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Themultistep generalized differential transformmethod is applied to solve the fractional-ordermultiple chaotic FitzHugh-Nagumo
(FHN) neurons model. The algorithm is illustrated by studying the dynamics of three coupled chaotic FHN neurons equations
with different gap junctions under external electrical stimulation. The fractional derivatives are described in the Caputo sense.
Furthermore, we present figurative comparisons between the proposed scheme and the classical fourth-order Runge-Kutta method
to demonstrate the accuracy and applicability of thismethod.The graphical results reveal that only few terms are required to deduce
the approximate solutions which are found to be accurate and efficient.

1. Introduction

Mathematical modeling method of real-life phenomena is
widely applied in medicine and biology. Specifically, the un-
derstanding of neural system model plays an important role
in several branches of medical science and technology such
as neuroscience, brain activity, chemical reaction kinetics,
and behavior of cardiac tissue [1–6]. So it has attracted many
medical researchers over the last two decades in order to un-
derstand the biogenesis, mechanism, and function. Despite
that the formulation of such systems is considerably simple,
the lacking understanding of their complex behaviors re-
mains to be a very challenging task, especially when the re-
sults are expected in a very short time. However, the advent of
computers significant progress has been made recently to re-
duce this gap.

Furthermore, the FHN neural system is one of the best
mathematical models describing the electrical activity in the
field of electrocardiology, which is a simplified model for the

qualitative characteristics and dynamical and neuronal inves-
tigations of electrical propagation in the myocardium. For a
comprehensive introduction in this field, we refer to [7–16].

In this paper, the chaotic FHN neurons model under ex-
ternal electrical stimulation is given by the following three
coupled equations with different gap junctions:
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where 𝑥 and 𝑦 represent the state variables of a neuron rep-
resenting the activation potential and the recovery voltage,
respectively; (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), and (𝑥

3
, 𝑦
3
) represent the states

of the master, the first slave, and the second slave FHN
neuron, respectively; ̆𝑔

12
, ̆𝑔
13
, and ̆𝑔

23
represent the strengths

of gap junctions between the master and the first slave neu-
rons, between the master and the second slave neurons, and
between the two slave neurons, respectively. Disturbances
at the master, the first slave, and the second slave neurons
are represented by 𝑑

1
, 𝑑
2
, and 𝑑

3
, respectively. The term

(𝑎/𝜔) cos𝜔𝑡 represents the external stimulation current with
time 𝑡 and angular frequency 𝜔. Here, we use the angular
frequency 𝜔 and the amplitude 𝑎 as dimensionless quantities
as specified for FHN neurons model.

The literature on this subject is quite vast, for example, the
full FitzHugh model on an infinite domain has been studied
in [17]. In [18], the Hopf bifurcations have analyzed FHN
model for nerve conduction.The dynamics of uncertain cou-
pled chaotic delayed FHN neurons with various parametric
variations under external electrical stimulation have been in-
vestigated in [19], where separate conditions for single-input
and multiple-input control schemes for synchronization of a
wide class of FHN systemswere provided. In [20], the authors
have discussed the synchronization of three coupled chaotic
FHN neurons under external electrical stimulation with dif-
ferent gap junctions. Moreover, numerical simulation of the
FHN equations has been presented using the variational iter-
ation method and Adomian decomposition method [21].
Whilst, the analytical solutions for the FHNmodel in the case
where a collection of unstable cells is surrounded by a col-
lection of stable cells have been generated in [22].

Nowadays, fractional calculus has been used to model
physical and engineering processes, which are found to be
best described by fractional differential equations [23–26].
It is worth noting that the standard mathematical models
of integer-order derivatives, including nonlinear models, do
not work adequately in many cases. More recently, fractional
calculus has become a powerful tool to describe the dynamics
of chaotic neurons system, which appear frequently in many
branches of medical science. Chaotic neurons systems have a
profound effect on its approximate solutions and are highly
sensitive to time step sizes. Thus, it will be beneficial to find
a reliable analytical tool to test its long-term accuracy and
efficiency. The multistep generalized differential transform
method (MSGDTM) is powerful in investigating approxi-
mate solutions of various kinds of these systems.

In this paper, the attention is given to obtain the approx-
imate solution of the fractional-order multiple chaotic FHN
neuronsmodel under external electrical stimulationwith dif-
ferent gap junctions using theMSGDTM.Thismethod is only
a simple modification of the generalized differential trans-
form method (GDTM), in which it is treated as an algorithm
in a sequence of small intervals (i.e., time step) for finding
accurate approximate solutions to the corresponding systems.
The approximate solutions obtained by using the GDTM
are valid only for a short time.The ones obtained by using the
MSGDTM are more valid and accurate during a long time
and are in good agreement with the classical Runge-Kutta
method numerical solution when the order of the derivative
is one.

The remainder of this paper is organized as follows. In
next section, we present basic facts, definitions, and notations
related to the fractional calculus andMSGDTM. In Section 3,
the MSGDTM is applied to the fractional-order multiple
chaotic FHN neuronsmodel. In Section 4, numerical simula-
tion is shown graphically to illustrate the feasibility and effec-
tiveness of the proposed method. Finally, the conclusions are
drawn in Section 5.

2. The Multistep Generalized Differential
Transform Method (MSGDTM)

Todescribe theMSGDTM[26–29], we consider the following
initial value problem for systems of fractional differential
equations:
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solution of the initial value problem (2)-(3). The differential
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Using (5), one can easily prove the following corollary.

Corollary 1. If 𝑓(𝑡) = sin(𝜔𝑡), then 𝐹(𝑘) = (𝜔
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In actual applications of GDTM, the 𝐾th-order approx-
imate solution of the initial value problem (2)-(3) can be
expressed by the finite series
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The new algorithm of theMSGDTM is simple for compu-
tational performance for all values of 𝑡. As we will see in the
next section, the main advantage of the new algorithm is that
the obtained solution converges for wide time regions.

3. Applications of the MSGDTM for
the Fractional-Order Multiple Chaotic
FHN Neurons Model

To demonstrate the applicability, accuracy, and efficiency of
the MSGDTM for solving linear and nonlinear fractional-
order equations, we applied this scheme to the fractional-
order model of three coupled chaotic FHN neurons with
different gap junctions [20], which is the lowest-order chaotic
system among all the chaotic systems. Where the integer-
order derivatives are replaced by the fractional-order deriva-
tives as follows:
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the master and the second slave neurons, and between the
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parameters and 𝑥 and 𝑦 are the state variables of a neuron
representing the activation potential and the recovery voltage,
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describing the order of the fractional time-derivatives in the
Caputo sense.

By applying the MSGDT algorithm to obtain the numer-
ical solution for the fractional-order multiple chaotic FHN
neurons model, the system (10) gives
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Figure 1: Numerical solutions of the FHN system; MSGDTM: dotted line; RK4: solid line, with 𝛼
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= 𝛼
5
= 𝛼
6
= 1.

+
𝑎(𝑤)
𝑘−1

𝑘!
cos(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)

+
0.02(1.2)

𝑘

𝑘!
sin(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)) ,

𝑌
3
(𝑘 + 1) = 𝑏Γ

𝛼6
𝑋
3
(𝜅) ,

(11)

where Γ
𝛼𝑖
= Γ(𝛼

𝑖
𝑘 + 1)/Γ(𝛼

𝑖
(𝑘 + 1) + 1), 𝑖 = 1, 2, . . . , 6,𝑋

𝑖
(𝑘)

and and 𝑌
𝑖
(𝑘) are the differential transformation of 𝑥

𝑖
(𝑡) and

𝑦
𝑖
(𝑡), 𝑖 = 1, 2, 3, respectively. The differential transform of

the initial conditions are given by 𝑋
1
(0) = 𝑐

1
, 𝑌
1
(0) = 𝑐

2
,

𝑋
2
(0) = 𝑐

3
, 𝑌
2
(0) = 𝑐

4
, 𝑋
3
(0) = 𝑐

5
, and 𝑌

3
(0) = 𝑐

6
. In view of

the differential inverse transform, the differential transform
series solution for the system (10) can be obtained as

𝑥
1
(𝑡) =

𝑁

∑

𝑛=0

𝑋
1
(𝑛) 𝑡
𝛼1𝑛,

𝑦
1
(𝑡) =

𝑁

∑

𝑛=0

𝑌
1
(𝑛) 𝑡
𝛼2𝑛,

𝑥
2
(𝑡) =

𝑁

∑

𝑛=0

𝑋
2
(𝑛) 𝑡
𝛼3𝑛,

𝑦
2
(𝑡) =

𝑁

∑

𝑛=0

𝑌
2
(𝑛) 𝑡
𝛼4𝑛,

𝑥
3
(𝑡) =

𝑁

∑

𝑛=0

𝑋
3
(𝑛) 𝑡
𝛼5𝑛

𝑦
3
(𝑡) =

𝑁

∑

𝑛=0

𝑌
3
(𝑛) 𝑡
𝛼6𝑛.

(12)
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According to the MSGDTM, the series solution for the
system (10) is suggested by

𝑥
1
(𝑡) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝐾

∑

𝑛=0

𝑋
1,1
(𝑛) 𝑡
𝛼1𝑛, 𝑡 ∈ [0, 𝑡

1
] ,

𝐾

∑

𝑛=0

𝑋
1,2
(𝑛) (𝑡 − 𝑡

1
)
𝛼1𝑛

, 𝑡 ∈ [𝑡
1
, 𝑡
2
] ,

...
𝐾

∑

𝑛=0

𝑋
1,𝑀

(𝑛) (𝑡 − 𝑡
𝑀−1

)
𝛼1𝑛

, 𝑡 ∈ [𝑡
𝑀−1

, 𝑡
𝑀
] ,

𝑦
1
(𝑡) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝐾

∑

𝑛=0

𝑌
1,1
(𝑛) 𝑡
𝛼2𝑛, 𝑡 ∈ [0, 𝑡

1
] ,

𝐾

∑

𝑛=0

𝑌
1,2
(𝑛) (𝑡 − 𝑡

1
)
𝛼2𝑛

, 𝑡 ∈ [𝑡
1
, 𝑡
2
] ,

...
𝐾

∑

𝑛=0

𝑌
1,𝑀

(𝑛) (𝑡 − 𝑡
𝑀−1

)
𝛼2𝑛

, 𝑡 ∈ [𝑡
𝑀−1

, 𝑡
𝑀
] ,

𝑥
2
(𝑡) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝐾

∑

𝑛=0

𝑋
2,1
(𝑛) 𝑡
𝛼3𝑛, 𝑡 ∈ [0, 𝑡

1
] ,

𝐾

∑

𝑛=0

𝑋
2,2
(𝑛) (𝑡 − 𝑡

1
)
𝛼3𝑛

, 𝑡 ∈ [𝑡
1
, 𝑡
2
] ,

...
𝐾

∑

𝑛=0

𝑋
2,𝑀

(𝑛) (𝑡 − 𝑡
𝑀−1

)
𝛼3𝑛

, 𝑡 ∈ [𝑡
𝑀−1

, 𝑡
𝑀
] ,

𝑦
2
(𝑡) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝐾

∑

𝑛=0

𝑌
2,1
(𝑛) 𝑡
𝛼4𝑛, 𝑡 ∈ [0, 𝑡

1
] ,

𝐾

∑

𝑛=0

𝑌
2,2
(𝑛) (𝑡 − 𝑡

1
)
𝛼4𝑛

, 𝑡 ∈ [𝑡
1
, 𝑡
2
] ,

...
𝐾

∑

𝑛=0

𝑌
2,𝑀

(𝑛) (𝑡 − 𝑡
𝑀−1

)
𝛼4𝑛

, 𝑡 ∈ [𝑡
𝑀−1

, 𝑡
𝑀
] ,

𝑥
3
(𝑡) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝐾

∑

𝑛=0

𝑋
3,1
(𝑛) 𝑡
𝛼5𝑛, 𝑡 ∈ [0, 𝑡

1
] ,

𝐾

∑

𝑛=0

𝑋
3,2
(𝑛) (𝑡 − 𝑡

1
)
𝛼5𝑛

, 𝑡 ∈ [𝑡
1
, 𝑡
2
] ,

...
𝐾

∑

𝑛=0

𝑋
3,𝑀

(𝑛) (𝑡 − 𝑡
𝑀−1

)
𝛼5𝑛

, 𝑡 ∈ [𝑡
𝑀−1

, 𝑡
𝑀
] ,

𝑦
3
(𝑡) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝐾

∑

𝑛=0

𝑌
3,1
(𝑛) 𝑡
𝛼6𝑛, 𝑡 ∈ [0, 𝑡

1
] ,

𝐾

∑

𝑛=0

𝑌
3,2
(𝑛) (𝑡 − 𝑡

1
)
𝛼6𝑛

, 𝑡 ∈ [𝑡
1
, 𝑡
2
] ,

...
𝐾

∑

𝑛=0

𝑌
3,𝑀

(𝑛) (𝑡 − 𝑡
𝑀−1

)
𝛼6𝑛

, 𝑡 ∈ [𝑡
𝑀−1

, 𝑡
𝑀
] ,
(13)

where 𝑋
1,𝑖
(𝑛), 𝑌
1,𝑖
(𝑛), 𝑋

2,𝑖
(𝑛), 𝑌
2,𝑖
(𝑛), 𝑋

3,𝑖
(𝑛), and 𝑌

2,𝑖
(𝑛), for

𝑖 = 1, 2, . . . ,𝑀, satisfy the following recurrence relations:

𝑋
1,𝑖
(𝑘 + 1)

= Γ
𝛼1
(

𝑘

∑

𝑙=0

𝑋
1,𝑖
(𝑙) 𝑋
1,𝑖
(𝑘 − 𝑙) − 𝑋

1,𝑖
(𝜅) − 𝑌

1
(𝑘)

− 𝑟( −

𝑘

∑

𝑖=0

𝑋
1,𝑖
(𝑙) 𝑋
1,𝑖
(𝑘 − 𝑙)

+

𝑘

∑

𝑗=0

𝑗

∑

𝑙=0

𝑋
1,𝑖
(𝑙) 𝑋
1,𝑖
(𝑗 − 𝑙)𝑋

1,𝑖
(𝑘 − 𝑗))

− ̆𝑔
12
(𝑋
1,𝑖
(𝜅) − 𝑋

2,𝑖
(𝜅))

− ̆𝑔
13
(𝑋
1,𝑖
(𝜅) − 𝑋

3,𝑖
(𝜅))

+ (
𝑎

𝑤
)
(𝑤)
𝑘

𝑘!
cos(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)

+
0.02

𝑘!
sin(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)) ,

𝑌
1,𝑖
(𝑘 + 1) = 𝑏Γ

𝛼2
𝑋
1,𝑖
(𝜅) ,

𝑋
2,𝑖
(𝑘 + 1)

= Γ
𝛼3
(

𝑘

∑

𝑙=0

𝑋
2,𝑖
(𝑙) 𝑋
2,𝑖
(𝑘 − 𝑙) − 𝑋

2,𝑖
(𝜅) − 𝑌

2,𝑖
(𝑘)

− 𝑟( −

𝑘

∑

𝑙=0

𝑋
2,𝑖
(𝑙) 𝑋
2,𝑖
(𝑘 − 𝑙)

+

𝑘

∑

𝑗=0

𝑗

∑

𝑙=0

𝑋
2,𝑖
(𝑙) 𝑋
2,𝑖
(𝑗 − 𝑙)𝑋

2,𝑖
(𝑘 − 𝑗))

− ̆𝑔
12
(𝑋
2,𝑖
(𝜅) − 𝑋

3,𝑖
(𝜅))

− ̆𝑔
13
(𝑋
2,𝑖
(𝜅) − 𝑋

3,𝑖
(𝜅))

+ (
𝑎

𝑤
)
(𝑤)
𝑘

𝑘!
cos(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)

+
0.02(1.1)

𝑘

𝑘!
sin(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)) ,

𝑌
2,𝑖
(𝑘 + 1) = 𝑏Γ

𝛼4
𝑋
2,𝑖
(𝜅) ,

𝑋
3,𝑖
(𝑘 + 1)

= Γ
𝛼5
(

𝑘

∑

𝑙=0

𝑋
3,𝑖
(𝑙) 𝑋
3
(𝑘 − 𝑙) − 𝑋

3,𝑖
(𝜅) − 𝑌

3,𝑖
(𝑘)

− 𝑟( −

𝑘

∑

𝑙=0

𝑋
3,𝑖
(𝑙) 𝑋
3,𝑖
(𝑘 − 𝑙)

+

𝑘

∑

𝑗=0

𝑗

∑

𝑙=0

𝑋
3
(𝑙) 𝑋
3,𝑖
(𝑗 − 𝑙)𝑋

3,𝑖
(𝑘 − 𝑗))
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Figure 3: Phase plot of chaotic behavior of chaotic FHN neuromsis, with 𝛼
1
= 𝛼
3
= 𝛼
5
= 0.9, 𝛼

2
= 𝛼
4
= 𝛼
6
= 0.8.

− ̆𝑔
12
(𝑋
3,𝑖
(𝜅) − 𝑋

1,𝑖
(𝜅))

− ̆𝑔
13
(𝑋
3,𝑖
(𝜅) − 𝑋

2,𝑖
(𝜅))

+ (
𝑎

𝑤
)
(𝑤)
𝑘

𝑘!
cos(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)

+
0.02(1.2)

𝑘

𝑘!
sin(( 𝑇

𝑀
)𝑚 +

𝜋𝑘

2
)) ,

𝑌
3,𝑖
(𝑘 + 1) = 𝑏Γ

𝛼6
𝑋
3,𝑖
(𝜅) ,

(14)

such that𝑋
1,𝑖
(0) = 𝑥

1,𝑖
(𝑡
𝑖−1
) = 𝑥
1,𝑖−1

(𝑡
𝑖−1
),𝑌
1,𝑖
(0) = 𝑦

1,𝑖
(𝑡
𝑖−1
) =

𝑦
1,𝑖−1

(𝑡
𝑖−1
), 𝑋
2,𝑖
(0) = 𝑥

2,𝑖
(𝑡
𝑖−1
) = 𝑥

2,𝑖−1
(𝑡
𝑖−1
), 𝑌
2,𝑖
(0) =

𝑦
2,𝑖
(𝑡
𝑖−1
) = 𝑦
2,𝑖−1

(𝑡
𝑖−1
), 𝑋
3,𝑖
(0) = 𝑥

3,𝑖
(𝑡
𝑖−1
) = 𝑥

3,𝑖−1
(𝑡
𝑖−1
), and

𝑌
3,𝑖
(0) = 𝑦

3,𝑖
(𝑡
𝑖−1
) = 𝑦
3,𝑖−1

(𝑡
𝑖−1
).

Finally, starting with 𝑋
1,0
(0) = 𝑐

1
, 𝑌
1,0
(0) = 𝑐

2
, 𝑋
2,0
(0) =

𝑐
3
, 𝑌
2,0
(0) = 𝑐

4
,𝑋
3,0
(0) = 𝑐

5
and 𝑌

3,0
(0) = 𝑐

6
and using the re-

currence relation given in (14), the multistep solution can be
obtained as in (13).

4. A Test Problem for the Fractional-Order
Chaotic FHN Neurons Model

In this work, we carefully propose the MSGDTM, a reliable
modification of the GDTM that improves the convergence of
the series solution. The method provides immediate and vis-
ible symbolic terms of analytic solutions as well as numerical
approximate solutions to both linear and nonlinear differen-
tial equations. Moreover, we shall demonstrate the accuracy
of the MSGDT scheme against the Mathematica built-in
fourth-order Runge-Kutta (RK4) procedure for the solutions
of multiple chaotic FHN neurons model in the case of
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Figure 4: Phase plot of chaotic behavior of chaotic FHN neuronsis, with 𝛼
1
= 𝛼
3
= 𝛼
5
= 0.9, 𝛼

2
= 𝛼
4
= 𝛼
6
= 0.8.

integer order derivatives.TheMSGDT scheme is coded in the
computer algebra package Mathematica. The Mathematica
environment variable digits controlling the number of signif-
icant digits are set to 20 in all the calculations done in this
paper. The time range studied in this work is [0, 250] and
the step size Δ𝑡 = 0.1. In this regard, we take the initial
condition for chaotic FHN neurons model such as 𝑥

1
(0) = 1,

𝑦
1
(0) = 0, 𝑥

2
(0) = 0.3, 𝑦

2
(0) = 0.3, 𝑥

3
(0) = −0.3, and

𝑦
3
(0) = −0.3 with parameters 𝑟 = 10, 𝑏 = 1 and 𝑎 = 0.1,

whilst 𝑔
12
= 0.011, 𝑔

13
= 0.012, 𝑔

13
= 0.013, Δ𝑔

12
= 0.1,

Δ𝑔
12
= 0.14, Δ𝑔

13
= 0.18, ̆𝑔

12
= 𝑔
12
+Δ𝑔
12
, ̆𝑔
13
= 𝑔
13
+Δ𝑔
13
,

and ̆𝑔
23
= 𝑔
23
+ Δ𝑔
23
.

Figure 1 shows the phase portrait for the classical multiple
chaotic FHNneuronsmodel, when𝛼

1
= 𝛼
2
= 𝛼
3
= 𝛼
4
= 𝛼
5
=

𝛼
6
= 1, using the MSGDT and RK4 methods. However, it

can be seen that the results obtained using the MSGDTM
match the results of the RK4method very well, which implies

that theMSGDTMcan predict the behavior of these variables
accurately for the region under consideration. Additionally,
Figures 2, 3, and 4 show the phase portrait for the fractional
multiple chaotic FHN neurons using the MSGDTM. From
the numerical results in Figures 2, 3, and 4, it is clear that
the approximate solutions depend continuously on the time-
fractional derivative 𝛼i, 𝑖 = 1, 2, 3, 4, 5, 6. The effective
dimension∑ of (10) is defined as the sum of orders 𝛼

1
+ 𝛼
2
+

𝛼
3
+ 𝛼
3
+ 𝛼
5
+ 𝛼
6
= ∑ . In the meantime, we can see that

the chaos exists in the fractional-order multiple chaotic FHN
neurons model with order as low as 5.1.

5. Conclusions

In this paper, a multistep generalized differential transform
method has been successfully applied to find the numerical
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solutions of the fractional-order multiple chaotic FitzHugh-
Nagumo neurons model. This method has the advantage
of giving an analytical form of the solution within each
time interval which is not possible using purely numerical
techniques like the fourth-order Runge-Kuttamethod (RK4).
We conclude that MSGDT method is a highly accurate
method in solving a broad array of dynamical problems in
fractional calculus due to its consistency used in a longer time
frame.

The reliability of the method and the reduction in the
size of computational domain give this method a wider
applicability. Many of the results obtained in this paper can
be extended to significantlymore general classes of linear and
nonlinear differential equations of fractional order.
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