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The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when
neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we
first introduce the uncertainties functions 𝑢 as function of time and space. The function 𝑢 accounts for the lack of knowledge or
variability of the geological formations in which flow occur (aquifer) in time and space. We next make use of Riemann-Liouville
fractional derivatives that were introduced byKobelev andRomano in 2000 and its approximation tomodify the standard version of
groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented.
The classicalmodel for groundwater flow, in the case of density-independent flow in a uniformhomogeneous aquifer is reformulated
by replacing the classical derivative by theRiemann-Liouville fractional derivatives approximations.Themodified equation is solved
via the technique of green function and the variational iteration method.

1. Introduction

This paper investigates the effects of uncertainty on the
predictive accuracy of flow through porous media; it is com-
monly believed that the problem that occurs in groundwater
models is the suitable geometry in which flow occurs on one
hand and the deviation of theoretical expected values from
observations on the other hand. Therefore, it is important
to notice that miniscule effects observed always require the
most new modifications of ideas. Scientists in the field of
hydrogeology in particular are used to deal with doubt and
uncertainty, because it is impossible to understand or to
model the phenomena that occur in aquifers exactly. All
historical and current theoretical knowledge in groundwater
investigations are uncertain and doubtful. This experience
with doubt and uncertainty is important. We believe that
it is of great importance, and one that extends beyond the
theories which are used to interpret the phenomena that
take place in aquifers. Doubt is clearly a value that must be

analytically included in groundwater flow models. Uncer-
tainty in groundwater hydrology originates from different
sources. Neglecting uncertainty in groundwater assessments
can lead to incorrect results andmisleading output. Generally
there are various sources of uncertainty in model outputs,
for example, uncertainty associated with lack of knowledge
or accuracy of the model inputs as well as the structural
uncertainty related to the mathematical interpretation of the
model. The assessment and presentation of the effects of
uncertainty are now widely recognized as important parts of
analyses for complex systems [1–6]. At the simplest level such
analyses can be viewed as the study of functions. In order
to include explicitly the possible effect of the uncertainties
into mathematical models, we introduced in this paper the
uncertainties in groundwater models as a function of time
and space.

Consider

𝑢 = 𝑢 (𝑥, 𝑡) . (1)
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2. Modification of Groundwater Flow
Equation

To be clear, the modification of the classical model for
groundwater flow in the case of density independent flow in
the uniform and homogeneous aquifer is considered in this
paper.

To modify this, we make use of Riemann-Liouville frac-
tional derivatives that were introduced in [7] and attempted
by many others, see for example, [8]. These derivatives are
defined as
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Here, Γ is the Euler gamma function; 𝑛 = ⌈𝜇⌉+1, where ⌈𝜇⌉ is
the integer part of 𝜇 for 𝜇 ≥ 0 that is 𝑛 − 1 ≤ 𝜇 < 𝑛 and 𝑛 = 0

for 𝜇 < 𝑛. Following equation (2) we have that 𝜇
𝑡
= 1+ 𝜀

𝑡
and
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= 1+𝜀
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exponents 𝜇
𝑥
and 𝜇

𝑡
depending on coordinates and time can

be expressed in terms of ordinary derivative and integral [7]
for |𝜀| ≪ 1. For this matter, generalized Riemann-Liouville
fractional derivatives satisfy the approximate relations.
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The above relations make it possible to describe the flow
system, including the effect of uncertainties on the behaviour
of physical systems, by means of partial differential and
integral equations.

Let us examine some properties of the above derivative
operator [9].

(i) Addition.
If 𝑢
𝑥
, 𝑓(𝑥) and 𝑔(𝑥) are differentiable in the opened

interval I, then

𝐷
1+𝑢
𝑥
[𝑓 (𝑥) + 𝑔 (𝑥)] ≅ 𝐷

1+𝑢
𝑥
[𝑓 (𝑥)] + 𝐷

1+𝑢
𝑥
[𝑔 (𝑥)]

𝐷
1+𝑢
𝑥
[𝑓 (𝑥) + 𝑔 (𝑥)]

≅ (1 + 𝑢
𝑥
)

𝜕 [𝑓 (𝑥) + 𝑔 (𝑥)]

𝜕𝑥

+

𝜕𝑢
𝑥

𝜕𝑥

[𝑓 (𝑥) + 𝑔 (𝑥)]

(1 + 𝑢
𝑥
)

𝜕 [𝑓 (𝑥)]

𝜕𝑥

+

𝜕𝑢
𝑥

𝜕𝑥

[𝑓 (𝑥)]

+ (1 + 𝑢
𝑥
)

𝜕 [𝑔 (𝑥)]

𝜕𝑥

+

𝜕𝑢
𝑥

𝜕𝑥

[𝑔 (𝑥)]

≅ 𝐷
1+𝑢
𝑥
[𝑓 (𝑥)] + 𝐷

1+𝑢
𝑥
[𝑓 (𝑥)] .

(4)
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(v) If 𝑢
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, and 𝑓(𝑥) are two times differentiable in the

opened interval I, then
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It is important to observe that if 𝑢
𝑥

= 0, we recover
the properties of normal derivatives. Recent investigations
suggest that the flow is influenced by the geometry of the
bedding parallel factures. An attempt to circumvent this
problem, Barker introduced a model in which the geometry
of the aquifer is regarded as a fractal [10]. In the same
direction, the authors in [11] introduced the concept of nonin-
teger fractional derivative to investigate a radially symmetric
form of (1); by replacing the classical first order derivative
of the piezometric head by a complementary fractional
derivative as results of their investigation, they found that
there is a close relationship between the fractal and the
fractional.Therefore, to include the fractal dimension into the
mathematical formulation of the modified groundwater flow
equation we next introduce the constant fractal dimension
𝛼. The classical model for groundwater flow, in the case of
density-independent flow in a uniformhomogeneous aquifer,
can then be reformulated as follows:
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where 𝐾 is the hydraulic conductivity of the aquifer, 𝑆
0
is

the specific storativity of the aquifer, 𝑓 is the strength of any
sources or sink, here it will be neglected, and finallyΦ(𝑟, 𝑡) is
the piezometric head.

In order to meet the physical and mathematical require-
ments we impose the uncertainties function to be a positive
function such that

0 < 𝑢
𝑥
< 1. (10)

Equation (9) makes it possible to describe the flow through
the geological formation, and the effect of uncertainties
on the behaviour of physical systems, by means of partial
differential and integral equations. However there is no
analytical solution for this equation, in fact the analytical
solution is very difficult to determine. Therefore we need the
following approximation to simplify (9):
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Making use of (9), (3), and (11) we obtain the following
equation:
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Since uncertainties additions to unit are small, the right- and
left-hand sides of (12) can be divided by (1 + 𝑢

𝑡
) to obtain the

following approximate equation:
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(13a)

where 𝑢2
𝑟
term is omitted because it is significantly very small

and since we are dealing with approximation here, it needs
not to be considered in this case. For simplicity (13a) can be
reformulated as
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Here the additional term can be roughly approximate to

𝐹 (𝑢
𝑟
, 𝑢
𝑡
, Φ (𝑟, 𝑡)) = [(2𝑢

𝑟
− 𝑢
𝑡
)

𝜕
2
Φ (𝑟, 𝑡)

𝜕𝑟
2

+ 3 (1 + 𝑢
𝑟
− 𝑢
𝑡
)

𝜕𝑢
𝑟

𝜕𝑟

𝜕Φ (𝑟, 𝑡)

𝜕𝑟

− 𝑢
𝑡
(

𝜕
2
𝑢
𝑟

𝜕𝑟
2
+

1

𝑟

𝜕𝑢
𝑟

𝜕𝑟

)Φ (𝑟, 𝑡)

+ 𝑢
𝑟
(

𝜕𝑢
𝑡

𝜕𝑟

+

𝜕𝑢
𝑡

𝜕𝑡

)Φ (𝑟, 𝑡)]

(14)

and Φ(𝑟, 𝑡) satisfies the equation of classical model for
groundwater flow in the case of density independent flow
in the uniform and homogeneous aquifer. It is important to
observe that the modified equations (13a) and (13b) differ
from the standard formof groundwater flowequation in three
properties:
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There is a new operator that takes into account the
variation in piezometric head and uncertainties function
given below as

ℶ(𝑢
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Second, the “force”
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appears due to the coordinate dependence of uncertainty
function. And finally, there is a derivative-free term that
depends only on the uncertainties time function
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(17)

and is proportional to the piezometric head Φ and charac-
terises, depending on the coefficient sign, the retardation or
enhancement of the flow through the porous media.

It is important to point out that those terms in (13a)
that involve fractional additions, 𝐹 and 𝐵, to the time and
space dimensions are small. It follows that this equation can
be solved approximately by changing the function Φ by Φ

0
,

which satisfies the standard version of the groundwater flow
equation which is the left-side of (13a) and (13b), in terms
concerning 𝑢. Now let us suppose that such change is made
in the expression (14). Equations (13a) and (13b) become
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Before solving the above equation, one needs to relate the
additional function in the modified equation to physical
situation that takes place in the aquifers. Some deterministic
models treat the properties of porous media as lumped
parameters (essentially, as a black box), but this prevents the
representation of heterogeneous hydraulic properties in the
model. Heterogeneity or variability in aquifer properties is
characteristic of all geologic systems and is now recognised as
playing a key role in influencing groundwater flow and solute
transport. Thus, it is often preferable to apply distributed-
parameter models, which allow the representation of more
realistic distributions of system properties.

The lithology of most geological formations tends to vary
significantly, both horizontally and vertically. Consequently,
geological formations are seldom homogeneous. Figure 1 is
an example of layered heterogeneity.

Heterogeneity occurs not only in the way shown in the
Figure 1, however, individual layersmay pinch out; their grain
sizemay vary in horizontal direction, theymay contain lenses
of other grain sizes, or they may be discontinuous by faulting
or scour-and-fill structures.

The distribution of sedimentary facies controls the het-
erogeneity of hydrogeological properties of porous sedimen-
tary aquifers at different scales.The arrangement of individual
facies and their porosity and permeability determine the path
of groundwater flow across sedimentary bodies. Therefore
the capability to forecast hydrogeological heterogeneity due
to facies changes helps to improve solutions of flow and
diffusion problems in this kind of aquifer. When real aquifers
are studied, it is impossible to model groundwater flow
at a scale such that we can take into account the effects
of fine-scale sedimentary heterogeneity; in fact this would
require a precise knowledge of the sedimentary bodies that
cannot be obtained from sparse data at some wells and
this would be prohibitive for the required computing power.
Therefore the fine scale heterogeneity is usually “up-scaled”
and the heterogeneous real medium is substituted at a larger
scale with an equivalent often anisotropic medium, whose
parameters allow the reproduction of the average flow of the
real heterogeneous sedimentary structure. In this paper the
function 𝐹(𝑢

𝑟
, 𝑢
𝑡
, Φ
0
(𝑟, 𝑡)) will be considered to account for

the effect of heterogeneity and variability of the geological
formation system in which the groundwater flows.

3. Solutions of the Modified Groundwater
Flow Equation

Numerical methods yield approximate solutions to the gov-
erning equation through the discretisation of space and
time. Within the discretised problem domain, the variable
internal properties, boundaries, and stresses of the system
are approximated. Deterministic, distributed-parameter, and
numerical models can relax the rigid idealised conditions
of analytical models or lumped-parameter models, and they
can therefore be more realistic and flexible for simulating
fields conditions. Our next concern in this paper is to provide
solution of the above equation. To achieve this we will
make use of two techniques including: the green function
and the variational iteration method. We will start with the
variational iteration method.

3.1. Variational Iteration Method. The values of the varia-
tional iteration method and its applications for a range of
categories of differentials equations can be viewed in [13–15].

Following the work recently done by Theis in 1935 [16],
in which they proposed an analytical solution to the standard
version of the groundwater flow equation, this solution can
be approximated as

Φ
0
(𝑟, 𝑡) =

𝑄

4𝜋𝑇

{𝑒
−
(

𝑟
2
𝑆

4𝑇𝑡

) ln [1 + 𝛼4𝑇𝑡

𝑟
2
𝑆

]} , (19)
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Figure 1: Example of heterogeneous karst aquifer illustrating the duality of recharge (allogenic versus autogenic), infiltration (point versus
diffuse), and porosity/flow (conduits versus matrix) [12].

where𝑄 is the constant discharge rate, 𝑇 is the transmissivity
of the aquifer and Φ

0
(𝑟, 𝑡) the piezometric head. It follows

that the right side of (13a) and (13b) is known. On the basis
of the above equation and knowing the function 𝑢(𝑥, 𝑡), one
can derive a solution of (13a) and (13b) where the unknown is
the function Φ

1
(𝑟, 𝑡). To make things simple, we put ℎ(𝑟, 𝑡) =

𝐹(𝑢
𝑟
, 𝑢
𝑡
, Φ
0
(𝑟, 𝑡)). And (13a) and (13b) become

𝜕Φ
1
(𝑟, 𝑡)

𝜕𝑡

=

𝐾

𝑆
0

[

1

𝑟

𝜕Φ
1
(𝑟, 𝑡)

𝜕𝑟

+

𝜕
2
Φ
1
(𝑟, 𝑡)

𝜕𝑟
2

] + ℎ (𝑟, 𝑡) .

(20)

To solve (20) bymeans of variational iterationmethod, we put
(20) in the form

𝐾

𝑆
0

[(Φ
1
(𝑟, 𝑡))
2𝑟
+

1

𝑟

(Φ
1
(𝑟, 𝑡))
𝑟
] − ℎ (𝑟, 𝑡) − (Φ

1
(𝑟, 𝑡))
𝑡
= 0.

(21)

The correction functional for (21) can be approximately
expressed as follows for this matter as

Φ
1𝑛+1

(𝑟, 𝑡) = Φ
1𝑛
(𝑟, 𝑡)

+ ∫

𝑡

0

𝜆 (𝜏) {

𝐾

𝑆
0

[(Φ
𝑛1
(𝑟, 𝜏))

2𝑟

+

1

𝑟

(Φ
1𝑛
(𝑟, 𝜏))

𝑟
]

−ℎ (𝑟, 𝜏) −

𝜕
𝑚
Φ𝑛
1
(𝑟, 𝜏)

𝜕𝜏
𝑚

}𝑑𝜏,

(22)

where 𝜆 is a general Lagrange multiplier [17], which can be
recognized optimally by means of variation assumption [17–
19], here (Φ

1
(𝑟, 𝑡))
2𝑟

̂

, (Φ
1
(𝑟, 𝑡))
𝑟

̂

, and ℎ(𝑟, 𝜏)
̂

are considered as
constrained variations. Making the above functional station-
ary

𝛿Φ
1,𝑛+1

(𝑟, 𝑡)

= 𝛿Φ
1𝑛
(𝑟, 𝑡) + 𝛿∫

𝑡

0

𝜆 (𝜏) {

𝜕
𝑚
Φ𝑛
1
(𝑟, 𝜏)

𝜕𝜏
𝑚

}𝑑𝜏.

(23)

Capitulates the next Lagrange multipliers, giving up to the
following Lagrange multipliers 𝜆 = −1 for the case where
𝑚 = 1 and 𝜆 = 𝑡 − 𝜏 for𝑚 = 2. For these matter if𝑚 = 1, we
obtained the following iteration formula:

Φ
1,𝑛+1

(𝑟, 𝑡)

= Φ
1,𝑛

(𝑟, 𝑡)

− ∫

𝑡

0

{

𝐾

𝑆
0

[(Φ
1,𝑛

(𝑟, 𝜏))
2𝑟
+

1

𝑟

(Φ
1,𝑛

(𝑟, 𝜏))
𝑟
]

−ℎ (𝑟, 𝜏) − (Φ
1,𝑛

(𝑟, 𝜏))
𝜏
} 𝑑𝜏.

(24)

Hence we commerce with

Φ
1,0

(𝑟, 𝑡) = Φ
1
(𝑟, 0) = 0. (25)

Means that before thewater is pumped out from the borehole,
the water level in the aquifer is the same and is considered
here to be zero level.

It is worth noting that if the zeroth component Φ
0
(𝑟, 𝑡)

is defined, then the remaining components 𝑛 ≥ 1 can be
completely determined such that each term is determined
by using the previous terms, and the series solutions are
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thus entirely determined. Finally, the solution Φ(𝑟, 𝑡) is
approximated by the truncated series

Φ
1𝑁

(𝑟, 𝑡) =

𝑁−1

∑

𝑛=0

Φ
1𝑛
(𝑟, 𝑡) ,

lim
𝑁→∞

Φ
1𝑁

(𝑟, 𝑡) = Φ (𝑟, 𝑡) .

(26)

We follow next with the second component

Φ
1,1

(𝑟, 𝑡) = ∫

𝑡

0

ℎ (𝑟, 𝜏) 𝑑𝜏. (27)

To calculate Φ
1,1
(𝑟, 𝑡) we first need to define explicitly the

function 𝑢(𝑟, 𝑡). The following function we define here does
not actually have a physicalmeaning, butwe use it as example.

To make thing simple, we suppose that 𝑢
𝑡
= 1 and 𝑢

𝑟
=

0.5 and the function ℎ(𝑟, 𝑡) becomes

ℎ (𝑟, 𝑡) = exp[− 𝑟
2
𝑆

4𝑡𝑇

] (𝑄 ln [1 + 4𝑡𝑇𝛼

𝑟
2
𝑆

] − 1)

× (−

16𝑄𝑡
2
𝑇𝛼
2

𝜋𝑟
6
𝑆
2
(1 + 4𝑡𝑇𝛼/𝑟

2
𝑆)
2

+

6𝑄𝑡𝛼

𝜋𝑟
2
𝑇 (1 + 4𝑡𝑇𝛼/𝑟

2
𝑆)

+

2𝑄𝛼

(1 + 4𝑡𝑇𝛼/𝑟
2
𝑆)

+

𝑄𝑟
2
𝑆
2 ln [1 + 4𝑡𝑇𝛼/𝑟

2
𝑆]

16𝜋𝑡
2
𝑇
3

−

𝑄𝑆 ln [1 + 4𝑡𝑇𝛼/𝑟
2
𝑆]

8𝜋𝑡𝑇
2

) .

(28)

In this matter two components of the decomposition series
were obtained of which Φ(𝑟, 𝑡) was evaluated to have the
following expansion:

Φ
1
(𝑟, 𝑡) = Φ

10
(𝑟, 𝑡) + Φ

11
(𝑟, 𝑡) + ⋅ ⋅ ⋅ (29)

3.2. Green Function Methods. To solve (13a) and (13b), we go
on to construct a suitable green’s function for this case in
point. Let (𝑅, 𝜏

1
) be the green’s function to be constructed,

where 𝑅 = |𝑟 − 𝑟
0
| and 𝜏

1
= |𝑡 − 𝑡

0
|. 𝐺 is chosen so as to

satisfy homogeneous boundary conditions corresponding to
the boundary conditions. It is important to notice that the
homogeneous solution of (13a) and (13b) is similar to the
diffusion equation if one replacesΦ

1
(𝑟, 𝑡) by𝜓(𝑟, 𝑡); therefore,

the green function involved here is the green’s function for the
diffusion equation. Since the aquifer is said to be infinite, the
green function for flow equation for infinite aquifer is given
by [20]

𝐺 (𝑅, 𝜏
1
) =

4𝜋𝑇

𝑆
0

(

1

2√𝜋𝜏1

)

2

exp[−𝑇
2
𝑅
2

4𝑆
2

0
𝜏
1

] 𝑘 (𝜏
1
) . (30)

Here the function 𝑘(𝜏
1
) is to be determined by using the

boundary condition. The above equation satisfies an impor-
tant integral property which is valid for 𝑛 = 2.

Consider

∫𝐺 (𝑅, 𝜏
1
) 𝑑𝑆 =

4𝜋𝑆
2

0

𝑇
2
, 𝜏
1
> 0. (31)

This equation is an expression of groundwater flow. At a time
and at a position, the piezometer is introduced in the borehole
that taps the aquifer. The water that is pumped out from the
aquifer through the borehole is migrating through the porous
media, but in such a way that the total amount of water in the
aquifer is reduced as time goes on if there is no recharge. Since
(14) still holds, we can observe that

𝐺 (𝑅, 𝜏
1
) →

4𝜋𝑆
2

0

𝑇
2
𝛿 (𝑅) , 𝜏

1
→ 0. (32)

In addition, the green’s function used for this purpose is a
solution to the following equation:

𝜕𝐺 (𝑅, 𝜏
1
| 𝑅
0
, 𝜏
10
)

𝜕𝑡

=

𝐾

𝑆
0

[

1

𝑟

𝜕𝐺 (𝑅, 𝜏
1
| 𝑅
0
, 𝜏
10
)

𝜕𝑟

+

𝜕
2
𝐺 (𝑅, 𝜏

1
| 𝑅
0
, 𝜏
10
)

𝜕𝑟
2

= −4𝜋𝛿 (𝑅) 𝛿 (𝜏
1
) ] .

(33)

The general solution of (13a) and (13b) can then be given as
function of the green function as

Φ
1
(𝑟, 𝑡)

= ∬

4𝜋𝑇

𝑆
0

(

1

2√𝜋𝜏1

)

2

exp[−𝑇
2
𝑅
2

4𝑆
2

0
𝜏
1

] 𝑘 (𝜏
1
) ℎ (𝑅, 𝜏

1
) 𝑑𝑅 𝑑𝜏

1
.

(34)

Here

ℎ (𝑟, 𝑡) = exp[− 𝑟
2
𝑆

4𝑡𝑇

] (𝑄 ln [1 + 4𝑡𝑇𝛼

𝑟
2
𝑆

] − 1)

× (−

16𝑄𝑡
2
𝑇𝛼
2

𝜋𝑟
6
𝑆
2
(1 + 4𝑡𝑇𝛼/𝑟

2
𝑆)
2

+

6𝑄𝑡𝛼

𝜋𝑟
2
𝑇 (1 + 4𝑡𝑇𝛼/𝑟

2
𝑆)

+

2𝑄𝛼

(1 + 4𝑡𝑇𝛼/𝑟
2
𝑆)

+

𝑄𝑟
2
𝑆
2 ln [1 + 4𝑡𝑇𝛼/𝑟

2
𝑆]

16𝜋𝑡
2
𝑇
3

−

𝑄𝑆 ln [1 + 4𝑡𝑇𝛼/𝑟
2
𝑆]

8𝜋𝑡𝑇
2

) .

(35)

Due to lake of experimental data for this situation, no
graphical representation will be presented in this paper. One
needs to model the function of uncertainties introduced
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in this paper and use it for computational simulation and
the analytical solution of the modified groundwater flow
equation can then be compared with experimental data. Or
one can from the standard solution measure the aquifer’s
parameters and use it to determine the values of the function
𝑢(𝑥, 𝑡) and this is not done in this paper.

4. Conclusion

In this paper we modify the standard version of groundwater
flow by replacing the standard derivative with Riemann-
Liouville fractional derivatives approximations.Themodified
equations (13a) and (13b) differ from the standard form of
groundwater flow equation in three properties.There is a new
operator that takes into account the variation in piezometric
head and uncertainties function; second, the “force” appears
due to the coordinate dependence of uncertainty function;
and finally, there is a derivative-free term that depends only
on the uncertainties time function. The modified equation
takes into account both the flow through the porous media
and the effect of variability of the aquifer or the concept
of heterogeneity of the aquifers [21]. The modified equation
was solved via the green function technique and variational
iteration method.
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