝑃(⋅, 𝜎) is A-
measurable for every 𝜎 ∈ B(R

+
).

The following criterion (read: a sufficient condition) for
subnormality of unbounded weighted composition operators
is extracted from [21, Theorem 29].

Theorem 1. If C is densely defined, h > 0 a.e. []
𝑤
], and there

exists anA-measurable family of probability measures 𝑃 : 𝑋×

B(R
+
) → [0, 1] such that

E (𝑃 (⋅, 𝜎)) (𝑥) =

∫
𝜎
𝑡𝑃 (𝜙 (𝑥) , 𝑑𝑡)

h (𝜙 (𝑥))
,

𝑓𝑜𝑟 ]
𝑤
-a.e. 𝑥 ∈ 𝑋, 𝜎 ∈ B (R

+
) ,

(CC)

then C is subnormal.

Regarding Theorem 1, recall that if C is subnormal, then
h > 0 a.e. []

𝑤
] (cf. [21, Corollary 13]).

3. Weighted Shifts on Directed Trees

LetT = (𝑉, 𝐸) be a directed tree (𝑉 and𝐸 stand for the sets of
vertices and edges ofT, resp.). Set Chi(𝑢) = {V ∈ 𝑉 : (𝑢, V) ∈
𝐸} for 𝑢 ∈ 𝑉. Denote by par the partial function from 𝑉 to
𝑉 which assigns to a vertex 𝑢 ∈ 𝑉 its parent par(𝑢) (i.e., a
unique V ∈ 𝑉 such that (V, 𝑢) ∈ 𝐸). A vertex 𝑢 ∈ 𝑉 is called
a root of T if 𝑢 has no parent. A root is unique (provided it
exists); we denote it by root. Set 𝑉∘ = 𝑉 \ {root} if T has a
root and 𝑉

∘
= 𝑉 otherwise. We say that 𝑢 ∈ 𝑉 is a branching

vertex of 𝑉 and write 𝑢 ∈ 𝑉
≺
, if Chi(𝑢) consists of at least two

vertices.We refer the reader to [12] for all facts about directed
trees needed in this paper.

By a weighted shift on T with weights 𝜆 = {𝜆V}V∈𝑉∘ ⊆ C

we mean the operator 𝑆𝜆 in ℓ
2
(𝑉) defined by

D (𝑆𝜆) = {𝑓 ∈ ℓ
2
(𝑉) : ΛT𝑓 ∈ ℓ

2
(𝑉)} ,

𝑆𝜆𝑓 = ΛT𝑓, 𝑓 ∈ D (𝑆𝜆) ,

(4)

where ΛT is the mapping defined on functions 𝑓 : 𝑉 → C

via

(ΛT𝑓) (V) = {
𝜆V ⋅ 𝑓 (par (V)) , if V ∈ 𝑉

∘
,

0, if V = root.
(5)

As usual, ℓ2(𝑉) is the Hilbert space of square summable
complex functions on 𝑉 with standard inner product. For
𝑢 ∈ 𝑉, we define 𝑒

𝑢
∈ ℓ
2
(𝑉) to be the characteristic function

of the one-point set {𝑢}.Then {𝑒
𝑢
}
𝑢∈𝑉

is an orthonormal basis
of ℓ2(𝑉).

The following useful lemma is an extension of part (iv) of
[13, Theorem 3.2.2].

Lemma 2. Let 𝑆𝜆 be a weighted shift on a directed tree T =

(𝑉, 𝐸) with weights 𝜆 = {𝜆V}V∈𝑉∘ and let 𝑛 ∈ Z
+
. Then 𝑆

𝑛

𝜆
is

densely defined if and only if 𝑒
𝑢
∈ D(𝑆

𝑛

𝜆
) for every 𝑢 ∈ 𝑉

≺
.

Proof. In view of [13,Theorem 3.2.2(iv)], 𝑆𝑛
𝜆
is densely defined

if and only if 𝑒
𝑢
∈ D(𝑆

𝑛

𝜆
) for every 𝑢 ∈ 𝑉. Note that if 𝑢 ∈ 𝑉

and Chi(𝑢) = {V}, then 𝑒
𝑢
∈ D(𝑆𝜆) and 𝑆𝜆𝑒𝑢 = 𝜆V𝑒V, which

implies that 𝑒
𝑢
∈ D(𝑆

𝑛+1

𝜆
) whenever 𝑒V ∈ D(𝑆

𝑛

𝜆
). In turn, if

Chi(𝑢) = ⌀, then clearly 𝑒
𝑢
∈ D∞(𝑆𝜆). Using the above and

an induction argument (related to paths in T), we deduce
that 𝑆𝑛

𝜆
is densely defined if and only if 𝑒

𝑢
∈ D(𝑆

𝑛

𝜆
) for every

𝑢 ∈ 𝑉
≺
.
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It is worth mentioning that if 𝑉
≺
= ⌀, then, by Lemma 2

and [13, Theorem 3.2.2(iv)] (or by the proof of Lemma 2),
D∞(𝑆𝜆) is dense in ℓ

2
(𝑉). In particular, this covers the case

of classical weighted shifts and their adjoints.
Now we give a criterion for subnormality of weighted

shifts on directed trees. As opposed to [22, Theorem 5.1.1],
we do not assume the density of𝐶∞-vectors in the underlying
ℓ
2-space. Moreover, we do not assume that the underlying
directed tree is rootless and leafless, which is required in [9,
Theorem 47], and that weights are nonzero. The only restric-
tion we impose is that the directed tree is countably infinite.
This is always satisfied if the weighted shift in question is
densely defined and has nonzero weights (cf. [12, Proposition
3.1.10]). Here, and later, we adopt the conventions that 0⋅∞ =

∞⋅0 = 0, 1/0 = ∞ and∑V∈𝜙 𝜉V = 0; we also write ∫∞
0

in place
of ∫

R+
.

Theorem 3. Let 𝑆𝜆 be a weighted shift on a countably infinite
directed tree T = (𝑉, 𝐸) with weights 𝜆 = {𝜆V}V∈𝑉∘ . Suppose
that there exist a system {𝜇V}V∈𝑉 of Borel probability measures
on R
+
and a system {𝜀V}V∈𝑉 of nonnegative real numbers such

that

𝜇
𝑢
(𝜎) = ∑

V∈Chi(𝑢)

𝜆V


2

∫

𝜎

1

𝑡
𝜇V (𝑑𝑡) + 𝜀

𝑢
𝛿
0
(𝜎) ,

𝜎 ∈ B (R
+
) , 𝑢 ∈ 𝑉.

(6)

Then the following two assertions hold:

(i) if 𝑆𝜆 is densely defined, then 𝑆𝜆 is subnormal,
(ii) if 𝑛 ∈ N, then 𝑆

𝑛

𝜆
is densely defined if and only if

∫
∞

0
𝑠
𝑛
𝑑𝜇
𝑢
(𝑠) < ∞ for all 𝑢 ∈ 𝑉

≺
.

Proof. (i) Assume that 𝑆𝜆 is densely defined. Set 𝑋 = 𝑉 and
A = 2

𝑉. Let ] : A → R
+
be the counting measure on𝑋 (] is

𝜎-finite because 𝑉 is countable). Define the weight function
𝑤 : 𝑋 → C and the mapping 𝜙 : 𝑋 → 𝑋 by

𝑤 (𝑥) = {
𝜆
𝑥
, if 𝑥 ∈ 𝑉

∘
,

0, if 𝑥 = root,

𝜙 (𝑥) = {
par (𝑥) , if 𝑥 ∈ 𝑉

∘
,

root, if 𝑥 = root.

(7)

Clearly, the measure ]
𝑤
∘ 𝜙
−1 is absolutely continuous with

respect to ] and

h (𝑥) = ]
𝑤
(𝜙
−1

({𝑥})) = ]
𝑤
(Chi (𝑥)) = ∑

𝑦∈Chi(𝑥)


𝜆
𝑦



2

,

𝑥 ∈ 𝑋.

(8)

Thus, by [12, Proposition 3.1.3], h(𝑥) < ∞ for every 𝑥 ∈ 𝑋.
We claim that h > 0 a.e. []

𝑤
]. This is the same as to show that

if 𝑥 ∈ 𝑉
∘ and ]

𝑤
(Chi(𝑥)) = 0, then 𝜆

𝑥
= 0. Thus, if 𝑥 ∈ 𝑉

∘

and ]
𝑤
(Chi(𝑥)) = 0, then applying (6) to 𝑢 = 𝑥, we deduce

that 𝜇
𝑥
= 𝛿
0
; in turn, applying (6) to 𝑢 = par(𝑥) with 𝜎 = {0},

we get 𝜆
𝑥
= 0, which proves our claim.

Note that𝑋 = ⨆
𝑥∈𝑋

𝜙
−1
({𝑥}) (the disjoint union). Hence,

the conditional expectation E(𝑓) of a function 𝑓 : 𝑋 → R
+

with respect to 𝜙
−1
(A) is given by

E (𝑓) (𝑧) =

∫
Chi(𝑥)

𝑓𝑑]
𝑤

h (𝑥)
, 𝑧 ∈ 𝜙

−1
({𝑥}) , 𝑥 ∈ 𝑋

+
, (9)

where 𝑋
+
:= {𝑥 ∈ 𝑋 : ]

𝑤
(Chi(𝑥)) > 0} (see also (8)); on the

remaining part of𝑋 we can put E(𝑓) = 0.
Substituting 𝜎 = {0} into (6), we see that 𝜇

𝑦
({0}) = 0

for every 𝑦 ∈ 𝑉
∘ such that 𝜆

𝑦
̸= 0. Thus, using the standard

measure-theoretic argument and (6), we deduce that

∫

𝜎

𝑡 𝑑𝜇
𝑥
(𝑡) = ∑

𝑦∈Chi(𝑥)


𝜆
𝑦



2

𝜇
𝑦
(𝜎) , 𝜎 ∈ B (R

+
) , 𝑥 ∈ 𝑋.

(10)

Set 𝑃(𝑥, 𝜎) = 𝜇
𝑥
(𝜎) for 𝑥 ∈ 𝑋 and 𝜎 ∈ B(R

+
). It follows

from (9) and (10) that 𝑃 : 𝑋 × B(R
+
) → [0, 1] is a (A-

measurable) family of probability measures which fulfils the
following equality:

E (𝑃 (⋅, 𝜎)) (𝑧) =

∫
𝜎
𝑡𝑃 (𝜙 (𝑧) , 𝑑𝑡)

h (𝜙 (𝑧))
, 𝑧 ∈ 𝜙

−1
({𝑥}) , 𝑥 ∈ 𝑋

+
.

(11)

This implies that 𝑃 satisfies (CC). Hence, by Theorem 1, the
weighted composition operator C (see (2)) is subnormal.
Since 𝑆𝜆 = C, assertion (i) is proved.

(ii) It is easily seen that if 𝜇 is a finite positive Borel
measure on R

+
and ∫

∞

0
𝑠
𝑛
𝑑𝜇(𝑠) < ∞ for some 𝑛 ∈ N, then

∫
∞

0
𝑠
𝑘
𝑑𝜇(𝑠) < ∞ for every 𝑘 ∈ N such that 𝑘 ⩽ 𝑛. This

fact combined with Lemma 2 and [22, Lemmata 2.3.1(i) and
4.2.2(i)] implies assertion (ii).

Remark 4. Assume that 𝑆𝜆 is a densely defined weighted shift
on a countably infinite directed treeT = (𝑉, 𝐸) with weights
𝜆 = {𝜆V}V∈𝑉∘ . A careful inspection of the proof of Theorem 3
reveals that if {𝜇

𝑥
}
𝑥∈𝑋

(with 𝑋 = 𝑉) is a system of Borel
probabilitymeasures onR

+
which satisfies (6), then h > 0 a.e.

[]
𝑤
], the family 𝑃 defined by 𝑃(𝑥, ⋅) = 𝜇

𝑥
for 𝑥 ∈ 𝑋 satisfies

(CC), and 𝜇
𝑥

= 𝛿
0
for every 𝑥 ∈ 𝑋 \ 𝑋

+
. We claim that if

h > 0 a.e. []
𝑤
] and 𝑃 : 𝑋 × B(R

+
) → [0, 1] is any family

of probability measures which satisfies (CC), then the system
{𝜇
𝑥
}
𝑥∈𝑋

of probability measures defined by

𝜇
𝑥
=

{

{

{

𝑃 (𝑥, ⋅) , if 𝑥 ∈ 𝑋
+
,

𝛿
0
, otherwise,

(12)

satisfies (6) with {𝜇
𝑥
}
𝑥∈𝑋

in place of {𝜇
𝑥
}
𝑥∈𝑋

. Indeed, (CC)
implies (11). Hence, by (9), equality in (10) holds for every
𝑥 ∈ 𝑋

+
with 𝜇

𝑧
= 𝑃(𝑧, ⋅) for 𝑧 ∈ 𝑋. This implies via

the standard measure-theoretic argument that equality in (6)
holds for every 𝑢 ∈ 𝑋

+
. Since h > 0 a.e. []

𝑤
], we deduce that

equality in (6) holds for every 𝑢 ∈ 𝑋
+
with {𝜇

𝑥
}
𝑥∈𝑋

in place
of {𝜇
𝑥
}
𝑥∈𝑋

. Clearly, this is also the case for 𝑢 ∈ 𝑋 \ 𝑋
+
. Thus,

our claim is proved.
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4. Trees with One Branching Vertex

Theorem 3 will be applied in the case of weighted shifts on
leafless directed trees with one branching vertex. First, we
recall the models of such trees (see Figure 1). For 𝜂, 𝜅 ∈ Z

+
⊔

{∞}with 𝜂 ⩾ 2, we define the directed treeT
𝜂,𝜅

= (𝑉
𝜂,𝜅

, 𝐸
𝜂,𝜅

)

as follows (the symbol “⊔” denotes disjoint union of sets):

𝑉
𝜂,𝜅

= {−𝑘 : 𝑘 ∈ 𝐽
𝜅
} ⊔ {0} ⊔ {(𝑖, 𝑗) : 𝑖 ∈ 𝐽

𝜂
, 𝑗 ∈ N} ,

𝐸
𝜂,𝜅

= 𝐸
𝜅
⊔ {(0, (𝑖, 1)) : 𝑖 ∈ 𝐽

𝜂
}

⊔ {((𝑖, 𝑗) , (𝑖, 𝑗 + 1)) : 𝑖 ∈ 𝐽
𝜂
, 𝑗 ∈ N} ,

𝐸
𝜅
= {(−𝑘, −𝑘 + 1) : 𝑘 ∈ 𝐽

𝜅
} ,

(13)

where 𝐽
𝑛

= {𝑘 ∈ N : 𝑘 ⩽ 𝑛} for 𝑛 ∈ Z
+
⊔ {∞}. Clearly,

T
𝜂,𝜅

is leafless and 0 is its only branching vertex. From now
on, we write 𝜆

𝑖,𝑗
instead of the more formal expression 𝜆

(𝑖,𝑗)

whenever (𝑖, 𝑗) ∈ 𝑉
𝜂,𝜅
.

Theorem 5. Let 𝜂, 𝜅 ∈ Z
+
⊔ {∞} be such that 𝜂 ⩾ 2 and let 𝑆𝜆

be a weighted shift on a directed treeT
𝜂,𝜅

with nonzero weights
𝜆 = {𝜆V}V∈𝑉∘

𝜂,𝜅

. Suppose that there exists a sequence {𝜇
𝑖
}
𝜂

𝑖=1
of

Borel probability measures on R
+
such that

∫

∞

0

𝑠
𝑛
𝑑𝜇
𝑖
(𝑠) =



𝑛+1

∏

𝑗=2

𝜆
𝑖,𝑗



2

, 𝑛 ∈ N, 𝑖 ∈ 𝐽
𝜂
, (14)

and that one of the following three disjunctive conditions is
satisfied:

(i) 𝜅 = 0 and
𝜂

∑

𝑖=1

𝜆𝑖,1


2

∫

∞

0

1

𝑠
𝑑𝜇
𝑖
(𝑠) ⩽ 1, (15)

(ii) 0 < 𝜅 < ∞ and
𝜂

∑

𝑖=1

𝜆𝑖,1


2

∫

∞

0

1

𝑠
𝑑𝜇
𝑖
(𝑠) = 1, (16)



𝑙−1

∏

𝑗=0

𝜆
−𝑗



2
𝜂

∑

𝑖=1

𝜆𝑖,1


2

∫

∞

0

1

𝑠
𝑙+1

𝑑𝜇
𝑖
(𝑠) = 1, 𝑙 ∈ 𝐽

𝜅−1
, (17)



𝜅−1

∏

𝑗=0

𝜆
−𝑗



2
𝜂

∑

𝑖=1

𝜆𝑖,1


2

∫

∞

0

1

𝑠
𝜅+1

𝑑𝜇
𝑖
(𝑠) ⩽ 1, (18)

(iii) 𝜅 = ∞ and equalities (16) and (17) are valid.

Then the following two assertions hold:

(a) if 𝑆𝜆 is densely defined, then 𝑆𝜆 is subnormal,
(b) if 𝑛 ∈ N, then 𝑆

𝑛

𝜆
is densely defined if and only if

𝜂

∑

𝑖=1

𝜆𝑖,1


2

∫

∞

0

𝑠
𝑛−1

𝑑𝜇
𝑖
(𝑠) < ∞. (19)

𝜆−l 𝜆−1 𝜆0

𝜆1,1

𝜆2,1

𝜆3,1

𝜆1,2

𝜆2,2

𝜆3,2

𝜆1,3

𝜆2,3

𝜆3,3

Figure 1

Proof. As in the proof of [23, Theorem 4.1], we define the
system {𝜇V}V∈𝑉

𝜂,𝜅

of Borel probability measures on R
+
and

verify that {𝜇V}V∈𝑉
𝜂,𝜅

satisfies (6). Hence, assertion (a) is a
direct consequence of Theorem 3(i).

(b) Fix 𝑛 ∈ N. It follows from Theorem 3(ii) that 𝑆𝑛
𝜆
is

densely defined if and only if ∫∞
0

𝑠
𝑛
𝑑𝜇
0
(𝑠) < ∞. Using the

explicit definition of 𝜇
0
and applying the standard measure-

theoretic argument, we see that

∫

∞

0

𝑠
𝑛
𝑑𝜇
0
(𝑠) =

𝜂

∑

𝑖=1

𝜆𝑖,1


2

∫

∞

0

𝑠
𝑛−1

𝑑𝜇
𝑖
(𝑠) . (20)

This completes the proof of assertion (b) (the case of 𝑛 = 1

can also be settled without using the definition of 𝜇
0
simply

by applying Lemma 2 and [12, Proposition 3.1.3(iii)]).

Note that Theorem 5 remains true if its condition (ii) is
replaced by the condition (iii) of [23, Theorem 4.1] (see also
[23, Lemma 4.2] and its proof).

Corollary 6. Under the assumptions of Theorem 5, if 𝑛 ∈ N,
then the following two assertions are equivalent:

(i) 𝑆𝑛
𝜆
is densely defined and 𝑆

𝑛+1

𝜆
is not,

(ii) the condition (19) holds and ∑
𝜂

𝑖=1
|𝜆
𝑖,1
|
2
∫
∞

0
𝑠
𝑛
𝑑𝜇
𝑖
(𝑠) =

∞.

5. The Example

It follows from [22, Lemma 2.3.1(i)] that if 𝑆𝜆 is a weighted
shift on T

𝜂,𝜅
and 𝜂 < ∞, then D∞(𝑆𝜆) is dense in ℓ

2
(𝑉
𝜂,𝜅

)

(this means that Corollary 6 is interesting only if 𝜂 = ∞). If
𝜂 = ∞, the situation is completely different. UsingTheorem 5
and Corollary 6, we show that for every 𝑛 ∈ N and for
every 𝜅 ∈ Z

+
⊔ {∞}, there exists a subnormal weighted

shift 𝑆𝜆 on T
∞,𝜅

such that 𝑆𝑛
𝜆
is densely defined and 𝑆

𝑛+1

𝜆
is

not. For this purpose, we adapt [12, Procedure 6.3.1] to the
present context. In the original procedure, one starts with a
sequence {𝜇

𝑖
}
∞

𝑖=1
of Borel probability measures onR

+
(whose

𝑛th moments are finite for every 𝑛 ∈ Z such that 𝑛 ⩾ −(𝜅 +

1)) and then constructs a system of nonzero weights 𝜆 =

{𝜆V}V∈𝑉∘
∞,𝜅

that satisfies the assumptions ofTheorem 5 (in fact,
using Lemma 7 below, we can also maintain the condition
(19)). However, in general, it is not possible to maintain the
condition (ii) of Corollary 6 even if {𝜇

𝑖
}
∞

𝑖=1
are measures with

two-point supports (this question is not discussed here).
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Example 1. Assume that 𝜂 = ∞. Consider the measures
𝜇
𝑖

= 𝛿
𝑞
𝑖

with 𝑞
𝑖

∈ (0,∞) for 𝑖 ∈ N. By [12, Notation
6.1.9 and Procedure 6.3.1], 𝑆𝜆 ∈ B(ℓ2(𝑉

∞,𝜅
)) if and only if

sup{𝑞
𝑖
: 𝑖 ∈ N} < ∞. Hence, there is no loss of generality

in assuming that sup{𝑞
𝑖
: 𝑖 ∈ N} = ∞. To cover all possible

choices of 𝜅 ∈ Z
+
⊔ {∞}, we look for a system of nonzero

weights {𝜆V}V∈𝑉
∞,∞

which satisfies (14), (16), (17) with 𝜅 = ∞,
(19) and the equality ∑

∞

𝑖=1
|𝜆
𝑖,1
|
2
∫
∞

0
𝑠
𝑛
𝑑𝜇
𝑖
(𝑠) = ∞. Setting

𝜆
𝑖,1

= √𝛼
𝑖
𝑞
𝑖
for 𝑖 ∈ N, we reduce our problem to find a

sequence {𝛼
𝑖
}
∞

𝑖=1
⊆ (0,∞) such that
∞

∑

𝑖=1

𝛼
𝑖
𝑞
𝑙

𝑖
< ∞, 𝑙 ∈ Z, 𝑙 ⩽ 𝑛,

∞

∑

𝑖=1

𝛼
𝑖
𝑞
𝑛+1

𝑖
= ∞.

(21)

Indeed, if {𝛼
𝑖
}
∞

𝑖=1
is such a sequence, then multiplying its

terms by an appropriate positive constant, we may assume
that {𝛼

𝑖
}
∞

𝑖=1
satisfies (21) and (16). Next we define the weights

{𝜆
−𝑗

: 𝑗 ∈ Z
+
} recursively so as to satisfy (17) with 𝜅 = ∞, and

finally we set 𝜆
𝑖,𝑗

= √𝑞
𝑖
for all 𝑖, 𝑗 ∈ N such that 𝑗 ⩾ 2. The so

constructed weights {𝜆V}V∈𝑉
∞,∞

meet our requirements.
The following lemma turns out to be helpful when solving

the reduced problem.

Lemma 7. If [𝑎
𝑖,𝑗
]
∞

𝑖,𝑗=1
is an infinite matrix with entries 𝑎

𝑖,𝑗
∈

R
+
, then there exists a sequence {𝛼

𝑖
}
∞

𝑖=1
⊆ (0,∞) such that

∞

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖,𝑗

< ∞, 𝑗 ∈ N. (22)

Proof. First observe that, for every 𝑖 ∈ N, there exists 𝛼
𝑖
∈

(0,∞) such that 𝛼
𝑖
∑
𝑖

𝑘=1
𝑎
𝑖,𝑘

⩽ 2
−𝑖. Hence, ∑∞

𝑖=𝑗
𝛼
𝑖
𝑎
𝑖,𝑗

⩽ 1 for
every 𝑗 ∈ N.

Since sup{𝑞
𝑖
: 𝑖 ∈ N} = ∞, there exists a subsequence

{𝑞
𝑖
𝑘

}
∞

𝑘=1
of the sequence {𝑞

𝑖
}
∞

𝑖=1
such that 𝑞

𝑖
𝑘

⩾ 𝑘 for every 𝑘 ∈

N. Set Ω = {𝑖
𝑘
: 𝑘 ∈ N}. By Lemma 7, there exists {𝛼

𝑖
}
𝑖∈N\Ω ⊆

(0,∞) such that

∑

𝑖∈N\Ω

𝛼
𝑖
𝑞
𝑙

𝑖
< ∞, 𝑙 ∈ Z, 𝑙 ⩽ 𝑛. (23)

Define the system {𝛼
𝑖
}
𝑖∈Ω

⊆ (0,∞) by

𝛼
𝑖
𝑘

=
1

𝑘
2
𝑞
𝑛

𝑖
𝑘

, 𝑘 ∈ N. (24)

Since 𝑞
𝑖
𝑘

⩾ 𝑘 for all 𝑘 ∈ N, we get

∑

𝑖∈Ω

𝛼
𝑖
𝑞
𝑙

𝑖
=

∞

∑

𝑘=1

𝛼
𝑖
𝑘

𝑞
𝑙

𝑖
𝑘

=

∞

∑

𝑘=1

1

𝑘
2
𝑞
𝑛−𝑙

𝑖
𝑘

⩽

∞

∑

𝑘=1

1

𝑘
2
< ∞, 𝑙 ∈ Z, 𝑙 ⩽ 𝑛,

∑

𝑖∈Ω

𝛼
𝑖
𝑞
𝑛+1

𝑖
=

∞

∑

𝑘=1

𝛼
𝑖
𝑘

𝑞
𝑛+1

𝑖
𝑘

=

∞

∑

𝑘=1

𝑞
𝑖
𝑘

𝑘
2
⩾

∞

∑

𝑘=1

1

𝑘
= ∞.

(25)

Combining (23) and (25), we get (21), which solves the
reduced problem and consequently gives the required exam-
ple.

Remark 8. It is worth mentioning that if 𝜅 = ∞, then any
weighted shift 𝑆𝜆 onT

∞,∞
with nonzero weights is unitarily

equivalent to an injective composition operator in an 𝐿
2-

space over a 𝜎-finite measure space (cf. [13, Lemma 4.3.1]).
This fact combined with Example 1 shows that, for every 𝑛 ∈

N, there exists a subnormal composition operator𝐶 in an 𝐿
2-

space over a 𝜎-finite measure space such that 𝐶𝑛 is densely
defined and 𝐶

𝑛+1 is not.
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