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The present paper is concerned with the relationship between stepsize restriction and nonlinear stability of Runge-Kutta methods
for delay differential equations. We obtain a special stepsize condition guaranteeing global and asymptotical stability properties of
numerical methods. Some confirmations of the conditions on Runge-Kutta methods are illustrated at last.

1. Introduction

Neutral delay differential equations (NDDEs) are widely
used in various kinds of applied disciplines such as biology,
ecology, electrodynamics, and physics and hence intrigue lots
of researchers in numerical simultation and analysis (see,
e.g., [1–3]). Up to now, many researchers have discussed
nonlinear stability properties for NDDEs. In 2000, Bellen et
al. [4] studied 𝐵𝑁𝑓-stable continuous Runge-Kutta methods
for NDDEs. They extended the contractivity requirements
to the numerical stability analysis. Vermiglio and Torelli
further pointed out that the numerical solution produced
by the methods can preserve the contractivity property of
the theoretical solution in [5]. In 2002, Zhang [6] derived
nonlinear stability properties for theoretical and numerical
solutions of NDDEs based on natural Runge-Kutta schemes.
After that, Wang et al. [7, 8] first introduced the concepts
of GS(𝑙)- and GAS(𝑙)-stability for nonautonomous nonlinear
problems. They proved that (𝑘, 𝑙)-algebraically stable Runge-
Kuttamethods and (𝑘, 𝑝, 0)-algebraically stable general linear
methods lead to GS(𝑙)- and GAS(𝑙)-stability for NDDEs,
respectively. Recently, Bhrawy et al. [9–11] studied several
kinds of collocation method for some NDDEs. For more
analogues results, we refer readers to [12–15]. Useful as
these stability results are, however, no conclusions have
been found to develop the relationship between nonlinear
stability analysis and stepsize restrictionwith somenumerical

schemes for NDDEs, especially for some Runge-Kutta meth-
ods.

The present paper was in part inspired by the work of
Spijker et al. With stepsize restriction to some numerical
schemes, they revealed to us some monotonicity and sta-
bility properties for ODEs, respectively (see, [16–19]). We
extend their study to nonlinear NDDEs in the present paper.
With stepsize restriction to Runge-Kutta schemes, global
and asymptotical stability results for NDDEs are obtained,
respectively.

The rest of the paper is organized as follows. In Section 2,
we consider Runge-Kutta schemes with linear interpolation
procedure for NDDEs. Some concepts, such as global and
asymptotical stability, are also collected. Section 3 is devoted
to stability analysis. The given results set up a relationship
between the stepsize restriction and nonlinear stability for
nonlinear NDDEs. Some examples of Runge-Kutta schemes
are presented in Section 4. Finally, we end up with some
conclusions and extension in the last section.

2. Runge-Kutta Methods for NDDEs

In the present paper, we consider the following nonlinear
NDDEs:

𝑑

𝑑𝑡
[𝑦 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)] = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) , 𝑡 > 0,
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𝑦 (𝑡) = 𝜓 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(1)

and the perturbed problem

𝑑

𝑑𝑡
[𝑧 (𝑡) − 𝑁𝑧 (𝑡 − 𝜏)] = 𝑓 (𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏)) , 𝑡 > 0,

𝑧 (𝑡) = 𝜙 (𝑡) − 𝜏 ≤ 𝑡 ≤ 0.

(2)

Here, 𝜏 denotes a positive delay term,𝑁 ∈ C𝑑×𝑑 is a constant
matrix with ‖𝑁‖ < 1, 𝜓(𝑡) and 𝜙(𝑡) are continuous, and
𝑓: [0, +∞] × 𝑋 × 𝑋 → 𝑋, such that (1) and (2) own a
unique solution, respectively, where 𝑋 is a real or complex
Hilbert space. As in [20, 21], we assume there exist some inner
product ⟨⋅, ⋅⟩ and the induced norm ‖ ⋅ ‖ such that

Re ⟨(𝑦 − 𝑧) − 𝑁 (𝑢 − V) , 𝑓 (𝑡, 𝑦, 𝑢) − 𝑓 (𝑡, 𝑧, V)⟩

≤ 𝛼
󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩

2
+ 𝛽‖𝑢 − V‖2

+ 𝛿
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑦, 𝑢) − 𝑓 (𝑡, 𝑧, V)󵄩󵄩󵄩󵄩

2
,

(3)

where 𝛼 ≤ 0, 𝛽 ≥ 0, and 𝛿 < 0 are real constants.
When 𝑁 = 0, the problem (1) degenerates into nonlinear

DDEs of the following type:

𝑦
󸀠
(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) , 𝑡 > 0,

𝑦 (𝑡) = 𝜓 (𝑡) − 𝜏 ≤ 𝑡 ≤ 0.

(4)

Nonlinear stability analysis for such systems can be found in
[6, 22–25]. Condition (3) can be equivalent to the assump-
tions in these literatures (see [26], Remark 2.1).

Now, let us consider s-stage Runge-Kutta methods for (1);
the coefficients of the schemes may be organized in Buther
tableau as follows:

𝑐 𝐴

𝑏
𝑇 , (5)

where 𝑐 = [𝑐𝑙, . . . , 𝑐𝑠]
𝑇, 𝑏 = [𝑏1, . . . , 𝑏𝑠]

𝑇, and 𝐴 = (𝑎𝑖𝑗)
𝑠

𝑖,𝑗=1
.

According to Liu in [27], Runge-Kutta methods for
NDDEs can be written as

𝑦𝑛+1 − 𝑁𝑦𝑛+1

= 𝑦𝑛 − 𝑁𝑦𝑛 + ℎ

𝑠

∑

𝑗=1

𝑏𝑗𝑓 (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦
(𝑛)
𝑗 , 𝑦
(𝑛)
𝑗 ) ,

𝑦
(𝑛)
𝑖 − 𝑁𝑦

(𝑛)
𝑖

= 𝑦𝑛 − 𝑁𝑦𝑛 + ℎ

𝑠

∑

𝑗=1

𝑎𝑖𝑗𝑓 (𝑡𝑛 + 𝑐𝑗ℎ, 𝑦
(𝑛)
𝑗 , 𝑦
(𝑛)
𝑗 )

𝑖 = 1, 2, . . . , 𝑠,

(6)

where ℎ is stepsize and 𝑡𝑛 = 𝑛ℎ, 𝑦𝑛, 𝑦𝑛, 𝑦
(𝑛)
𝑖 and 𝑦

(𝑛)
𝑖 are

approximations to the analytic solutions 𝑦(𝑡𝑛), 𝑦(𝑡𝑛 − 𝜏),

𝑦(𝑡𝑛+𝑐𝑖ℎ), and 𝑦(𝑡𝑛+𝑐𝑖ℎ−𝜏), respectively.We set 𝜏 = (𝑚−𝜃)ℎ

with 𝜃 ∈ [0, 1), and the arguments 𝑦𝑛 and 𝑦
(𝑛)
𝑗 are determined

by

𝑦𝑛 = 𝜃𝑦𝑛−𝑚+1 + (1 − 𝜃) 𝑦𝑛−𝑚,

𝑦
(𝑛)
𝑗 = 𝜃𝑦

(𝑛−𝑚+1)
𝑗 + (1 − 𝜃) 𝑦

(𝑛−𝑚)
𝑗 ,

(7)

where𝑦𝑖 = 𝜓(𝑡𝑖) for 𝑡𝑖 ≤ 0 and𝑦
(𝑖)
𝑗 = 𝜓(𝑡𝑖+𝑐𝑗ℎ) for 𝑡𝑖+𝑐𝑗ℎ ≤ 0.

Now, let 𝑦𝑛 and 𝑧𝑛 be two sequences of approximations to
problems (1) and (2), respectively. FollowingDefinitions 9.1.1
and 9.1.2 in [1] for delay systems, we introduce some stability
concepts.

Definition 1. A numerical method for DDEs or NDDEs is
called globally stable, if there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 ≤ 𝐶 max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)
󵄩󵄩󵄩󵄩 (8)

holds when the method is applied to (1) and (2) under some
assumptions.

Definition 2. A numerical method for DDEs or NDDEs is
said to be asymptotically stable, if

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = 0 (9)

holds when the method is applied to (1) and (2) under some
assumptions.

3. Stability Analysis

In the section, we will discuss the relationship between the
stepsize restriction and nonlinear stability of the method.

Theorem 3. Assume condition (3) holds, 𝛼 + 𝛽 ≤ 0, and there
exists a positive real number 𝑟, such that the matrix

𝑀 = diag (𝑏) 𝐴 + 𝐴
𝑇 diag (𝑏) − 𝑏𝑏

𝑇
+

1

𝑟
diag (𝑏) (10)

is nonnegative definite, where 𝑏𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑠. Then the
Runge-Kutta method with linear interpolation procedure for
NDDEs (1) is globally stable under the stepsize restriction

ℎ

𝑟
≤ −2𝛿. (11)

Proof. Let {𝑦𝑛, 𝑦
(𝑛)
𝑖 , 𝑦
(𝑛)
𝑖 } and {𝑧𝑛, 𝑧

(𝑛)
𝑖 , 𝑧̃
(𝑛)
𝑖 } be two sequences

of approximations to problems (1) and (2), respectively, and
write

𝑈
(𝑛)
𝑖 = 𝑦

(𝑛)
𝑖 − 𝑧

(𝑛)
𝑖 , 𝑈̃

(𝑛)
0 = 𝑦

(𝑛)
𝑖 − 𝑧̃

(𝑛)
𝑖 ,

𝑈
(𝑛)
0 = 𝑦𝑛 − 𝑧𝑛, 𝑈̃

(𝑛)
0 = 𝑦𝑛 − 𝑧̃𝑛,

𝑊𝑖 = ℎ [𝑓 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑦
(𝑛)
𝑖 , 𝑦
(𝑛)
𝑖 ) − 𝑓 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑧

(𝑛)
𝑖 , 𝑧̃
(𝑛)
𝑖 )] .

(12)



Abstract and Applied Analysis 3

With the notation, Runge-Kutta methods with the same
stepsize ℎ for (1) and (2) yield

𝑈
(𝑛+1)
0 − 𝑁𝑈̃

(𝑛+1)
0 = 𝑈

(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0 +

𝑠

∑

𝑗=1

𝑏𝑗𝑊𝑗,

𝑈
(𝑛)
𝑖 − 𝑁𝑈̃

(𝑛)
𝑖 = 𝑈

(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0 +

𝑠

∑

𝑗=1

𝑎𝑖𝑗𝑊𝑗, 𝑖 = 1, 2, . . . , 𝑠.

(13)

Thus, we have

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛+1)
0 − 𝑁𝑈̃

(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩

2

= ⟨𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0 +

𝑠

∑

𝑗=1

𝑏𝑗𝑊𝑗, 𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0 +

𝑠

∑

𝑖=1

𝑏𝑖𝑊𝑖⟩

=
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

𝑏𝑖 Re ⟨𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0 ,𝑊𝑖⟩

+

𝑠

∑

𝑖,𝑗=1

𝑏𝑖𝑏𝑗 ⟨𝑊𝑖,𝑊𝑗⟩

=
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2

+ 2

𝑠

∑

𝑖=1

𝑏𝑖 Re⟨𝑈
(𝑛)
𝑖 − 𝑁𝑈̃

(𝑛)
𝑖 −

𝑠

∑

𝑗=1

𝑎𝑖𝑗𝑊𝑗,𝑊𝑖⟩

+

𝑠

∑

𝑖,𝑗=1

𝑏𝑖𝑏𝑗 ⟨𝑊𝑖,𝑊𝑗⟩

=
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

𝑏𝑖 Re ⟨𝑈
(𝑛)
𝑖 − 𝑁𝑈̃

(𝑛)
𝑖 ,𝑊𝑖⟩

−

𝑠

∑

𝑖,𝑗=1

(𝑏𝑖𝑎𝑖𝑗 + 𝑎𝑗𝑖𝑏𝑗 − 𝑏𝑖𝑏𝑗) ⟨𝑊𝑖,𝑊𝑗⟩ .

(14)

Now, in view of the nonnegative definite matrix𝑀, we obtain

−

𝑠

∑

𝑖,𝑗=1

(𝑏𝑖𝑎𝑖𝑗 + 𝑎𝑗𝑖𝑏𝑗 − 𝑏𝑖𝑏𝑗) ⟨𝑊𝑖,𝑊𝑗⟩ ≤
1

𝑟

𝑠

∑

𝑖=1

𝑏𝑖⟨𝑊𝑖,𝑊𝑖⟩. (15)

On the other hand, in terms of condition (3), we find

Re ⟨𝑈(𝑛)𝑖 − 𝑁𝑈̃
(𝑛)
𝑖 ,𝑊𝑖⟩

≤ 𝛼ℎ
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ 𝛽ℎ

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+

𝛿

ℎ

󵄩󵄩󵄩󵄩𝑊𝑖
󵄩󵄩󵄩󵄩

2
.

(16)

Then, together with (14), (15), and (16) and using the
conditions ℎ/𝑟 ≤ −2𝛿, we get
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛+1)
0 − 𝑁𝑈̃

(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2

+ 2

𝑠

∑

𝑖=1

ℎ𝑏𝑖 (𝛼ℎ
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ 𝛽ℎ

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ (

𝛿

ℎ
+

1

2𝑟
)
󵄩󵄩󵄩󵄩𝑊𝑖

󵄩󵄩󵄩󵄩

2
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

ℎ𝑏𝑖 (𝛼
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ 𝛽

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
) .

(17)

Noting that
󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
= [𝜃

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚+1)
𝑖

󵄩󵄩󵄩󵄩󵄩
+ (1 − 𝜃)

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚)
𝑖

󵄩󵄩󵄩󵄩󵄩
]
2

≤ 𝜃
2󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚+1)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ (1 − 𝜃)

2󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜃 (1 − 𝜃) (
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚+1)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
)

= 𝜃
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚+1)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ (1 − 𝜃)

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

(18)

and 𝛼 + 𝛽 ≤ 0, we have
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛+1)
0 − 𝑁𝑈̃

(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

ℎ𝛽𝑏𝑖 (
󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2

+ 2

𝑠

∑

𝑖=1

ℎ𝛽𝑏𝑖 (𝜃
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚+1)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜃)
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛−𝑚)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(0)
0 − 𝑁𝑈̃

(0)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

ℎ𝛽𝑏𝑖(

−1

∑

𝑗=−𝑚+1

𝜃
󵄩󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑗)
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

+

−1

∑

𝑗=−𝑚

(1 − 𝜃)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑗)
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(0)
0 − 𝑁𝑈̃

(0)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

𝑚ℎ𝛽𝑏𝑖 max
−𝑚≤𝑗≤−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑗)
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑈
(0)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2 ‖𝑁‖

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(0)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

𝑚ℎ𝛽𝑏𝑖 max
−𝑚≤𝑗≤−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑗)
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (2 + 2‖𝑁‖
2
+ 2𝜏

𝑠

∑

𝑖=1

𝛽𝑏𝑖) max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓(𝑡) − 𝜙(𝑡)
󵄩󵄩󵄩󵄩

2

= (2 + 2‖𝑁‖
2
+ 2𝜏𝛽) max

−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓(𝑡) − 𝜙(𝑡)
󵄩󵄩󵄩󵄩

2
.

(19)
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This implies that
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛+1)
0 − 𝑁𝑈̃

(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶 max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)
󵄩󵄩󵄩󵄩 , (20)

where 𝐶 = √(2 + 2‖𝑁‖
2
+ 2𝜏𝛽).

Note that ‖𝑁‖ < 1; we have
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩
≤ ‖𝑁‖

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩
+ 𝐶 max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)
󵄩󵄩󵄩󵄩

= ‖𝑁‖
󵄩󵄩󵄩󵄩󵄩
𝜃𝑈
𝑛−𝑚+2
0 + (1 − 𝜃)𝑈

𝑛−𝑚+1
0

󵄩󵄩󵄩󵄩󵄩

+ 𝐶 max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)
󵄩󵄩󵄩󵄩

≤ max (
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−𝑚+2
0

󵄩󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−𝑚+1
0

󵄩󵄩󵄩󵄩󵄩
)

+ 𝐶 max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)
󵄩󵄩󵄩󵄩 .

(21)

An induction to (21) yields
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩
≤ (1 + 𝐶) max

−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)
󵄩󵄩󵄩󵄩 . (22)

Therefore, the conclusion is proven.

Corollary 4. Assume condition (3) holds; 𝛼 + 𝛽 ≤ 0.
Then an algebraically stable Runge-Kutta method with linear
interpolation procedure for DDEs (4) or NDDEs (1) is globally
stable.

Remark 5. ARunge-Kuttamethod is algebraically stable if the
matrix

diag (𝑏) 𝐴 + 𝐴
𝑇 diag (𝑏) − 𝑏𝑏

𝑇 (23)

is nonnegative definite and 𝑏𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑠). For
example, the s-stageGauss, Radau I𝐴, Radau II𝐴, and Lobatto
III𝐶 methods are algebraically stable. Corollary 4 can be
derived for 𝑟 = ∞. This implies that the stepsize restriction
for DDEs disappears.

Corollary 6. Assume condition (3) holds, 𝛼+𝛽 ≤ 0, and there
exists a positive real number 𝑟, such that the matrix

𝑀 = diag (𝑏) 𝐴 + 𝐴
𝑇 diag (𝑏) − 𝑏𝑏

𝑇
+

1

𝑟
diag (𝑏) (24)

is nonnegative definite, where 𝑏𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑠. Then the
Runge-Kutta method with linear interpolation procedure for
DDEs (4) is globally stable under the stepsize restriction

ℎ

𝑟
≤ −2𝛿. (25)

Theorem 7. Assume condition (3) holds, 𝛼 + 𝛽 < 0,
the function 𝑓(𝑡, 𝑢, V) is uniformly Lipschitz continuous with
constant 𝐿 in variables 𝑢 and V, and there exists a positive real
number 𝑟, such that the matrix

𝑀 = diag (𝑏) 𝐴 + 𝐴
𝑇 diag (𝑏) − 𝑏𝑏

𝑇
+

1

𝑟
diag (𝑏) (26)

is nonnegative definite, where 𝑏𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑠. Then the
Runge-Kutta method with linear interpolation procedure for
NDDEs (1) is asymptotically stable under the stepsize restriction

ℎ

𝑟
≤ −2𝛿. (27)

Proof. Like in the proof of Theorem 3, let 𝜎 = 𝛼 + 𝛽 < 0, and
we can easily find
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛+1)
0 − 𝑁𝑈̃

(𝑛+1)
0

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
+ 2

𝑠

∑

𝑖=1

ℎ𝑏𝑖 (𝛼
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ 𝛽

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
)

≤ 2 (
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
+ ‖𝑁‖

2󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
)

+ 2

𝑠

∑

𝑖=1

ℎ𝑏𝑖 ((𝜎 − 𝛽)
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
+ 𝛽

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
)

= 2 (
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
+ ‖𝑁‖

2󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

2
)

+ 2

𝑠

∑

𝑖=1

ℎ𝛽𝑏𝑖 (
󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2
) + 2

𝑠

∑

𝑖=1

ℎ𝑏𝑖𝜎
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

≤ (2 + 2‖𝑁‖
2
+ 2𝜏

𝑠

∑

𝑖=1

𝛽𝑏𝑖) max
−𝜏≤𝑡≤0

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜙 (𝑡)
󵄩󵄩󵄩󵄩

2

+ 2

𝑛

∑

𝑗=1

𝑠

∑

𝑖=1

ℎ𝑏𝑖𝜎
󵄩󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑗)
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2
.

(28)

Note 𝜎 < 0 and 𝑏𝑖 ≥ 0; we have

lim
𝑛→∞

𝑠

∑

𝑖=1

𝑏𝑖

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩
= 0. (29)

On the other hand,
󵄩󵄩󵄩󵄩𝑊𝑖

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
ℎ [𝑓 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑦

(𝑛)
𝑖 , 𝑦
(𝑛)
𝑖 ) − 𝑓 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑧

(𝑛)
𝑖 , 𝑧̃
(𝑛)
𝑖 )]

󵄩󵄩󵄩󵄩󵄩

≤ ℎ𝐿 (
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
𝑖

󵄩󵄩󵄩󵄩󵄩
) .

(30)

Now, in view of (13), (29), and (30), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩
= 0. (31)

Since
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0 + 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩
+ ‖𝑁‖

󵄩󵄩󵄩󵄩󵄩
𝑈̃
(𝑛)
0

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0 − 𝑁𝑈̃

(𝑛)
0

󵄩󵄩󵄩󵄩󵄩
+ ‖𝑁‖max (

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−𝑚+2
0

󵄩󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−𝑚+1
0

󵄩󵄩󵄩󵄩󵄩
)

(32)

and ‖𝑁‖ < 1, an induction to (32) gives

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑛)
0

󵄩󵄩󵄩󵄩󵄩
= 0 (33)

which completes the proof.
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Corollary 8. Assume condition (3) holds, 𝛼 + 𝛽 < 0,
the function 𝑓(𝑡, 𝑢, V) is uniformly Lipschitz continuous with
constant 𝐿 in variables 𝑢 and V. Then an algebraically stable
Runge-Kutta method with linear interpolation procedure for
DDEs (4) or NDDEs (1) is asymptotically stable.

Corollary 9. Assume condition (3) holds, 𝛼 + 𝛽 < 0,
the function 𝑓(𝑡, 𝑢, V) is uniformly Lipschitz continuous with
constant 𝐿 in variables 𝑢 and V, and there exists a positive real
number 𝑟, such that the matrix

𝑀 = diag (𝑏) 𝐴 + 𝐴
𝑇 diag (𝑏) − 𝑏𝑏

𝑇
+

1

𝑟
diag (𝑏) (34)

is nonnegative definite, where 𝑏𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑠. Then the
Runge-Kutta method with linear interpolation procedure for
DDEs (4) is asymptotically stable under the stepsize restriction

ℎ

𝑟
≤ −2𝛿. (35)

4. Some Examples

As it is shown in the theorems, the parameters 𝛿 and 𝑟 in the
matrix 𝑀 play a key role in the stability analysis. The larger
the existed parameter 𝑟 is, the larger stepsize we could choose.
In this section, we will show some examples.

Consider the following case, like the conditions in [22] or
[28], if 𝑓(𝑡, 𝑦, 𝑢) = 𝑓(𝑡, 𝑦 − 𝑁𝑢) and

󵄩󵄩󵄩󵄩󵄩
𝜌 ((𝑦 − 𝑁𝑢) − (𝑧 − 𝑁V)) + 𝑓 (𝑡, 𝑦 − 𝑁𝑢) − 𝑓 (𝑡, 𝑧 − 𝑁V)

󵄩󵄩󵄩󵄩󵄩

≤ 𝜌
󵄩󵄩󵄩󵄩((𝑦 − 𝑁𝑢) − (𝑧 − 𝑁V))󵄩󵄩󵄩󵄩

(36)

with 𝜌 > 0, we have the following form in an inner product
norm:

Re ⟨(𝑦 − 𝑁𝑢) − (𝑧 − 𝑁V) , 𝑓 (𝑡, 𝑦 − 𝑁𝑢) − 𝑓 (𝑡, 𝑧 − 𝑁V)⟩

≤ 𝛿
󵄩󵄩󵄩󵄩󵄩
𝑓(𝑡, 𝑦 − 𝑁𝑢) − 𝑓(𝑡, 𝑧 − 𝑁V)

󵄩󵄩󵄩󵄩󵄩

2

(37)

with 𝛿 = −1/(2𝜌) < 0.
In particular, let 𝑓(𝑡, 𝑦, 𝑢) = −𝑎(𝑀𝑦 − 𝑁𝑢), where 𝑎 >

0, 𝑀 < 1 are constants independent of 𝑡, respectively. We
have

Re ⟨𝑦 − 𝑁𝑢, 𝑓 (𝑡, 𝑦, 𝑢)⟩

= Re ⟨𝑀𝑦 − 𝑁𝑢 − (𝑀 − 1) 𝑦, −𝑎 (𝑀𝑦 − 𝑁𝑢)⟩

= −
1

𝑎

󵄩󵄩󵄩󵄩𝑎 (𝑀𝑦 + 𝑁𝑢)
󵄩󵄩󵄩󵄩

2
+ 𝑎𝑀 (𝑀 − 1)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

+ Re ⟨𝑎 (1 − 𝑀)𝑦,𝑁𝑢⟩

≤ −
1

𝑎

󵄩󵄩󵄩󵄩𝑎 (𝑀𝑦 + 𝑁𝑢)
󵄩󵄩󵄩󵄩

2
+ 𝑎𝑀 (𝑀 − 1)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

+
1

2
𝑎 (1 − 𝑀) ‖𝑁‖ (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2
+ ‖𝑢‖
2
)

= (𝑎𝑀 (𝑀 − 1) +
1

2
𝑎 (1 − 𝑀) ‖𝑁‖)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

+
1

2
𝑎 (1 − 𝑀) ‖𝑁‖ ‖𝑢‖

2
−

1

𝑎

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑦, 𝑢)
󵄩󵄩󵄩󵄩

2
.

(38)

Next, we give some examples on how to calculate the
parameter 𝑟.

Example 1. Consider s-stage 1-order Runge-Kutta methods
(see [17], section 2.7)

0 0

1

𝑠

1

𝑠
0

2

𝑠

1

𝑠

1

𝑠
0

...
...

...
...

𝑠 − 1

𝑠

1

𝑠

1

𝑠

1

𝑠
. . .

1

𝑠
0

1

𝑠

1

𝑠

1

𝑠

1

𝑠

1

𝑠

1

𝑠

(39)

and we have

𝑀 = diag (𝑏) 𝐴 + 𝐴
𝑇 diag (𝑏) − 𝑏𝑏

𝑇
+

1

𝑟
diag (𝑏)

= (
1

𝑟𝑠
−

1

𝑠2
) 𝐼𝑠.

(40)

Thus, the matrix 𝑀 is nonnegative definite for 0 < 𝑟 ≤ 𝑠.
They imply that these methods for DDE with interpolation
are stable with stepsize restriction ℎ ≤ −2𝛿𝑠.

Example 2. Consider 2-stage 2-order Runge-Kutta method:

0 0 0

1 1 0

1

2

1

2

(41)

and we obtain

𝑀 =
[
[

[

1

2𝑟
−

1

4

1

4
1

4

1

2𝑟
−

1

4

]
]

]

. (42)

Therefore, the matrix𝑀 is nonnegative definite for 0 < 𝑟 ≤ 1.
They imply that the stepsize ℎ ≤ −2𝛿 is feasible under the
assumptions (3) for NDDEs (1).

For more Runge-Kutta methods with the nonnegative
definite matrix 𝑀, we refer readers to Section 2.2.4 in [28].
Higueras revealed to us how to find the largest 𝑟 such that
the matrix 𝑀 is nonnegative definite. He pointed that if
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the matrix diag(𝑏) is positive definite, the largest 𝑟 can be
determined by

𝑟 = − 𝜆
−1
min ([diag (𝑏)]

−1/2
[ diag (𝑏) 𝐴

+ 𝐴
𝑇 diag (𝑏) − 𝑏𝑏

𝑇
]

× [diag (𝑏)]
−1/2

) ,

(43)

where 𝜆min(⋅) denotes the smallest eigenvalue of the matrix
(⋅).

5. Conclusions and Discussions

In this study, we show that the Runge-Kutta methods with
stepsize restrictions can preserve global and asymptotical
stability of the continuous DDEs or NDDEs. An algebraically
stable Runge-Kutta method with linear interpolation proce-
dure forDDEs orNDDEs is globally stable and asymptotically
stable. These results can be easily extended to the following
equation with several delays:

𝑑

𝑑𝑡
[𝑦 (𝑡) −

𝑙

∑

𝑖=1

𝑁𝑖𝑦 (𝑡 − 𝜏𝑖)]

= 𝑓 (𝑡, 𝑦, 𝑦 (𝑡 − 𝜏1) , . . . , 𝑦 (𝑡 − 𝜏𝑙)) , 𝑡 ≥ 0,

𝑦 (𝑡) = 𝜓 (𝑡) , 𝑡 ≤ 0,

(44)

under the following assumption:

Re⟨(𝑦 − 𝑧) −

𝑙

∑

𝑖=1

𝑁𝑖 (𝑦𝑖 − 𝑧𝑖) , 𝑓 (𝑡, 𝑦, 𝑦1, . . . , 𝑦𝑁)

−𝑓 (𝑡, 𝑧, 𝑧1, . . . , 𝑧𝑁)⟩

≤ 𝛼
󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩

2
+

𝑁

∑

𝑖=1

𝛽𝑖
󵄩󵄩󵄩󵄩𝑦𝑖 − 𝑧𝑖

󵄩󵄩󵄩󵄩

2

+ 𝛿
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑦, 𝑦1, . . . , 𝑦𝑁) − 𝑓 (𝑡, 𝑧, 𝑧1, . . . , 𝑧𝑁)

󵄩󵄩󵄩󵄩

2
,

(45)

where 𝜏𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑙, 𝑦𝑖 = 𝑦(𝑡 − 𝜏𝑖), and 𝑧𝑖 = 𝑧(𝑡 − 𝜏𝑖).
We do not list them here for the sake of brevity.

Moreover, the present results have certain instructive
effect in numerical simulation. In the future, we hope to
apply the results to some real-world problems, for example,
reaction-diffusion dynamical systems with time delay [24]
and non-Fickian delay reaction-diffusion equations [25, 29].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is supported by NSFC (Grant nos. 11201161,
11171125, and 91130003).

References

[1] A. Bellen and M. Zennaro, Numerical Methods for Delay
Differential Equations, Clarendon Press, Oxford, UK, 2003.

[2] H. Brunner, Collocation Methods for Volterra Integral and
Related Functional Differential Equations, Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[3] W. H. Enright and H. Hayashi, “Convergence analysis of the
solution of retarded and neutral delay differential equations by
continuous numerical methods,” SIAM Journal on Numerical
Analysis, vol. 35, no. 2, pp. 572–585, 1998.

[4] A. Bellen, N. Guglielmi, and M. Zennaro, “Numerical stability
of nonlinear delay differential equations of neutral type,” Journal
of Computational and Applied Mathematics, vol. 125, no. 1-2, pp.
251–263, 2000.

[5] R. Vermiglio and L. Torelli, “A stable numerical approach for
implicit non-linear neutral delay differential equations,” BIT
Numerical Mathematics, vol. 43, no. 1, pp. 195–215, 2003.

[6] C. Zhang, “Nonlinear stability of natural Runge-Kutta methods
for neutral delay differential equations,” Journal of Computa-
tional Mathematics, vol. 20, no. 6, pp. 583–590, 2002.

[7] W. Wang, S. Li, and K. Su, “Nonlinear stability of Runge-Kutta
methods for neutral delay differential equations,” Journal of
Computational andAppliedMathematics, vol. 214, no. 1, pp. 175–
185, 2008.

[8] W. Wang, S. Li, and K. Su, “Nonlinear stability of general linear
methods for neutral delay differential equations,” Journal of
Computational and Applied Mathematics, vol. 224, no. 2, pp.
592–601, 2009.

[9] A. H. Bhrawy, A. AlZahrani, D. Baleanu, and Y. Alhamed, “A
modified generalized Laguerre-Gauss collocation method for
fractional neutral functional differential equations on the half-
line,”Abstract and Applied Analysis, vol. 2014, Article ID 692193,
7 pages, 2014.

[10] A. H. Bhrawy and M. A. Alghamdi, “A shifted Jacobi-Gauss
collocation scheme for solving fractional neutral functional-
differential equations,” Advances in Mathematical Physics, vol.
2014, Article ID 595848, 8 pages, 2014.

[11] A. H. Bhrawy, L. M. Assas, E. Tohidi, and M. A. Alghamdi,
“A Legendre-Gauss collocation method for neutral functional-
differential equations with proportional delays,” Advances in
Difference Equations, vol. 2013, article 63, 2013.

[12] E. H. Doha, A. H. Bhrawy, D. Baleanu, and R. M. Hafez, “A new
Jacobi rational-Gauss collocation method for numerical solu-
tion of generalized pantograph equations,” Applied Numerical
Mathematics, vol. 77, pp. 43–54, 2014.

[13] E. H. Doha, D. Baleanu, A. H. Bhrawy, and R. M. Hafez, “A
pseudospectral algorithm for solving multipantograph delay
systems on a semi-infinite interval using legendre rational
functions,” Abstract and Applied Analysis, vol. 2014, Article ID
816473, 9 pages, 2014.

[14] D. Li and C. Zhang, “Nonlinear stability of discontinuous
Galerkin methods for delay differential equations,” Applied
Mathematics Letters, vol. 23, no. 4, pp. 457–461, 2010.

[15] Y. L. Niu and C. J. Zhang, “Exponential stability of nonlinear
delay differential equations with multidelays,” Acta Mathemati-
cae Applicatae Sinica, vol. 31, no. 4, pp. 654–662, 2008.

[16] L. Ferracina and M. N. Spijker, “Stepsize restrictions for total-
variation-boundedness in general Runge-Kutta procedures,”
Applied Numerical Mathematics, vol. 53, no. 2-4, pp. 265–279,
2005.



Abstract and Applied Analysis 7

[17] I. Higueras, “On strong stability preserving time discretization
methods,” Journal of Scientific Computing, vol. 21, no. 2, pp. 193–
223, 2004.

[18] M. N. Spijker, “Stepsize restrictions for stability of one-step
methods in the numerical solution of initial value problems,”
Mathematics of Computation, vol. 45, no. 172, pp. 377–392, 1985.

[19] M. N. Spijker, “Stepsize conditions for general monotonicity in
numerical initial value problems,” SIAM Journal on Numerical
Analysis, vol. 45, no. 3, pp. 1226–1245, 2007.

[20] C. Zhang and Y. He, “The extended one-leg methods for
nonlinear neutral delay-integro-differential equations,” Applied
Numerical Mathematics, vol. 59, no. 6, pp. 1409–1418, 2009.

[21] L.Wen, S.Wang, andY. Yu, “Dissipativity of Runge-Kuttameth-
ods for neutral delay integro-differential equations,” Applied
Mathematics and Computation, vol. 215, no. 2, pp. 583–590,
2009.

[22] K. Dekker and J. G. Verwer, Stability of Runge-Kutta Methods
for Stiff Nonlinear Differential Equations, North-Holland Pub-
lishing, Amsterdam, The Netherlands, 1984.

[23] K. J. In ’t Hout, “Stability analysis of Runge-Kutta methods
for systems of delay differential equations,” IMA Journal of
Numerical Analysis, vol. 17, no. 1, pp. 17–27, 1997.

[24] D. Li, C. Zhang, and H. Qin, “LDG method for reaction-
diffusion dynamical systems with time delay,” Applied Mathe-
matics and Computation, vol. 217, no. 22, pp. 9173–9181, 2011.

[25] D. Li, C. Zhang, and W. Wang, “Long time behavior of non-
Fickian delay reaction-diffusion equations,”Nonlinear Analysis:
Real World Applications, vol. 13, no. 3, pp. 1401–1415, 2012.

[26] C. Huang, H. Fu, S. Li, and G. Chen, “Nonlinear stability of
general linear methods for delay differential equations,” BIT
Numerical Mathematics, vol. 42, no. 2, pp. 380–392, 2002.

[27] Y. K. Liu, “Numerical solution of implicit neutral functional-
differential equations,” SIAM Journal on Numerical Analysis,
vol. 36, no. 2, pp. 516–528, 1999.

[28] I. Higueras, “Monotonicity for Runge-Kutta methods: inner
product norms,” Journal of Scientific Computing, vol. 24, no. 1,
pp. 97–117, 2005.

[29] D. Li, C. Tong, and J. Wen, “Stability of exact and discrete
energy for non-Fickian reaction-diffusion equations with a
variable delay,” Abstract and Applied Analysis, vol. 2014, Article
ID 840573, 9 pages, 2014.


