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The authors introduce stochasticity into a predator-prey systemwithBeddington-DeAngelis functional response and stage structure
for predator. We present the global existence and positivity of the solution and give sufficient conditions for the global stability in
probability of the system. Numerical simulations are introduced to support the main theoretical results.

1. Introduction

The classical predator-prey model with Beddington-
DeAngelis type functional response can be denoted as
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where 𝑥(𝑡) and 𝑦(𝑡) represent predator and prey densities at
time 𝑡, respectively. 𝑏

𝑖
, 𝑎
𝑖𝑗
, 𝑚, and 𝑛 are positive constants, 𝑖,

𝑗 = 1, 2. For biological representation of each coefficient in
(1) we refer the reader to [1, 2]. In model (1), it is assumed
that all individuals of a single species have largely similar
capabilities to hunt or to reproduce. But the life cycle of most
animals consists of at least two stages, immature and mature,
and the individuals in the first stage often can neither hunt or
reproduce, being raised by their mature parents and there are
recognizable morphological and behavioral differences that
may exist between these stages. In [3], the authors studied
the global properties of a predator-preymodel with nonlinear
functional response and stage structure for the predator, and
the condition of the existence and the global stability of
the positive steady states were established. However, May
[4] pointed out that due to environment noise, the birth

rate, carrying capacity, competition coefficients, and other
parameters involved in the system exhibit randomfluctuation
to a greater or lesser extent. So, a lot of authors introduced
stochastic noise into deterministic models to reveal the effect
of environmental variability on the population dynamics in
mathematical ecology [5–7]. In Liu andWang [5], the authors
investigated the global stability of stage-structured predator-
prey models with Beddington-DeAngelis type functional
response and with stage structure for the prey. The authors
[5] also pointed out that there are some technical obstacles
that cannot be overcome at present to investigate the stage
structure on predator model. So, in this paper we are going to
do some work on this problem. The following model,
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(2)

is derived under the following assumptions.

(H1) The immature predator population 𝑦
1
: the birth rate

into the immature population is proportional to
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the existing mature predator population with prob-
ability 𝛼 > 0; the death rate is proportional to the
existing immature predator population with propor-
tionality 𝑑

1
> 0; overcrowding rate of the immature

predator population is 𝑎
1
> 0; the transformation

rate from the immature predator to mature predator
is proportional to the existing immature predator
population with proportionality 𝑏 > 0.

(H2) The mature predator population 𝑦
2
: 𝑑
2
> 0 and

𝑎

2
> 0 are the death rate and the overcrowding rate

of the mature predator population, respectively, and
only the mature predator population feeds the prey.
It seems reasonable that a number of mammals, who
are immature predators, are raised by their parents.
𝑝/𝑞 is the rate of conversion of nutrients into the
reproduction of the predator.

(H3) The prey population 𝑥: the growth of the species is of
the Lotka-Volterra nature and 𝛾 > 0 is the birth rate;
𝛽 > 0 is the overcrowding rate. 𝑞 > 0 is the capturing
rate of the predator.

System (2) is greatly different from themodel investigated
in [3] for we comprehend that the effect of the response
function will diminish the death rate of the predator and the
predator does not only feed on the prey.

Suppose that (𝑥∗, 𝑦∗
1
, 𝑦

∗

2
) is a positive equilibrium of (2).

If we take the environmental noise into account, we can
replace the birth rate of prey population and death rate
of predator population by an average value plus a random
fluctuation, respectively,
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where𝜎2,𝜎2
1
,𝜎2
2
represent the intensities of the noise and ̇𝐵(𝑡),
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1
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2
(𝑡) are standardwhite noise; namely,𝐵(𝑡),𝐵

1
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are standard Brownian motion defined on a complete prob-
ability space (Ω,F, 𝑃) with a filtration {F

𝑡
}

𝑡∈R
+

satisfying
the usual condition (i.e., it is right continuous and increasing
while F

0
contains all 𝑃-null sets). So the corresponding

stochastic system of (2) is
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(4)

with the initial condition (𝑥(0), 𝑦
1
(0), 𝑦

2
(0)) ∈ R3

+
where

R3
+
= {𝑥 ∈ R3 | 𝑥, 𝑦

1
, 𝑦

2
> 0, 𝑖 = 1, 2, 3}.

The paper is organized as follows. In Section 2, we prove
the existence, uniqueness, and the positivity of the solution
to (4). In Section 3, we established the condition for the
global stability of the positive equilibrium. We work out two
simulation figures to illustrate our main results in Section 4.
Section 5 gives the conclusions and future directions.

2. Existence of the Global Positive Solution

Theorem 1. For any initial value (𝑥(0), 𝑦
1
(0), 𝑦

2
(0)) ∈ R3

+
,

system (4) has a unique global positive solution
(𝑥(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) on 𝑡 > 0 with probability one.

Proof. We see that the coefficients of the system are locally
Lipschitz continuous, so, for any given initial values 𝑥(0) > 0,
𝑦
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is the explosion time

[8]. To show this solution is global, we need to show that 𝜏
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=

∞. Define the stopping time by
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where, throughout this paper, we set inf 0 = ∞. Clearly, 𝜏
𝑘
is

increasing as 𝑘 → ∞. Set 𝜏
∞
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to complete the proof, it is sufficient to show that 𝜏
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If this statement is false, then there is a pair of constants𝑇 > 0
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It then follows from (11) that
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))] ≥ 𝜖min{√𝑘 − 1 − 0.5 ln 𝑘,

√
1/𝑘 − 1 − 0.5 ln(1/𝑘)}. So,

𝜖min{√𝑘 − 1 − 0.5 ln 𝑘,√ 1
𝑘

− 1 − 0.5 ln 1
𝑘

}

≤ 𝑉 (𝑥, 𝑦

1
(0) (0) , 𝑦

2
(0)) + 𝐾𝑇.

(13)

Letting 𝑘 → ∞ leads to the contradiction

∞ > 𝑉(𝑥 (0) , 𝑦

1
(0) , 𝑦

2
(0)) + 𝐾𝑇 ≥ ∞. (14)

This contradiction shows that 𝜏
∞
= ∞, which completes the

proof.

3. Global Behavior

Suppose 𝑧 = 𝑧(𝑡) is the solution of the following 𝑛-
dimensional stochastic differential equation:

d𝑧 (𝑡) = 𝑓 (𝑧 (𝑡) , 𝑡) d𝑡 + 𝑔 (𝑧 (𝑡) , 𝑡) d𝐵 (𝑡) , (15)

and 𝑧∗ is the equilibrium position of (15).
From the stability theory of stochastic differential equa-

tions, we only need to find a Lyapunov function 𝑉(𝑧)
satisfying 𝐿𝑉(𝑧) ≤ 0 and the identity holds if and only if
𝑧 = 𝑧

∗ [9], where 𝑧 = 𝑧(𝑡) is the solution of the 𝑛-dimensional
stochastic differential equation (15) and 𝑑𝑉(𝑥(𝑡), 𝑡) = 𝐿𝑉𝑑𝑡 +
𝑉

𝑥
(𝑥(𝑡), 𝑡)𝑔(𝑡)𝑑𝐵(𝑡).

Theorem2. If 𝑎
1
−(𝜎

2

1
/2) > 0, 𝑎

2
−(𝜎

2

2
/2) > 0, and𝛽−(𝜎2/2)−

(𝑞𝑚𝑦

∗

2
/(1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2
)) > 0, then the positive equilibrium

(𝑥

∗
, 𝑦

∗

1
, 𝑦

∗

2
) of model (4) is globally asymptotically stable with

probability one.

Proof. System (4) can be rewritten as

d𝑥 =
𝑞𝑥 [𝑚𝑦

∗

2
(𝑥 − 𝑥

∗
) − (1 + 𝑚𝑥

∗
) (𝑦

2
− 𝑦

∗

2
)]

(1 + 𝑚𝑥 + 𝑛𝑦

2
) (1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2
)

d𝑡

− 𝛽𝑥 (𝑥 − 𝑥

∗
) d𝑡 + 𝜎𝑥 (𝑥 − 𝑥∗) d𝐵 (𝑡) ,

d𝑦
1
=

𝛼

𝑦

∗

1

[𝑦

1
(𝑦

2
− 𝑦

∗

2
) − 𝑦

2
(𝑦

1
− 𝑦

∗

1
)] d𝑡

− 𝑎

1
𝑦

1
(𝑦

1
− 𝑦

∗

1
) d𝑡 + 𝜎

1
𝑦

1
(𝑦

1
− 𝑦

∗

1
) d𝐵
1
(𝑡) ,

d𝑦
2
=

𝑏

𝑦

∗

2

[𝑦

2
(𝑦

1
− 𝑦

∗

1
) − 𝑦

1
(𝑦

2
− 𝑦

∗

2
)] d𝑡

+

𝑝𝑦

2
[(1 + 𝑛𝑦

∗

2
) (𝑥 − 𝑥

∗
) − 𝑛𝑥

∗
(𝑦

2
− 𝑦

∗

2
)]

(1 + 𝑚𝑥 + 𝑛𝑦

2
) (1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2
)

d𝑡

− 𝑎

2
𝑦

2
(𝑦

2
− 𝑦

∗

2
) d𝑡 + 𝜎

2
𝑦

2
(𝑦

2
− 𝑦

∗

2
) d𝐵
2
(𝑡) .

(16)

Define

𝑉 (𝑥

1
, 𝑥

2
, 𝑦) = 𝑐

1
(𝑥 − 𝑥

∗
− 𝑥

∗ ln( 𝑥
𝑥

∗
))

+ 𝑐

2
(𝑦

1
− 𝑦

∗

1
− 𝑦

∗

1
ln(
𝑦

1

𝑦

∗

1

))

+ 𝑐

3
(𝑦

2
− 1 − 𝑦

∗

2
ln
𝑦

2

𝑦

∗

2

) ,

(17)

where 𝑐
𝑖
(𝑖 = 1, 2, 3) are positive numbers to be determined.

Applying Itô’s formula to system (16) gives

𝐿𝑉 = 𝑐

2
{ (𝑦

1
− 𝑦

∗

1
)

𝛼

𝑦

∗

1

[(𝑦

2
− 𝑦

∗

2
) −

𝑦

2

𝑦

1

(𝑦

1
− 𝑦

∗

1
)]

−𝑎

1
(𝑦

1
− 𝑦

∗

1
)

2

+

𝜎

2

1

2

(𝑦

1
− 𝑦

∗

1
)

2

}

+ 𝑐

3
{ (𝑦

2
− 𝑦

∗

2
)

𝑏

𝑦

∗

2

[(𝑦

1
− 𝑦

∗

1
) −

𝑦

1

𝑦

2

(𝑦

2
− 𝑦

∗

2
)]

−𝑎

2
(𝑦

2
− 𝑦

∗

2
)

2

+

𝜎

2

2

2

(𝑦

2
− 𝑦

∗

2
)

2

}

+ 𝑐

3
𝑝 (𝑦

2
− 𝑦

∗

2
)

(1 + 𝑛𝑥

∗
) (𝑥 − 𝑥

∗
) − 𝑛𝑥

∗
(𝑦

2
− 𝑦

∗

2
)

(1 + 𝑚𝑥 + 𝑛𝑦

2
) (1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2
)

+ 𝑐

1
𝑞 (𝑥 − 𝑥

∗
)

𝑚𝑦

∗

2
(𝑥 − 𝑥

∗
) − (1 + 𝑚𝑥

∗
) (𝑦

2
− 𝑦

∗

2
)

(1 + 𝑚𝑥 + 𝑛𝑦

2
) (1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2
)

− 𝑐

1
𝛽(𝑥 − 𝑥

∗
)

2

+ 𝑐

1

𝜎

2

2

(𝑥 − 𝑥

∗
)

2

.

(18)

Set 𝑐
2
= 𝑦

∗

1
/𝛼, 𝑐
3
= 𝑦

∗

2
/𝑏, 𝑐
1
= 𝑐

3
𝑝(1 + 𝑛𝑥

∗

2
)/𝑞(1 + 𝑚𝑦

∗
) =

(𝑦

∗

2
/𝑏)(𝑝/𝑞)((1 + 𝑚𝑥

∗
)/(1 + 𝑛𝑦

∗
)). Then we have

𝐿𝑉 = {−

𝑦

2

𝑦

1

(𝑦

1
− 𝑦

∗

1
)

2

+ 2 (𝑦

1
− 𝑦

∗

1
) (𝑦

2
− 𝑦

∗

2
)

−

𝑦

1

𝑦

2

(𝑦

2
− 𝑦

∗

2
)

2

} − 𝑐

2
(𝑎

1
−

𝜎

2

1

2

) (𝑦

1
− 𝑦

∗

1
)

2

− 𝑐

3
(𝑎

2
−

𝜎

2

2

2

) (𝑦

2
− 𝑦

∗

2
)

2

−

𝑐

3
𝑝𝑛𝑥

∗
(𝑦

2
− 𝑦

2
)

2

(1 + 𝑚𝑥 + 𝑛𝑦

2
) (1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2
)

− 𝑐

1
(𝛽 −

𝜎

2

2

) (𝑥 − 𝑥

∗
)

2

+

𝑐

1
𝑞𝑦

∗

2
𝑚(𝑥 − 𝑥

∗
)

2

(1 + 𝑚𝑥 + 𝑛𝑦

2
) (1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2
)



Abstract and Applied Analysis 5

≤ −[
√

𝑦

2

𝑦

1

(𝑦

1
− 𝑦

∗

1
) −
√

𝑦

1

𝑦

2

(𝑦

2
− 𝑦

∗

2
)]

2

−

𝑦

∗

1

𝛼

(𝑎

1
−

𝜎

2

1

2

) (𝑦

1
− 𝑦

∗

1
)

2

− (

𝑦

∗

2

𝑏

𝑎

2
−

𝑦

∗

2

𝑏

𝜎

2

2

2

) (𝑦

2
− 𝑦

∗

2
)

2

−

𝑦

∗

2

𝑏

𝑝

𝑞

1 + 𝑛𝑥

∗

1 + 𝑚𝑦

∗

× (𝛽 −

𝜎

2

2

−

𝑞𝑚𝑦

∗

2

1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2

) (𝑥 − 𝑥

∗
)

2

≤ −

𝑦

∗

1

𝛼

(𝑎

1
−

𝜎

2

1

2

) (𝑦

1
− 𝑦

∗

1
)

2

−

𝑦

∗

2

𝑏

(𝑎

2
−

𝜎

2

2

2

)

× (𝑦

2
− 𝑦

∗

2
)

2

−

𝑦

∗

2

𝑏

𝑝

𝑞

1 + 𝑚𝑥

∗

1 + 𝑛𝑦

∗

× (𝛽 −

𝜎

2

2

−

𝑞𝑚𝑦

∗

2

1 + 𝑚𝑥

∗
+ 𝑛𝑦

∗

2

) (𝑥 − 𝑥

∗
)

2

.

(19)

The condition in Theorem 2 implies 𝐿𝑉 ≤ 0, and the
identity holds if and only if (𝑥, 𝑦

1
, 𝑦

2
) = (𝑥

∗
, 𝑦

∗

1
, 𝑦

∗

2
). By

Theorem 2.1 in [9] and the description of that theorem, we
get the conclusion.

4. Numerical Simulations

In this section, we will use the Euler method and theMilstein
method mentioned in [10] to substantiate the analytical
findings. For system (4), consider the discretization equations

𝑥

(𝑘+1)
− 𝑥

(𝑘)
= 𝑥

(𝑘)
(𝛾 −

𝑞𝑦

(𝑘)

2

1 + 𝑚𝑥

(𝑘)
+ 𝑛𝑦

(𝑘)

2

− 𝛽𝑥

(𝑘)
)

+ 𝜎𝑥

(𝑘)
(𝑥

(𝑘)
− 𝑥

∗
)

√

Δ𝑡𝜉

(𝑘)

+

𝜎

2

2

(𝑥

(𝑘)
− 𝑥

∗
) [(𝜉

(𝑘)
)

2

− 1] ,

𝑦

(𝑘+1)

1
− 𝑦

(𝑘)

1
= [𝛼𝑦

(𝑘)

2
− 𝑑

1
𝑦

(𝑘)

1
− 𝑎

1
(𝑦

(𝑘)

1
)

2

− 𝑏𝑦

(𝑘)

1
] Δ𝑡

− 𝜎

1
𝑦

(𝑘)

1
(𝑦

(𝑘)

1
− 𝑦

∗

1
)

√

Δ𝑡𝜁

(𝑘)

+

𝜎

2

1

2

(𝑦

(𝑘)

1
− 𝑦

∗

1
) [(𝜁

(𝑘)
)

2

− 1] ,

𝑦

(𝑘+1)

2
− 𝑦

(𝑘)

2
= [𝑏𝑦

(𝑘)

1
− 𝑑

2
𝑦

(𝑘)

2
− 𝑎

2
(𝑦

(𝑘)

2
)

2

+

𝑝𝑦

(𝑘)

2
𝑥

(𝑘)

1 + 𝑚𝑥

(𝑘)
+ 𝑛𝑦

(𝑘)

2

]Δ𝑡
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Figure 1: The solution of (2) with initial values 𝑥(0) = 10, 𝑦
1
(0) =

10, 𝑦
2
(0) = 12.

− 𝜎

2
𝑦

(𝑘)

2
(𝑦

(𝑘)

2
− 𝑦

∗

2
)

√

Δ𝑡𝜂

(𝑘)

+

𝜎

2

2

2

(𝑦

(𝑘)

2
− 𝑦

∗

2
) [(𝜂

(𝑘)
)

2

− 1] ,

(20)

where 𝜉(𝑘), 𝜁(𝑘), 𝜂(𝑘), 𝑘 = 1, 2, . . . , 𝑛 are the Gaussian random
variables which follow𝑁(0, 1).

In Figure 1, we show the dynamics of the deterministic
model with parameters 𝛼 = 1.2, 𝑑

1
= 0.26, 𝑏 = 0.58, 𝑎

1
=

0.01, 𝑞 = 1.5, 𝑝 = 1, 𝛽 = 0.375, 𝑑
2
= 0.32, 𝑎

2
= 0.13, 𝑚 = 1,

𝑛 = 0.081, 𝛾 = 5.9, 𝜎 = 𝜎
1
= 𝜎

2
= 0; then 𝑥∗ = 12.37,

𝑦

∗

1
= 13.1, 𝑦∗

2
= 10.6.

In Figure 2, we choose the same parameter values as
Figure 1 except that 𝜎 = 0.4, 𝜎

1
= 0.45, 𝜎

2
= 0.375,

which satisfy the condition in Theorem 2, so Figure 2 clearly
supports the conclusion of Theorem 2.

In Figure 3, we choose 𝛼 = 0.9, d
1
= 0.34, 𝑏 = 0.4, 𝑞 = 0.9,

𝑝 = 0.4, 𝛽 = 0.15, 𝑑
2
= 0.12, 𝑎

1
= 0.1, 𝑎

2
= 0.6, 𝑚 = 0.8, 𝑛 =

0.5, 𝛾 = 0.75, 𝜎 = 𝜎
1
= 𝜎

2
= 0; then 𝑥∗ = 3.066, 𝑦

1
= 1.157,

𝑦

2
= 1.1.; in Figure 4, we choose the same parameter values

as Figure 1 except that 𝜎
1
= 0.2; 𝜎

2
= 0.42; 𝜎

3
= 0.25. So

the conditions of our theoretical results hold. Obviously, the
numerical simulations are indeed confirming our analytical
results.

5. Discussion

In this paper, a stochastic predator-prey model with stage
structure for the predator has been proposed and investi-
gated.We discuss the biological significance of themodel and
establish sufficient conditions for global asymptotic stability
of the model. These results are important because from the
biological point of view, a global stable positive equilibrium
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Figure 2: The solution of the stochastic model (4) with the same
parameters as in Figure 1.
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Figure 3: The solution of (2) with initial values 𝑥(0) = 3, 𝑦
1
(0) =

3.6, 𝑦
2
(0) = 3.2.

means that the community consisting of two species is a stable
biotic community in which all species will coexist. To the best
of our knowledge, the present paper is the first attempt to
study system (4).

Although we only consider the global stability of the
positive equilibrium, some interesting questions deserved
investigation, like the stage structure effect on the long term
behavior of the system. In fact, in (4) we have supposed that
the predator is not only feeding on prey; we can also discuss
the case in which the predator feeds on prey only. We want to
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Figure 4: The solution of the stochastic model (4) with the same
parameters as in Figure 3.

mention that we are unable to give the sufficient conditions
under which system (4) or (2) has a positive equilibrium, for
there are some technical obstacles that cannot be overcome at
present stage. However, the values in Figure 1 show that the
system (2) has the positive equilibrium position in some case,
and we leave this for future work.
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