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A numerical method based on the reproducing kernel theorem is presented for the numerical solution of a three-point boundary
value problem with an integral condition. Using the reproducing property and the existence of orthogonal basis in a new
reproducing kernel Hilbert space, we obtain a representation of exact solution in series form and its approximate solution by
truncating the series. Moreover, the uniform convergency is proved and the effectiveness of the proposed method is illustrated
with some examples.

1. Introduction

In this paper, we are concerned with the numerical solution
of the following third-order partial differential equation with
three-point boundary condition [1]:

𝜕
3
𝑢

𝜕𝑡3
+
𝜕

𝜕𝑥
(𝑎 (𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
) = 𝑓 (𝑥, 𝑡) ,

∫

1

𝑐

𝑢 (𝑥, 𝑡) 𝑑𝑥 = 0, 𝑡 ∈ [0, 𝑇] , 0 ≤ 𝑐 < 1,

𝑢 (𝑥, 0) = 0,
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0,

𝜕
2
𝑢

𝜕𝑡2
(𝑥, 𝑇) = 0,

𝑥 ∈ [0, 1] , 𝑇 > 0,

(1)

where 𝑎(𝑥, 𝑡) and its derivatives satisfy the conditions 0 <
𝑎
0
< 𝑎(𝑥, 𝑡) < 𝑎

1
, |(𝑎(𝑥, 𝑡))

𝑥
| ⩽ 𝑏, and 𝑓(𝑥, 𝑡) is given smooth

function in [0, 1] × [0, 𝑇].
Note that the third-order partial differential equations in

(1) make a base of many mathematical models for dynamics
of the soil moisture and subsoil waters [2], spreading of
acoustic waves in a weakly heterogeneous environment [3].
Many physical phenomena and mechanical situations have
been formulated into boundary value problems with integral
boundary conditions [4, 5]. Later many works have appeared

such as Ashyralyev and Aggez [6], Ashyralyev and Tetikoglua
[7], Pulkina [8], and Ashyralyev and Gercek [9]. It should be
noted that there are so much work devoted to the existence
of solution for this type of boundary value problems where
parabolic equations, hyperbolic equations, and mixed-type
equations are considered [10, 11]. The proof of existence and
uniqueness of solution especially for (1) has been studied by
Latrous and Memou [1]. Recently, the reproducing kernel
space method (RKSM) plays a crucial role in numerical solu-
tions of differential and integral equations [12–20]. The main
ideas of RKSM are based on the construction of reproducing
kernel space (RKS). The reproducing kernel function can
absorb all definite conditions.Then the numerical solution of
definite problem is approximated by the reproducing kernel
function. It is obvious that constructing a suitable reproduc-
ing kernel space and effectively calculating the reproducing
kernel function expression become the key to apply RKSM.

However, due to the complex three-point value condi-
tions with an integral condition in (1), the RKSM has not
constructed suitable RKS to deal with the numerical solution.
More precisely, the establishment of traditional RKS relies
heavily on the two endpoints. Hence it can not be extended to
three-point nonlocal boundary value problemwhich is based
on intermediate point, especially with the integral boundary
condition. Moreover, to the best of the authors’ knowledge,
the numerical approximations of the problem equation (1)
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have not been studied before. Motivated by all the works
above, we describe an improvement of the RKSM to find the
numerical solution for (1). A new RKS is successfully estab-
lished by some techniques like (3) and (7). Furthermore, other
partial differential equations with multipoint boundary value
conditionsmay be numerically solved using a similar process.

The outline of this paper is as follows. In the next section,
new reproducing kernel spaces for solving problem (1) are
constructed. Section 3 establishes a bounded linear operator
and an orthogonal basis to use the RKSM. As a result, the
approximate solution of the considered problem is obtained.
In Section 4, some numerical results are given to demonstrate
the accuracy of the present method. Also a conclusion is
given in Section 5.Note that we have computed the numerical
results using mathematic programming.

2. Constructive Method for the Reproducing
Kernel Space𝑊(Ω)

Definition 1 (see [12]). Let𝐻 be a Hilbert function space on a
set𝑋.𝐻 is called a reproducing kernel space if and only if, for
any 𝑥 ∈ 𝑋, there exists a unique function 𝐾

𝑥
(𝑦) ∈ 𝐻, such

that ⟨𝑓,𝐾
𝑥
⟩ = 𝑓(𝑥) for any 𝑓 ∈ 𝐻. Meanwhile, 𝐾(𝑥, 𝑦) Δ=

𝐾
𝑥
(𝑦) is called a reproducing kernel.

Since 𝐾(𝑥, 𝑦) = 𝐾
𝑥
(𝑦) = ⟨𝐾

𝑥
, 𝐾
𝑦
⟩ = ⟨𝐾

𝑦
, 𝐾
𝑥
⟩ =

𝐾
𝑦
(𝑥) = 𝐾(𝑦, 𝑥), one has the following property.

Lemma 2. A reproducing kernel function of real reproducing
kernel space is symmetric.

Definition 3. 𝑊
1
[0, 1] = {𝑢(𝑥) | 𝑢


(𝑥) is an absolutely

continuous real value function in [0, 1], 𝑢(3)(𝑥) ∈ 𝐿2[0, 1],
𝑢(0) = 0, and ∫1

𝑐
𝑢(𝑥)𝑑𝑥 = 0, 0 < 𝑐 < 1}. The inner product is

given by

⟨𝑢 (𝑥) , V (𝑥)⟩1 = 𝑢

(0) V (0) + 𝑢 (0) V (0)

+ ∫

1

0

𝑢
(3)
(𝑥) V(3) (𝑥) 𝑑𝑥.

(2)

Theorem 4. 𝑊
1
[0, 1] is a reproducing kernel space. Moreover

the reproducing kernel 𝑅(𝑥, 𝑦) can be denoted by
𝑅 (𝑥, 𝑦)

=

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

𝑟
1
(𝑥, 𝑦) = 𝑎

1
+ 𝑎
2
𝑥 + 𝑎
3
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

6
𝑥
5
, 𝑥 < 𝑦 < 𝑐,

𝑟
2
(𝑥, 𝑦) = 𝑏

1
+ 𝑏
2
𝑥 + 𝑏
3
𝑥
2

+ ⋅ ⋅ ⋅ + 𝑏
6
𝑥
5
+ 𝜆
1

𝑥
6

6!
, 𝑐 < 𝑥 < 𝑦,

𝑟
3
(𝑥, 𝑦) = 𝑐

1
+ 𝑐
2
𝑥 + 𝑐
3
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑐

6
𝑥
5
, 𝑦 < 𝑐 < 𝑥,

𝑟
4
(𝑥, 𝑦) = 𝑑

1
+ 𝑑
2
𝑥 + 𝑑
3
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑑

6
𝑥
5
, 𝑦 < 𝑥 < 𝑐,

𝑟
5
(𝑥, 𝑦) = 𝑒

1
+ 𝑒
2
𝑥 + 𝑒
3
𝑥
2

+ ⋅ ⋅ ⋅ + 𝑒
6
𝑥
5
+ 𝜆
1

𝑥
6

6!
, 𝑐 < 𝑦 < 𝑥,

𝑟
6
(𝑥, 𝑦) = 𝑓

1
+ 𝑓
2
𝑥 + 𝑓
3
𝑥
2

+ ⋅ ⋅ ⋅ + 𝑓
6
𝑥
5
+ 𝜆
2

𝑥
6

6!
, 𝑥 < 𝑐 < 𝑦.

(3)

Proof. 𝑊
1
[0, 1] is a RKS which is a generalization of [12,

Theorem 1.3.1, 1.3.2] with essentially the same proofs. Let
𝑅(𝑥, 𝑦) be the reproducing kernel function of 𝑊

1
[0, 1]. In

view of (2), 𝑢(0) = 0, and ∫1
𝑐
𝑢(𝑦)𝑑𝑦 = 0, we have the

following equality using the integration by parts:

⟨𝑢 (𝑥) , 𝑅 (𝑥, 𝑦)⟩
1

= 𝑢

(0) 𝜕
𝑥
𝑅 (0, 𝑦) + 𝑢


(0) 𝜕
2

𝑥
𝑅 (0, 𝑦)

+ ∫

1

0

𝑢
(3)
(𝑥) 𝜕
3

𝑥
𝑅 (𝑥, 𝑦) 𝑑𝑥

= 𝑢

(0) 𝜕
𝑥
𝑅 (0, 𝑦) + 𝑢


(0) 𝜕
2

𝑥
𝑅 (0, 𝑦)

+ ∫

1

0

𝑢
3
(𝑥) 𝜕
3

𝑥
𝑅 (𝑥, 𝑦) 𝑑𝑥 + 𝜆∫

1

𝑐

𝑢 (𝑥) 𝑑𝑥

= 𝑢

(0) [𝜕
𝑥
𝑅 (0, 𝑦) + 𝜕

4

𝑥
𝑅 (0, 𝑦)]

+ 𝑢

(0) [𝜕

2

𝑥
𝑅 (0, 𝑦) − 𝜕

3

𝑥
𝑅 (0, 𝑦)]

+ 𝑢 (1) 𝜕
5

𝑥
𝑅 (1, 𝑦) − 𝑢


(1) 𝜕
4

𝑥
𝑅 (1, 𝑦)

+ 𝑢

(1) 𝜕
3

𝑥
𝑅 (1, 𝑦) − ∫

𝑐

0

𝑢 (𝑥) 𝜕
6

𝑥
𝑅 (𝑥, 𝑦) 𝑑𝑥

− ∫

1

𝑐

𝑢 (𝑥) (𝜕
6

𝑥
𝑅 (𝑥, 𝑦) − 𝜆) 𝑑𝑥.

(4)

Here 𝜆 is an arbitrary function of 𝑦. In order to obtain
reproducing property, namely,

⟨𝑢 (𝑥) , 𝑅 (𝑥, 𝑦)⟩
1
= 𝑢 (𝑦) , (5)

let

𝜕
𝑥
𝑅 (0, 𝑦) + 𝜕

4

𝑥
𝑅 (0, 𝑦) = 0,

𝜕
2

𝑥
𝑅 (0, 𝑦) − 𝜕

3

𝑥
𝑅 (0, 𝑦) = 0,

𝜕
𝑖

𝑥
𝑅 (1, 𝑦) = 0, (𝑖 = 3, 4, 5) ,

(6)

𝜕
6

𝑥
𝑅 (𝑥, 𝑦) = −𝛿 (𝑥 − 𝑦) (𝑦 < 𝑐, 𝑥 < 𝑐) ,

𝜕
6

𝑥
𝑅 (𝑥, 𝑦) − 𝜆

2
= 0 (𝑦 > 𝑐, 𝑥 < 𝑐) ,

𝜕
6

𝑥
𝑅 (𝑥, 𝑦) − 𝜆

1
= −𝛿 (𝑥 − 𝑦) (𝑦 > 𝑐, 𝑥 > 𝑐) ,

𝜕
6

𝑥
𝑅 (𝑥, 𝑦) = 0 (𝑦 < 𝑐, 𝑥 > 𝑐) .

(7)

Since the eigenvalues of (7) are all zero and sixfold, the
general solutions of (7) have the form of (3). Next, we need
to establish 38 equations for calculating the coefficients which
are functions on 𝑦. It is obvious that 4 equations can be
obtained from boundary value conditions and (6) give 10
equations. According to (7), we have 12 equations. Finally, 12
equations follow from the continuity at 𝑐.
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For 𝑐 = 1/2, the concrete expression of 𝑅(𝑥, 𝑦) is given by
Lemma 2

𝑟
1
(𝑥, 𝑦)

=
𝑦
5

120
+
𝑥
2
𝑦
2

12
(𝑦 + 3) + 𝑥𝑦 −

𝑥𝑦
4

24

−
7𝑥𝑦

9594180
((1080 + 210𝑥 + 70𝑥

2
− 45𝑥

3
+ 12𝑥

4
)

× (1080+ 210𝑦 +70𝑦
2
− 45𝑦

3
+12𝑦
4
)) ;

𝑟
2
(𝑥, 𝑦)

=
𝑦
5

120
+
𝑥
2
𝑦
2

12
(𝑦 + 3) + 𝑥𝑦 −

𝑥𝑦
4

24

+
7𝑦

153506880
((1 − 17292𝑥 − 3300𝑥

2
− 1280𝑥

3

+960𝑥
4
− 384𝑥

5
+ 64𝑥

6
)

× (1080+210𝑦+70𝑦
2
−45𝑦
3
+12𝑦
4
)) ;

𝑟
3
(𝑥, 𝑦)

=
𝑦
5

120
+
𝑥
2
𝑦
2

12
(𝑦 + 3) + 𝑥𝑦 −

𝑥𝑦
4

24

−
7

2456110080
((1 − 17292𝑥 − 3300𝑥

2
− 1280𝑥

3

+ 960𝑥
4
− 384𝑥

5
+ 64𝑥

6
)

× (1 −17292𝑦 −3300𝑦
2
−1280𝑦

3

+ 960𝑦
4
− 384𝑦

5
+ 64𝑦

6
)) ;

𝑟
4
(𝑥, 𝑦) = 𝑟

1
(𝑦, 𝑥) ; 𝑟

5
(𝑥, 𝑦) = 𝑟

2
(𝑦, 𝑥) ;

𝑟
6
(𝑥, 𝑦) = 𝑟

3
(𝑦, 𝑥) .

(8)

Similar to Theorem 4, we show another RKS:𝑊
2
[0, 𝑇] =

{𝑢(𝑡) | 𝑢
(3)
(𝑡) is an absolutely continuous real value function

in [0, 𝑇], 𝑢(4)(𝑡) ∈ 𝐿2[0, 𝑇], and 𝑢(0) = 𝑢(0) = 𝑢(𝑇) = 0}.
The inner product is given by

⟨𝑢 (𝑡) , V (𝑡)⟩2 = 𝑢
(3)
(0) V(3) (0) + ∫

𝑇

0

𝑢
(4)
(𝑡) V(4) (𝑡) 𝑑𝑡 (9)

and we calculate the reproducing kernel function is𝑄(𝑡, 𝑠) as
the following form:

𝑞
1
(𝑡, 𝑠)

=
1

5040
(𝑡
2
(7𝑠𝑡
4
− 𝑡
5
+ 140𝑠

2
𝑡 (𝑠 − 3𝑇)

+ 35𝑠
2
𝑡
2
(𝑠 − 3𝑇) + 21𝑠

2
(𝑠
3
− 5𝑠 (4 + 𝑠) 𝑇

+ 60𝑇
2
+ 20𝑇

3
))) ,

𝑡 ≤ 𝑠,

𝑞
2
(𝑡, 𝑠)

=
1

5040
(𝑠
2
(7𝑠
4
𝑡 − 𝑠
5
+ 21𝑡
5

+ 35𝑡
3
(𝑠 (𝑠 + 4) − 12𝑇)

− 105𝑡
4
𝑇 + 105𝑡

2
𝑇 (4𝑇

2
+ 12𝑇 − 𝑠 (𝑠 + 4)))) ,

𝑠 ≤ 𝑡.

(10)

Definition 5. Let Ω = [0, 1] × [0, 𝑇], and𝑊(Ω) = {𝑢(𝑥, 𝑡) |
(𝜕
5
𝑢/𝜕𝑥
2
𝜕𝑡
3
) is a completely continuous real value function

in Ω, 𝑢(0, 𝑡) = 𝑢(𝑥, 0) = (𝜕𝑢/𝜕𝑡)(𝑥, 0) = (𝜕2𝑢/𝜕𝑡2)(𝑥, 𝑇) =
0, ∫1
𝑐
𝑢(𝑥, 𝑡)𝑑𝑥 = 0, and (𝜕7𝑢/𝜕𝑥3𝜕𝑡4) ∈ 𝐿2(Ω)}. The inner

product in𝑊(Ω) is given by

⟨𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)⟩𝑤

=

2

∑

𝑖=1

∫

𝑇

0

[
𝜕
4

𝜕𝑡4

𝜕
𝑖

𝜕𝑥𝑖
𝑢 (0, 𝑡)

𝜕
4

𝜕𝑡4

𝜕
𝑖

𝜕𝑥𝑖
V (0, 𝑡)] 𝑑𝑡

+ ⟨
𝜕
3

𝜕𝑡3
𝑢 (𝑥, 0) ,

𝜕
3

𝜕𝑡3
V (𝑥, 0)⟩

1

+ ∫∫
Ω

[
𝜕
3

𝜕𝑥3

𝜕
4

𝜕𝑡4
𝑢 (𝑥, 𝑡)

𝜕
3

𝜕𝑥3

𝜕
4

𝜕𝑡4
V (𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡.

(11)

Theorem6. The space𝑊(Ω) is a reproducing kernel space and
its reproducing kernel is

𝐾((𝑥, 𝑡) , (𝑦, 𝑠)) = 𝑅 (𝑥, 𝑦)𝑄 (𝑡, 𝑠) , (12)

where 𝑅(𝑥, 𝑦) and 𝑄(𝑡, 𝑠) are reproducing kernel functions of
𝑊
1
[0, 1] and𝑊

2
[0, 𝑇], respectively.

Proof. We need to prove that 𝐾((𝑥, 𝑡, 𝑦, 𝑠)) satisfies the
reproducing property; namely,

⟨𝑢 (𝑥, 𝑡) , 𝐾 ((𝑥, 𝑡, 𝑦, 𝑠))⟩
𝑤

= ⟨𝑢 (𝑥, 𝑡) , 𝑅 (𝑥, 𝑦)𝑄 (𝑡, 𝑠)⟩
𝑤

=

2

∑

𝑖=1

∫

𝑇

0

[
𝜕
4

𝜕𝑡4

𝜕
𝑖

𝜕𝑥𝑖
𝑢 (0, 𝑡)

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)

𝜕
𝑖

𝜕𝑥𝑖
𝑅 (0, 𝑦)] 𝑑𝑡

+⟨
𝜕
3

𝜕𝑡3
𝑢 (𝑥, 0) , 𝑅 (𝑥, 𝑦)

𝜕
3

𝜕𝑡3
𝑄 (0, 𝑠)⟩

1

+ ∫∫
Ω

[
𝜕
3

𝜕𝑥3

𝜕
4

𝜕𝑡4
𝑢 (𝑥, 𝑡)

𝜕
3

𝜕𝑥3
𝑅 (𝑥, 𝑦)

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)] 𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

2

∑

𝑖=1

[
𝜕
4

𝜕𝑡4

𝜕
𝑖

𝜕𝑥𝑖
𝑢 (0, 𝑡)

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)

𝜕
𝑖

𝜕𝑥𝑖
𝑅 (0, 𝑦)] 𝑑𝑡

+
𝜕
3

𝜕𝑡3
𝑄 (0, 𝑠)

𝜕
3

𝜕𝑡3
𝑢 (𝑦, 0)
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+ ∫

𝑇

0

∫

1

0

[
𝜕
3

𝜕𝑥3

𝜕
4

𝜕𝑡4
𝑢 (𝑥, 𝑡)

𝜕
3

𝜕𝑥3
𝑅 (𝑥, 𝑦)

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)] 𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

{

2

∑

𝑖=1

[
𝜕
4

𝜕𝑡4

𝜕
𝑖

𝜕𝑥𝑖
𝑢 (0, 𝑡)

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)

𝜕
𝑖

𝜕𝑥𝑖
𝑅 (0, 𝑦)]

+ ∫

1

0

[
𝜕
3

𝜕𝑥3

𝜕
4

𝜕𝑡4
𝑢 (𝑥, 𝑡)

𝜕
3

𝜕𝑥3
𝑅 (𝑥, 𝑦)

×
𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)] 𝑑𝑥}𝑑𝑡

+
𝜕
3

𝜕𝑡3
𝑄 (0, 𝑠)

𝜕
3

𝜕𝑡3
𝑢 (𝑦, 0)

= ∫

𝑇

0

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)

𝜕
4

𝜕𝑡4
{

2

∑

𝑖=1

[
𝜕
𝑖

𝜕𝑥𝑖
𝑢 (0, 𝑡)

𝜕
𝑖

𝜕𝑥𝑖
𝑅 (0, 𝑦)]

+∫

1

0

[
𝜕
3

𝜕𝑥3
𝑢 (𝑥, 𝑡)

×
𝜕
3

𝜕𝑥3
𝑅 (𝑥, 𝑦)] 𝑑𝑥}𝑑𝑡

+
𝜕
3

𝜕𝑡3
𝑄 (0, 𝑠)

𝜕
3

𝜕𝑡3
𝑢 (𝑦, 0)

=
𝜕
3

𝜕𝑡3
𝑄 (0, 𝑠)

𝜕
3

𝜕𝑡3
𝑢 (𝑦, 0)

+ ∫

𝑇

0

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)

𝜕
4

𝜕𝑡4
⟨𝑢 (𝑥, 𝑡) , 𝑅 (𝑥, 𝑦)⟩

1
𝑑𝑡

=
𝜕
3

𝜕𝑡3
𝑄 (0, 𝑠)

𝜕
3

𝜕𝑡3
𝑢 (𝑦, 0) + ∫

𝑇

0

𝜕
4

𝜕𝑡4
𝑄 (𝑡, 𝑠)

𝜕
4

𝜕𝑡4
𝑢 (𝑦, 𝑡) 𝑑𝑡

= ⟨𝑢 (𝑦, 𝑡) , 𝑄 (𝑡, 𝑠)⟩
2
= 𝑢 (𝑦, 𝑠) .

(13)

3. The Numerical Method

A subspace in 𝐿2(Ω) is defined by

𝐿
0 (Ω) = {𝑢 (𝑥, 𝑡) | 𝑢 (𝑥, 𝑡) ∈ 𝐿

2
(Ω) ,

𝑢 (𝑥, 𝑡) is continuous in Ω} .
(14)

Then we define a linear operatorL : 𝑊(Ω) → 𝐿
0
(Ω):

L𝑢 (𝑥, 𝑡)
Δ

=
𝜕
3
𝑢

𝜕𝑡3
+
𝜕

𝜕𝑥
(𝑎 (𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
) . (15)

Lemma 7. L is an invertible bounded linear operator.

Proof. Consider the following

‖L𝑢‖
2

𝐿0

= ∫∫
Ω

((L𝑢) (𝑥, 𝑡))
2
𝑑𝑥 𝑑𝑡

= ∫∫
Ω

[
𝜕
3
𝑢

𝜕𝑡3
+
𝜕

𝜕𝑥
(𝑎 (𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
)]

2

𝑑𝑥 𝑑𝑡

≤ 𝐶(∫∫
Ω

[(
𝜕
3
𝑢

𝜕𝑡3
)

2

+ 2



𝜕𝑢

𝜕𝑥





𝜕
3
𝑢

𝜕𝑡3



+ (
𝜕
2
𝑢

𝜕𝑡2
)

2

]𝑑𝑥𝑑𝑡) .

(16)

Due to the definition of𝑊(Ω), we get ‖𝜕𝑖
𝑥
𝑅(𝑥, 𝑦)𝜕

𝑗

𝑡
𝑄(𝑡, 𝑠)‖

𝑤
≤

𝑀, 𝑖 = 0, 1, 2 and 𝑗 = 0, 1, 2, 3; then

𝜕
𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
𝑢 (𝑥, 𝑡)


=

⟨𝑢 (𝑦, 𝑠) , 𝜕

𝑖

𝑥
𝑅 (𝑥, 𝑦) 𝜕

𝑗

𝑡
𝑄 (𝑡, 𝑠)⟩

𝑤



≤

𝜕
𝑖

𝑥
𝑅 (𝑥, 𝑦) 𝜕

𝑗

𝑡
𝑄 (𝑡, 𝑠)

𝑤
‖𝑢‖𝑤 ≤ 𝑀‖𝑢‖𝑤;

(17)

it follows that

‖L𝑢‖
2

𝐿0
≤ 𝑀
2
‖𝑢‖
2

𝑤
. (18)

Therefore (1) is turned into the following operator equation:

(L𝑢) (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) . (19)

Since (19) has a unique solution [1], it indicates L is
invertible. The proof is complete.

For the reproducing kernel function of𝑊(Ω), we choose
a countable dense subset

𝑆 = {(𝑥
1
, 𝑡
1
) , (𝑥
2
, 𝑡
2
) , . . .} ⊂ Ω (20)

and define

Ψ
𝑖
(𝑥, 𝑡) =L

(𝑦,𝑠)
𝐾((𝑥, 𝑡) , (𝑦, 𝑠))

(𝑦,𝑠)=(𝑥𝑖 ,𝑡𝑖)
, 𝑖 = 1, 2, . . . ,

(21)

whereL
(𝑦,𝑠)

denotes operatorL which acts on (𝑦, 𝑠).

Lemma 8. The function system {Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
is a complete

system in𝑊(Ω).

Proof. It follows that Ψ
𝑖
(𝑥, 𝑡) ∈ 𝑊(Ω) from the definition of

𝑊(Ω) and Ψ
𝑖
(𝑥, 𝑡). Next we will see it is complete; that is, if

⟨𝑢(𝑥, 𝑡), Ψ
𝑖
(𝑥, 𝑡)⟩

𝑤
= 0, then we can get 𝑢(𝑥, 𝑡) ≡ 0. For every

𝑖, it holds

0 = ⟨𝑢 (𝑥, 𝑡) , Ψ𝑖 (𝑥, 𝑡)⟩𝑤

= ⟨𝑢 (𝑥, 𝑡) ,L
(𝑦,𝑠)
𝐾((𝑥, 𝑡) , (𝑥

𝑖
, 𝑡
𝑖
))⟩
𝑤

=L
(𝑦,𝑠)
⟨𝑢 (𝑥, 𝑡) , 𝐾 ((𝑥, 𝑡) , (𝑥𝑖, 𝑡𝑖))⟩𝑤 =L𝑢 (𝑥

𝑖
, 𝑡
𝑖
) .

(22)

Note that (𝑥
𝑖
, 𝑡
𝑖
) ∈ 𝑆 is a countable dense subset in Ω; hence,

L𝑢(𝑥, 𝑡) = 0. It follows that 𝑢(𝑥, 𝑡) ≡ 0 from the existence of
L−1.
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Applying Gram-Schmidt process, we obtain an orthogo-
nal basis {Ψ̃

𝑖
(𝑥, 𝑡)}

∞

𝑖=1
in𝑊(Ω):

Ψ̃
𝑖 (𝑥, 𝑡) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
Ψ
𝑘 (𝑥, 𝑡) , 𝑖 = 1, 2, . . . . (23)

Theorem 9. If 𝑢(𝑥, 𝑡) is the solution of (19), then the approxi-
mate solution can be formed by

𝑢
𝑚 (𝑥, 𝑡) =

𝑚

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
) Ψ̃
𝑖 (𝑥, 𝑡) . (24)

Proof. From 𝑢(𝑥, 𝑡) ∈ 𝑊(Ω) and (21), it holds that

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=1

⟨𝑢 (𝑥, 𝑡) , Ψ̃
𝑖
(𝑥, 𝑡)⟩

𝑤
Ψ̃
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

⟨𝑢 (𝑥, 𝑡) ,

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
Ψ
𝑘
(𝑥, 𝑡)⟩

𝑤

Ψ̃
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢 (𝑥, 𝑡) , Ψ𝑘 (𝑥, 𝑡)⟩𝑤Ψ̃𝑖 (𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢 (𝑥, 𝑡) ,

L
(𝑦,𝑠)
𝐾((𝑥, 𝑡) , (𝑦, 𝑠))

(𝑦,𝑠)=(𝑥𝑘 ,𝑡𝑘)
⟩
𝑤

× Ψ̃
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
[L
(𝑦,𝑠)
⟨𝑢 (𝑥, 𝑡) ,

𝐾 ((𝑥, 𝑡) , (𝑦, 𝑠))⟩
𝑤
]
(𝑦,𝑠)=(𝑥𝑘 ,𝑡𝑘)

× Ψ̃
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
L
(𝑦,𝑠)
𝑢 (𝑥
𝑘
, 𝑡
𝑘
) Ψ̃
𝑖 (𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
) Ψ̃
𝑖 (𝑥, 𝑡) .

(25)

The approximate solution of (19) is 𝑚-truncation of Fourier
series about the exact solution 𝑢(𝑥, 𝑡) in (28), so 𝑢

𝑚
(𝑥, 𝑡) →

𝑢(𝑥, 𝑡) in𝑊(Ω) as𝑚 → ∞.

Theorem 10. The approximate solution 𝑢
𝑚
(𝑥, 𝑡) and its

derivatives uniformly converge to exact solution 𝑢(𝑥, 𝑡) and its
derivatives, respectively.

Proof. By the properties of 𝐾((𝑥, 𝑡), (𝑦, 𝑠)), we know that
there exist positive real numbers𝑀 = 𝑀

(𝑖,𝑗)
(𝑖 = 0, 1, 2 and

𝑗 = 0, 1, 2, 3), such that

𝜕
𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
𝐾((𝑥, 𝑡) , (𝑦, 𝑠))

𝑤
≤ 𝑀. (26)

Table 1: Numerical results for Example 11.

(𝑥, 𝑡) 𝑢(𝑥, 𝑡) 𝑢
20
(𝑥, 𝑡) Relative error

(0.65, 0.1) −0.062127 −0.0621255 2.33726𝐸 − 5

(0.85, 0.3) 0.340119 0.340117 6.44956𝐸 − 6

(0.45, 0.5) −2.09138 −2.09151 6.47869𝐸 − 6

(0.5, 0.7) −3.8955 −3.89524 6.66563𝐸 − 5

(0.4, 0.9) −6.14693 −6.14721 4.66011𝐸 − 5

(0.35, 1.1) −8.3421 −8.34287 9.21041𝐸 − 5

(0.25, 1.3) −8.93588 −8.93797 2.34743𝐸 − 4

(0.4, 1.5) −15.066 −15.0659 6.33660𝐸 − 6

(0.45, 1.7) −18.9015 −18.9 8.02067𝐸 − 5

(1, 2) 48.0 47.9863 2.84837𝐸 − 4

Therefore, as𝑚 → ∞ we have


𝜕
𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
𝑢
𝑚
(𝑥, 𝑡) − 𝜕

𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
𝑢 (𝑥, 𝑡)



=

𝜕
𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
(𝑢
𝑚
(𝑥, 𝑡) − 𝑢 (𝑥, 𝑡))



=

𝜕
𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
⟨𝑢
𝑚
(𝑦, 𝑠) − 𝑢 (𝑦, 𝑠) , 𝐾 ((𝑥, 𝑡) , (𝑦, 𝑠))⟩

𝑤



=

⟨𝑢
𝑚
(𝑦, 𝑠) − 𝑢 (𝑦, 𝑠) , 𝜕

𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
𝐾((𝑥, 𝑡) , (𝑦, 𝑠))⟩

𝑤



≤
𝑢𝑚 − 𝑢

𝑤


𝜕
𝑖+𝑗

𝑥
𝑖
𝑡
𝑗
𝐾((𝑥, 𝑡) , (𝑦, 𝑠))

𝑤

≤ 𝑀
𝑢𝑚 − 𝑢

𝑤.

(27)

4. Numerical Simulation and Comparison

In this section we will give some numerical examples of
multipoint boundary value problem that show the exactness
and usefulness of our presented process.

Example 11. This problem corresponds to (1) with 𝑎(𝑥, 𝑡) =
(𝑡+1) sin𝑥 and𝑓(𝑥, 𝑡) = 6𝑥(5−8𝑥2)− 𝑡2(𝑡−6)(𝑡+1)((24𝑥2−
5) cos𝑥 + 48𝑥 sin𝑥). The exact solution is 𝑢(𝑥) = (8𝑥3 −
5𝑥)(−𝑡

3
+ 6𝑡
2
). The numerical results are given in Table 1 for

𝑚 = 20. Here we take 𝑇 = 2 and 𝑐 = 1/2.

Example 12. Consider the following three-point nonlocal
elliptic-parabolic problem in [9]:

𝜕
2
𝑢

𝜕𝑡2
+
𝜕

𝜕𝑥
((1 + 𝑥)

𝜕𝑢

𝜕𝑥
)

= −𝑡 sin𝑥 + (𝑒−𝑡 + 𝑡) (cos𝑥 − 𝑥 sin𝑥)

0 < 𝑡 < 1, 0 < 𝑥 < 𝜋,
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Table 2: Maximum absolute error for Example 12.

Method 𝑚 = 30 𝑚 = 60 𝑚 = 90

Finite difference in [9] 0.015167 0.007318 0.004822
Finite difference in [9] 0.000908 0.000227 0.000101
RKSM 0.000441195 0.0000895156 0.0000527183

𝜕𝑢

𝜕𝑡
+
𝜕

𝜕𝑥
((1 + 𝑥)

𝜕𝑢

𝜕𝑥
) = (−2𝑒

−𝑡
+ 1 − 𝑡) sin𝑥

+ (𝑒
−𝑡
+ 𝑡) (cos𝑥 − 𝑥 sin𝑥) ,

− 1 < 𝑡 < 0, 0 < 𝑥 < 𝜋,

𝑢 (1, 𝑥) =
1

2
𝑢 (−1, 𝑥) +

1

2
𝑢 (−

1

2
, 𝑥)

+ (𝑒
−1
−
𝑒

2
−
1

2
𝑒
1/2
+
7

4
) sin𝑥,

0 ≤ 𝑥 ≤ 𝜋,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 1 ≤ 𝑡 ≤ −1.

(28)

The exact solution of this problem is 𝑢(𝑡, 𝑥) = (𝑒
−𝑡
+

𝑡) sin𝑥. In terms of (24), we calculate the approximate solu-
tion 𝑢

𝑚
(𝑥, 𝑡) for 𝑚 = 30, 60, 90. Comparing the maximum

absolute error by our method with finite difference methods,
Table 2 shows that our method has better accuracy.

5. Conclusion

In summary, a new numerical algorithm is provided to solve
three-point boundary value problems in a very favorable
reproducing kernel space. Using the good properties of
reproducing kernel space such as reproducing property and
existence of orthogonal basis, we obtain the series pattern
approximate solution through operator equation. Numerical
results show that the present method is an accurate and
reliable analytical technique.
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