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This paper investigates the expression and properties of Green’s function for a second-order singular boundary value problem with
integral boundary conditions and delayed argument −𝑥 (𝑡) − 𝑎 (𝑡) 𝑥


(𝑡) + 𝑏 (𝑡) 𝑥 (𝑡) = 𝜔 (𝑡) 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) , 𝑡 ∈ (0, 1) ; 𝑥


(0) =

0, 𝑥 (1) − ∫

1

0
ℎ (𝑡) 𝑥 (𝑡) 𝑑𝑡 = 0, where 𝑎 ∈ ([0, 1] , [0, +∞)) , 𝑏 ∈ 𝐶 ([0, 1] , (0, +∞)) and, 𝜔 may be singular at 𝑡 = 0 or/and at 𝑡 = 1.

Furthermore, several new and more general results are obtained for the existence of positive solutions for the above problem by
using Krasnosel’skii’s fixed point theorem. We discuss our problems with a delayed argument, which may concern optimization
issues of some technical problems. Moreover, the approach to express the integral equation of the above problem is different from
earlier approaches. Our results cover a second-order boundary value problem without deviating arguments and are compared with
some recent results.

1. Introduction

Boundary value problems with integral boundary conditions
arise naturally in thermal conduction problems [1], semi-
conductor problems [2], hydrodynamic problems [3], and so
on. It is interesting to point out that such problems include
two-, three-, and multipoint and nonlocal boundary value
problems as special cases and have been extensively studied
in the last ten years; see, for example, [4–18]. Recently, Feng
et al. [19] applied the fixed point theory in a cone for strict set
contraction operators to study the existence and multiplicity
of positive solutions for the problem given by

𝑥


+ 𝑓 (𝑡, 𝑥) = 𝜃, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝜃, 𝑥 (1) = ∫

1

0

𝑔 (𝑡) 𝑥 (𝑡) 𝑑𝑡,

(1)

where 𝜃 is the zero element of a real Banach space 𝐸.
At the same time, a class of boundary value problems

with deviating arguments are receiving much attention. For

example, in [20], Yang et al. studied the existence and
multiplicity of positive solutions to a three-point boundary
value problem with an advanced argument:

𝑥



(𝑡) + 𝑎 (𝑡) 𝑓 (𝑥 (𝛼 (𝑡))) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑏𝑥 (𝜂) = 𝑥 (1) ,

(2)

where 0 < 𝜂 < 1, 𝑏 > 0, and 1 − 𝑏𝜂 > 0. The
main tool is the fixed point index theory. It is clear that the
solution of [20] is concave when 𝑎(𝑡) ≥ 0 on [0, 1] and
𝑓(𝑥) ≥ 0 on [0,∞). However, few papers have reported the
same problems where the solution is without concavity; for
example, see some recent excellent results and applications
of the case of ordinary differential equations with deviating
arguments to a variety of problems from Jankowski [21–23],
Jiang andWei [24], Wang [25], Wang et al. [26], and Hu et al.
[27]. This paper will resolve this problem.
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2 Abstract and Applied Analysis

Consider the second-order singular boundary value
problem with integral boundary conditions and a delayed
argument:

𝐿𝑥 = 𝜔 (𝑡) 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) , 𝑡 ∈ (0, 1) ,

𝑥



(0) = 0, 𝑥 (1) − ∫

1

0

ℎ (𝑡) 𝑥 (𝑡) 𝑑𝑡 = 0,

(3)

where 𝐿 denotes the linear operator and

𝐿𝑥 := −𝑥


− 𝑎𝑥


+ 𝑏𝑥,

(4)

where 𝑎 ∈ 𝐶([0, 1], [0, +∞)), 𝑏 ∈ 𝐶([0, 1], (0, +∞)), 𝑓 ∈

𝐶([0, 1] × [0, +∞) → [0, +∞)), and 𝜔 may be singular at
𝑡 = 0 or/and at 𝑡 = 1.

Throughout this paper, we assume that 𝛼(𝑡) ̸≡ 𝑡 on 𝐽 =
[0, 1]. In addition, 𝜔, 𝑓, 𝛼, and ℎ satisfy the following:

(𝐻
1
) 𝜔 ∈ 𝐶((0, 1), [0, +∞)) with 0 < ∫1

0
𝜔(𝑠)𝑑𝑠 < ∞ and 𝜔

does not vanish on any subinterval of (0, 1);
(𝐻
2
) 𝑓 ∈ 𝐶([0, 1] × [0, +∞), [0, +∞)), 𝛼 ∈ 𝐶(𝐽, 𝐽) with
𝛼(𝑡) ≤ 𝑡 on 𝐽;

(𝐻
3
) ℎ ∈ 𝐶[0, 1] is nonnegative with ] ∈ [0, 1), where

] = ∫
1

0

ℎ (𝑡) 𝜙 (𝑡) 𝑑𝑡,

(5)

where 𝜙 satisfies

−𝜙



(𝑡) − 𝑎𝜙



(𝑡) + 𝑏𝜙 (𝑡) = 0, 𝜙



(0) = 0, 𝜙 (1) = 1.
(6)

Remark 1. Generally, when 𝑦(𝑡) ≥ 0 on 𝐽, the solution 𝑥 is
not concave for the linear equation

𝐿𝑥 − 𝑦 (𝑡) = 0. (7)

This means that the method depending on concavity is no
longer valid, andwe need to introduce a newmethod to study
this kind of problems.

Remark 2. For simplicity we only consider Neumann bound-
ary conditions since all the results obtained in this paper can
also be adapted with minor changes to the other boundary
conditions.

Some special cases of (3), such as boundary value prob-
lems with delay, have been investigated [28–32]. It is not
difficult to see that the corresponding function 𝑓 appearing
on the right-hand side depends on𝑥(𝑡−𝜏), 𝜏 > 0, where initial
function 𝑥 is given on the initial set, for example, [−𝜏, 0]. T.
Jankowski and R. Jankowski [33, 34] pointed out that, in such
cases 𝛼(𝑡) = 𝑡 − 𝜏, there are some problems with a constant
delay 𝜏. If we consider the differential problem on intervals
[0, 𝑘], where 𝑘 ≤ 𝜏, then it means that we have no delays; we
have such a situation in [32]. If 𝑘 > 𝜏, then it is easy to solve
the differential equation on [0, 𝜏], since we have the solution
on the initial set [−𝜏, 0]. Continuing this process, we can find
a solution on the whole interval [0, 𝑘], by using the method
of steps. In our paper, for example, the deviating argument 𝛼
can have a form 𝛼(𝑡) = 𝜌𝑡 = 𝑡 − (1 − 𝜌)𝑡 with a fixed number

𝜌 ∈ (0, 1), so the delay (1 − 𝜌)𝑡 is a function of 𝑡. In this case,
the initial set reduces to one point 𝑡 = 0, and we cannot apply
the step method. To our knowledge, it is the first paper in
which positive solution has been investigated for a second-
order singular differential equation with a delayed argument
under the case that 𝐿𝑥 := −𝑥 − 𝑎𝑥 + 𝑏𝑥.

Being directly inspired by [5, 12, 20, 21], the authors will
prove several new and more general results for the existence
of positive solutions for problem (3) by using fixed point
theories in a cone. Another contribution of this paper is
to study the expression and properties of Green’s function
associated with problem (3). The expression of the integral
equation is simpler than that of [5, 12].

The organization of this paper is as follows. In Section 2,
we present the expression and properties of Green’s function
associated with the problem (3). In Section 3, we present
some definitions and lemmas which are needed throughout
this paper. In Section 4, we use fixed point theorem to
obtain the existence of positive solutions for problem (3)
with a delayed argument 𝛼. In particular, our results in these
sections are new when 𝛼(𝑡) ≡ 𝑡 on 𝑡 ∈ 𝐽. Finally, in Section 5,
three examples are also included to illustrate themain results.

2. Expression and Properties of
Green’s Function

Theorem 3. Assume that ] ̸= 1. Then for any 𝑦 ∈ 𝐶[0, 1], the
boundary value problem

−𝑥



(𝑡) − 𝑎 (𝑡) 𝑥



(𝑡) + 𝑏 (𝑡) 𝑥 (𝑡) − 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑥



(0) = 0, 𝑥 (1) − ∫

1

0

ℎ (𝑡) 𝑥 (𝑡) 𝑑𝑡 = 0

(8)

has a unique solution

𝑥 (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

(9)

where

𝑞 (𝑡) = exp(∫
𝑡

0

𝑎 (𝑠) 𝑑𝑠) , 𝐻 (𝑡, 𝑠) = 𝐺 (𝑡, 𝑠) + 𝐺

1
(𝑡, 𝑠) ,

𝐺 (𝑡, 𝑠) =

1

Δ

{

𝜙 (𝑠) 𝜓 (𝑡) , 𝑖𝑓 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝜙 (𝑡) 𝜓 (𝑠) , 𝑖𝑓 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐺

1
(𝑡, 𝑠) =

𝜙 (𝑡)

1 − ]
∫

1

0

𝐺 (𝜏, 𝑠) ℎ (𝜏) 𝑑𝜏.

(10)

Here 𝜙 and 𝜓 satisfy (6) and

𝐿𝜓 = 0, 𝜓 (0) = 1, 𝜓 (1) = 0, (11)

respectively.

Proof. The proof is similar to that of Lemma 2.3 in [5] and
Lemma 2.1 in [35].
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Remark 4. It is not difficult from [5, 12] to show that Δ :=

−𝜙(0)𝜓


(0) > 0 and (i) 𝜙 is nondecreasing on 𝐽 and 𝜙 > 0 on

𝐽 and (ii) 𝜓 is strictly decreasing on 𝐽.

Remark 5. The expression of the integral equation (9) is
different from that of (2.10) in [5] and that of (2.9) in [12].

Remark 6. Noticing 𝑎 ∈ 𝐶([0, 1], [0, +∞)), it follows from
the definition of 𝑞 that

1 ≤ 𝑞 (𝑡) ≤ 𝑒

𝑀 for 𝑡 ∈ 𝐽, (12)

where𝑀 = max
𝑡∈𝐽
𝑎(𝑡).

Lemma 7. Let 𝜉 ∈ (0, 1), 𝐺, 𝐺
1
, and 𝐻 be given as in

Theorem 3. Then one has the following results:

𝐺 (𝑡, 𝑠) ≤ 𝐺 (𝑠, 𝑠) , 𝐺

1
(𝑡, 𝑠) ≤ 𝐺 (1, 𝑠) ,

𝐻 (𝑡, 𝑠) ≤ 𝐻 (𝑠) ≤ 𝐻

0
,

∀𝑡, 𝑠 ∈ 𝐽,

(13)

𝐺 (𝑡, 𝑠) ≥ 𝛿𝐺 (𝑠, 𝑠) , 𝐺

1
(𝑡, 𝑠) ≥ 𝜙 (0) 𝐺

1
(1, 𝑠) ,

𝐻 (𝑡, 𝑠) ≥ 𝛿𝐻 (𝑠) ≥ 𝛿𝐻

0
,

∀𝑡 ∈ [0, 𝜉] , 𝑠 ∈ 𝐽,

(14)

where

𝐻(𝑠) = 𝐺 (𝑠, 𝑠) + 𝐺

1
(1, 𝑠) , 𝐻

0
= max
𝑠∈𝐽

𝐻(𝑠) ,

𝐻

0
= min
𝑠∈𝐽

𝐻(𝑠) , 𝛿 = min {𝜓 (𝜉) , 𝜙 (0)} .
(15)

Proof. Noticing Remark 4, it follows from the definition of
𝐺(𝑡, 𝑠),𝐺

1
(𝑡, 𝑠), and𝐻(𝑡, 𝑠) that (13) holds. Now, we show that

(14) also holds.
In fact, for 𝑡 ∈ [0, 𝜉] and 𝑠 ∈ 𝐽, we have

𝐺 (𝑡, 𝑠)

𝐺 (𝑠, 𝑠)

≥ min{
𝜓 (𝑡)

𝜓 (𝑠)

,

𝜙 (𝑡)

𝜙 (𝑠)

} ≥ min{
𝜓 (0)

𝜓 (0)

,

𝜙 (𝜉)

𝜙 (1)

}

= {𝜓 (𝜉) , 𝜙 (0)} =: 𝛿.

(16)

Similarly, we can prove that 𝐺
1
(𝑡, 𝑠) ≥ 𝐺

1
(0, 𝑠) ≥

𝜙(0)𝐺

1
(1, 𝑠) for 𝑡 ∈ [0, 𝜉] and 𝑠 ∈ 𝐽. This and (15) imply that

𝐻(𝑡, 𝑠) ≥ 𝛿𝐺 (𝑠, 𝑠) + 𝜙 (0) 𝐺

1
(1, 𝑠) = 𝛿𝐻 (𝑠) ,

∀𝑡 ∈ [0, 𝜉] , 𝑠 ∈ 𝐽.

(17)

This gives the proof of Lemma 7.

Remark 8. It follows from (13) and (14) that

𝛿𝐻

0
≤ 𝐻 (𝑡, 𝑠) ≤ 𝐻

0
, ∀𝑡 ∈ [0, 𝜉] , 𝑠 ∈ 𝐽.

(18)

3. Preliminaries

In this section, we first present some definitions and lemmas
which are needed throughout this paper.

Definition 9 (see [36]). Let 𝐸 be a real Banach space over R.
A nonempty closed set 𝑃 ⊂ 𝐸 is said to be a cone provided
that

(i) 𝑎𝑢 + 𝑏V ∈ 𝑃 for all 𝑢, V ∈ 𝑃 and all 𝑎 ≥ 0, 𝑏 ≥ 0;
(ii) 𝑢, −𝑢 ∈ 𝑃 implies 𝑢 = 0.

Every cone𝑃 ⊂ 𝐸 induces an ordering in𝐸 given by 𝑥 ≤ 𝑦
if and only if 𝑦 − 𝑥 ∈ 𝑃.

Let 𝐸 = 𝐶[0, 1]. Then 𝐸 is a real Banach space with the
norm ‖ ⋅ ‖ defined by

‖𝑥‖ = max
𝑡∈𝐽

|𝑥 (𝑡)| , 𝑥 ∈ 𝐸. (19)

Definition 10. A function 𝑥 ∈ 𝐸 ∩ 𝐶2(0, 1) is called a solution
of (3) if it satisfies (3). If 𝑥(𝑡) ≥ 0 and 𝑥(𝑡) ̸≡ 0 on 𝐽, then 𝑥
is called a positive solution of (3).

Define a cone𝐾 in 𝐸 by

𝐾 = {𝑥 ∈ 𝐸 : 𝑥 (𝑡) ≥ 0, min
𝑡∈[0,𝜉]

𝑥 (𝑡) ≥ 𝛿 ‖𝑥‖} . (20)

Also, define, for a positive number 𝑟,Ω
𝑟
by

Ω

𝑟
= {𝑥 ∈ 𝐸 : ‖𝑥‖ < 𝑟} . (21)

Note that 𝜕Ω
𝑟
= {𝑥 ∈ 𝐸 : ‖𝑥‖ = 𝑟}.

Define 𝑇 : 𝐾 → 𝐾 by

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠.

(22)

Lemma 11. Assume that (𝐻
1
)–(𝐻
3
) hold.Then,𝑇(𝐾) ⊂ 𝐾 and

𝑇 : 𝐾 → 𝐾 are completely continuous.

Proof. For 𝑥 ∈ 𝐾, it follows from (13) and (22) that

‖𝑇𝑥‖ = max
𝑡∈𝐽

∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≤ ∫

1

0

𝐻(𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠.

(23)

It follows from (14), (22), and (23) that

min
𝑡∈[0,𝜉]

(𝑇𝑥) (𝑡) = min
𝑡∈[0,𝜉]

∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿∫

1

0

𝐻(𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿 ‖𝑇𝑥‖ .

(24)

Thus, 𝑇(𝐾) ⊂ 𝐾.
Next, by standard methods and Ascoli-Arzela theorem,

one can prove that 𝑇 : 𝐾 → 𝐾 is completely continuous. So
it is omitted, and the lemma is proved.

Remark 12. From (22), we know that 𝑥 ∈ 𝐸 is a solution of
problem (3) if and only if 𝑥 is a fixed point of operator 𝑇.

In the rest of this section,we state awell knownfixedpoint
theorem which we need later.
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Lemma 13 (see [36]). Let 𝑃 be a cone in a real Banach space
𝐸. AssumeΩ

1
andΩ

2
are bounded open sets in 𝐸 with 0 ∈ Ω

1
,

Ω

1
⊂ Ω

2
. If

𝐴 : 𝑃 ∩ (Ω

2
\ Ω

1
) → 𝑃 (25)

is completely continuous such that either

(i) ‖𝐴𝑥‖ ≤ ‖𝑥‖, for all 𝑥 ∈ 𝑃 ∩ 𝜕Ω
1
, and ‖𝐴𝑥‖ ≥ ‖𝑥‖, for

all 𝑥 ∈ 𝑃 ∩ 𝜕Ω
2
, or

(ii) ‖𝐴𝑥‖ ≥ ‖𝑥‖, for all 𝑥 ∈ 𝑃 ∩ 𝜕Ω
1
, and ‖𝐴𝑥‖ ≤ ‖𝑥‖, for

all 𝑥 ∈ 𝑃 ∩ 𝜕Ω
2
,

then 𝐴 has at least one fixed point in 𝑃 ∩ (Ω
2
\ Ω

1
).

4. Existence of Single
or Twin Positive Solutions

For convenience, we introduce the following notations:

𝑓

0
= lim sup
𝑦→0

max
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

, 𝑓

0
= lim inf
𝑦→0

min
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

,

𝑓

∞
= lim sup
𝑦→∞

max
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

, 𝑓

∞
= lim inf
𝑦→∞

min
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

.

(26)

We also define as [37] 𝑖
0
= number of zeros in the set

{𝑓

0
, 𝑓

∞
} and 𝑖

∞
= number of infinities in the set {𝑓

0
, 𝑓

∞
}.

Sun and Li [38] pointed out that 𝑖
0
, 𝑖
∞
= 0, 1, or 2, and there

are six possible cases: (i) 𝑖
0
= 0 and 𝑖

∞
= 0; (ii) 𝑖

0
= 0 and

𝑖

∞
= 1; (iii) 𝑖

0
= 0 and 𝑖

∞
= 2; (iv) 𝑖

0
= 1 and 𝑖

∞
= 0;

(v) 𝑖
0
= 1 and 𝑖

∞
= 1; and (vi) 𝑖

0
= 2 and 𝑖

∞
= 0. By

using Krasnoseliis fixed point theorem in a cone, some results
are obtained for the existence of at least one or two positive
solutions of problem (3) for 𝛼(𝑡) ≤ 𝑡 on 𝐽 under the above six
possible cases.

4.1. For the Case 𝑖
0
= 1 and 𝑖

∞
= 1. In this subsection, we

discuss the existence of single positive solution for problem
(3) under 𝑖

0
= 1 and 𝑖

∞
= 1.

For convenience, we introduce the following notations:

𝛾 = ∫

1

0

𝜔 (𝑠) 𝑑𝑠, 𝛾

1
= ∫

1

𝜉

𝜔 (𝑠) 𝑑𝑠.
(27)

Theorem 14. Assume that (𝐻
1
)–(𝐻
3
) hold. If 𝑖

0
= 1 and 𝑖

∞
=

1, then problem (3) has at least one positive solution.

Proof. First, we consider the case 𝑓0 = 0 and 𝑓
∞
= ∞. Since

𝑓

0
= 0, then there exists 𝑟 > 0 such that

𝑓 (𝑡, 𝑥) ≤

1

𝐻

0
𝛾𝑒

𝑀
𝑥 ∀𝑡 ∈ 𝐽, 0 ≤ 𝑥 ≤ 𝑟. (28)

Since 0 ≤ 𝛼(𝑡) ≤ 𝑡 ≤ 1 on [0, 𝜉], it follows from 0 ≤ 𝑥(𝑡) ≤

𝑟 on 𝐽 that

0 ≤ 𝑥 (𝛼 (𝑡)) ≤ 𝑟 for 𝑡 ∈ 𝐽. (29)

Consequently, for any 𝑡 ∈ 𝐽 and 𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑟
, (13) and

(22) imply

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≤ 𝐻

0
𝑒

𝑀
∫

1

0

𝜔 (𝑠)

1

𝑒

𝑀
𝛾𝐻

0
𝑥 (𝛼 (𝑠)) 𝑑𝑠

≤

1

𝛾

∫

1

0

𝜔 (𝑠) 𝑑𝑠 ‖𝑥‖

= ‖𝑥‖ ,

(30)

which implies

‖𝑇𝑥‖ ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑟
. (31)

Next, turning to 𝑓
∞

= ∞, there exists 𝑅 satisfying 0 <

𝑟 < 𝑅 such that

𝑓 (𝑡, 𝑥) ≥

1

𝛿𝐻

0
𝛾

1

𝑥, ∀𝑡 ∈ 𝐽, 𝑥 ≥ 𝑅. (32)

Since 0 ≤ 𝛼(𝑡) ≤ 𝑡 ≤ 𝜉 on [0, 𝜉], it follows from 𝑥(𝑡) ≥ 𝑅

on 𝐽 that

𝑥 (𝛼 (𝑡)) ≥ 𝑅 for 𝑡 ∈ [0, 𝜉] . (33)

Hence, for 𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑅
, it follows from Remark 8 and (22)

that

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

1

0

𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠)

1

𝛿𝐻

0
𝛾

1

𝑥 (𝛼 (𝑠)) 𝑑𝑠

≥

1

𝛿𝛾

1

∫

𝜉

0

𝜔 (𝑠) 𝑑𝑠𝛿 ‖𝑥‖

= ‖𝑥‖ ,

(34)

which implies

‖𝑇𝑥‖ ≥ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑅
. (35)

Thus, by (i) of Lemma 13, it follows that𝑇 has a fixed point
𝑥 in 𝐾 ∩ (Ω

𝑅
\ Ω

𝑟
) with

𝑟 ≤ ‖𝑥‖ ≤ 𝑅. (36)

Remark 12 shows that problem (3) has at least one positive
solution 𝑥 with

𝑟 ≤ ‖𝑥‖ ≤ 𝑅. (37)
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Next, we consider the case 𝑓
0
= ∞ and 𝑓∞ = 0. Since

𝑓

0
= ∞, we can choose 𝑟 > 0 such that

𝑓 (𝑡, 𝑥) ≥

1

𝛿𝐻

0
𝛾

1

𝑥, ∀𝑡 ∈ 𝐽, 0 ≤ 𝑥 ≤ 𝑟. (38)

Since 0 ≤ 𝛼(𝑡) ≤ 𝑡 ≤ 𝜉 on [0, 𝜉], it follows from 0 ≤ 𝑥(𝑡) ≤

𝑟 on 𝐽 that

0 ≤ 𝑥 (𝛼 (𝑡)) ≤ 𝑟 for 𝑡 ∈ [0, 𝜉] . (39)

Consequently, for 𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑟
, it follows from Remark 8

and (22) that

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

1

0

𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠)

1

𝛿𝐻

0
𝛾

1

𝑥 (𝛼 (𝑠)) 𝑑𝑠

≥

1

𝛿𝛾

1

∫

𝜉

0

𝜔 (𝑠) 𝑑𝑠𝛿 ‖𝑥‖

= ‖𝑥‖ ,

(40)

which implies

‖𝑇𝑥‖ ≥ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑟
. (41)

If 𝑓∞ = 0, we can choose 0 < 𝜀 < 1/𝐻

0
𝛾𝑒

𝑀 and 𝑙 > 0

such that

𝑓 (𝑡, 𝑥) ≤ 𝜀𝑥 for 𝑡 ∈ 𝐽, 𝑥 ≥ 𝑙. (42)

Letting 𝜁 = max
𝑡∈𝐽,𝑥∈[0,𝑙]

𝑓(𝑡, 𝑥), then

0 ≤ 𝑓 (𝑡, 𝑥) ≤ 𝜀𝑥 + 𝜁 for 𝑡 ∈ 𝐽, 𝑥 ∈ [0,∞) . (43)

Since 0 ≤ 𝛼(𝑡) ≤ 𝑡 ≤ 1 on 𝐽, it follows from 𝑥(𝑡) ≥ 𝑙 or
0 ≤ 𝑥(𝑡) ≤ 𝑙 on 𝐽 that

𝑥 (𝛼 (𝑡)) ≥ 𝑙 or 0 ≤ 𝑥 (𝛼 (𝑡)) ≤ 𝑙 for 𝑡 ∈ 𝐽. (44)

Let 𝑅 ≥ max{2𝑟, 𝑒𝑀𝐻0𝛾𝜁/(1 − 𝑒𝑀𝐻0𝛾𝜀)}. Then, for 𝑡 ∈ 𝐽
and 𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑅
, (13) and (22) imply

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≤ 𝐻

0
𝑒

𝑀
∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≤ 𝐻

0
𝑒

𝑀
∫

1

0

𝜔 (𝑠) (𝜀𝑥 (𝛼 (𝑠)) + 𝜁) 𝑑𝑠

≤ 𝐻

0
𝑒

𝑀
∫

1

0

𝜔 (𝑠) (𝜀 ‖𝑥‖ + 𝜁) 𝑑𝑠

≤ 𝐻

0
𝑒

𝑀
𝛾 (𝜀𝑅 + 𝜁)

≤ 𝑅,

(45)

which implies

‖𝑇𝑥‖ ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑅
. (46)

Thus, by (ii) of Lemma 13, it follows from (41) and (46)
that 𝑇 has a fixed point 𝑥 in𝐾 ∩ (Ω

𝑅
\ Ω

𝑟
) with 𝑟 ≤ ‖𝑥‖ < 𝑅.

Remark 12 shows that problem (3) has at least one positive
solution 𝑥 with 𝑟 ≤ ‖𝑥‖ < 𝑅. This gives the proof of
Theorem 14.

4.2. For the Case 𝑖
0
= 0 and 𝑖

∞
= 0. In this subsection, we

discuss the existence for the positive solutions of problem (3)
under 𝑖

0
= 0 and 𝑖

∞
= 0. For convenience, we introduce the

following notation:

𝑓

𝜌

0
= max{max

𝑡∈𝐽

𝑓 (𝑡, 𝑥)

𝜌

: 𝑥 ∈ [0, 𝜌]} . (47)

Now, we will state and prove the following main result.

Theorem 15. Suppose (𝐻
1
)–(𝐻
3
) hold. In addition, let the

following two conditions hold:

(𝐻
4
) there exists 𝜌

1
> 0 such that 𝑓𝜌1

0
≤ 1/𝑒

𝑀
𝐻

0
𝛾;

(𝐻
5
) there exist 𝜂 > 0 and 𝜌

2
> 0 such that 𝑓(𝑡, 𝑥) ≥ 𝜂 for

𝑡 ∈ 𝐽, 𝑥 ≥ 𝜌

2
; furthermore, 𝜌

1
̸= 𝜌

2
.

Then problem (3) has at least one positive solution.

Proof. Without loss of generality, wemay assume that𝜌
1
< 𝜌

2
.

Considering𝑓𝜌1
0
≤ 1/𝑒

𝑀
𝐻

0
𝛾, we have𝑓(𝑡, 𝑥) ≤ (1/𝑒𝑀𝐻0𝛾)𝜌

1

for 0 ≤ 𝑥 ≤ 𝜌
1
, 𝑡 ∈ 𝐽.

Since 0 ≤ 𝛼(𝑡) ≤ 𝑡 ≤ 1 on 𝐽, it follows from 0 ≤ 𝑥(𝑡) ≤ 𝜌

1

on 𝐽 that

0 ≤ 𝑥 (𝛼 (𝑡)) ≤ 𝜌

1
. (48)

Consequently, for any 𝑡 ∈ 𝐽 and 𝑦 ∈ 𝐾 ∩ 𝜕Ω

𝜌
1

, (13) and
(22) imply

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≤ 𝐻

0
𝑒

𝑀
∫

1

0

1

𝐻

0
𝛾𝑒

𝑀
𝜌

1
𝜔 (𝑠) 𝑑𝑠

= 𝜌

1
,

(49)

which implies

‖𝑇𝑥‖ ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝜌
. (50)

On the other hand, from (𝐻

5
), when a 𝜌

2
is fixed, then

there exists a 𝜂 > 0 such that

𝑓 (𝑡, 𝑥) ≥ 𝜂 ≥

𝜌

2

𝛿𝐻

0
𝛾

1

(51)

for 𝑡 ∈ 𝐽 and 𝑥 ≥ 𝜌
2
. Since 0 ≤ 𝛼(𝑡) ≤ 𝑡 ≤ 𝜉 on [0, 𝜉], it follows

from 𝑥(𝑡) ≥ 𝜌

2
on 𝐽 that

𝑥 (𝛼 (𝑡)) ≥ 𝜌

2
. (52)
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Hence, for 𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝜌
2

, it follows from Remark 8 and
(22) that

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ min
𝑡∈[0,𝜉]

∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

1

0

𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝜂𝐻

0
∫

𝜉

0

𝜔 (𝑠) 𝑑𝑠

= 𝜌

2
,

(53)

which implies

‖𝑇𝑥‖ ≥ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝜌
2

. (54)

Thus, by (i) of Lemma 13, it follows that𝑇 has a fixed point
𝑥 in 𝐾 ∩ (Ω

𝜌
2

\ Ω

𝜌
1

) with

𝜌

1
≤ ‖𝑥‖ ≤ 𝜌

2
. (55)

Thus, it follows from Remark 12 that problem (3) has at least
one positive solution 𝑥 with 𝜌

1
≤ ‖𝑥‖ ≤ 𝜌

2
. This finishes the

proof of Theorem 15.

We remark that condition (𝐻

4
) in Theorem 15 can be

replaced by the following condition:

(𝐻
4
) 𝑓0 ≤ 1/𝐻0𝛾𝑒𝑀,

which is a special case of (𝐻
5
).

Corollary 16. Suppose (𝐻
1
)–(𝐻
3
), (𝐻
4
)

, and (𝐻
5
) hold.Then

problem (3) has at least one positive solution.

Proof. We show that (𝐻
4
)

 implies (𝐻
4
). Suppose that (𝐻

4
)



holds. Then, there exists a positive number 𝜌
1

̸= 𝜌

2
such that

𝑓 (𝑡, 𝑥)

𝑥

≤

1

𝐻

0
𝛾𝑒

𝑀
, 𝑡 ∈ 𝐽, 0 < 𝑥 ≤ 𝜌

1
. (56)

Hence, we obtain

𝑓 (𝑡, 𝑥) ≤

1

𝐻

0
𝛾𝑒

𝑀
𝑥 ≤

1

𝐻

0
𝛾𝑒

𝑀
𝜌

1
, 𝑡 ∈ 𝐽, 0 < 𝑥 ≤ 𝜌

1
. (57)

Therefore, (𝐻
4
) holds. Hence, byTheorem 15, problem (3)

has at least one positive solution.

Theorem 17. Suppose (𝐻
1
)–(𝐻
4
) hold. In addition, let the

following condition hold:

(𝐻
6
) 𝑓
∞
≥ 1/𝛿𝐻

0
𝛾

1
.

Then problem (3) has at least one positive solution.

Proof. The proof is similar to that of (50) and (35), respec-
tively.

Corollary 18. Suppose (𝐻
1
)–(𝐻
3
), (𝐻
4
)

, and (𝐻
6
) hold.Then

problem (3) has at least one positive solution.

4.3. For the Case 𝑖
0
= 1 and 𝑖

∞
= 0 or 𝑖

0
= 0 and 𝑖

∞
= 1. In this

subsection, we discuss the existence for the positive solutions
of problem (3) for the case 𝑖

0
= 1 and 𝑖

∞
= 0 or 𝑖

0
= 0

and 𝑖

∞
= 1. For convenience, we introduce the following

notation:

𝑙 =

1

𝐻

0
𝛾𝑒

𝑀
, 𝐿 =

1

𝛿

2
𝐻

0
𝛾

1

. (58)

Theorem 19. Suppose (𝐻
1
)–(𝐻
3
) hold, 𝑓0 ∈ [0, 𝑙), and 𝑓

∞
∈

(𝐿,∞). Then problem (3) has at least one positive solution.

Proof. The proof is similar to that of Theorem 15.

Theorem 20. Suppose (𝐻
1
)–(𝐻
3
) hold, 𝑓

0
∈ (𝐿,∞), and

𝑓

∞
∈ [0, 𝑙).Then problem (3) has at least one positive solution.

Proof. Considering𝑓
0
∈ (𝐿,∞), then there exists 𝜌

1
> 0 such

that 𝑓(𝑡, 𝑥) > 𝐿𝑥 for 0 ≤ 𝑥 ≤ 𝜌
1
, 𝑡 ∈ 𝐽.

Since 0 ≤ 𝛼(𝑡) ≤ 𝑡 ≤ 1 on 𝐽, it follows from 0 ≤ 𝑥(𝑡) ≤ 𝜌

1

on 𝐽 that

0 ≤ 𝑥 (𝛼 (𝑡)) ≤ 𝜌

1
. (59)

Consequently, for 𝑥 ∈ 𝐾∩𝜕Ω

𝜌
1

, it follows from Remark 8
and (22) that

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ min
𝑡∈[0,𝜉]

∫

1

0

𝐻(𝑡, 𝑠) 𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

1

0

𝑞 (𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑥 (𝛼 (𝑠))) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠) 𝐿𝑥 (𝛼 (𝑠)) 𝑑𝑠

≥ 𝛿𝐻

0
∫

𝜉

0

𝜔 (𝑠) 𝐿𝛿 ‖𝑥‖ 𝑑𝑠

≥ ‖𝑥‖ ,

(60)

which shows

‖𝑇𝑥‖ ≥ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝜌
. (61)

Next, we turn to 𝑓∞ ∈ [0, 𝑙). In fact, we can show that
𝑓

∞
∈ [0, 𝑙) implies (𝐻

4
).
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Let 𝜏 ∈ (𝑓

∞
, 𝑙). Then, there exists 𝑟 > 𝜏 such that

max
𝑡∈𝐽
𝑓(𝑡, 𝑥) ≤ 𝜏𝑥 for 𝑦 ∈ [𝑟,∞). Let

𝛽 = max{max
𝑡∈𝐽

𝑓 (𝑡, 𝑥) : 0 ≤ 𝑥 ≤ 𝑟} ,

𝜌

∗

1
> max{

𝛽

𝑙 − 𝜏

, 𝜌} .

(62)

Then, we have

max
0≤𝑡≤1

𝑓 (𝑡, 𝑥) ≤ 𝜏𝑥 + 𝛽 ≤ 𝜏𝜌

∗

1
+ 𝛽 < 𝑙𝜌

∗

1
, ∀𝑥 ∈ [0, 𝜌

∗

1
] .

(63)

This implies that 𝑓𝜌
∗

1

0
≤ 𝑙. Hence, 𝑓∞ ∈ [0, 𝑙) implies that

(𝐻

4
).
Similar to the proof of (46), we have

‖𝑇𝑥‖ ≤ ‖𝑥‖ , ∀𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝜌
∗ . (64)

Thus, by (ii) of Lemma 13, it follows that 𝑇 has a fixed
point 𝑥 in 𝐾 ∩ (Ω

𝜌
∗

1

\ Ω

𝜌
) with

𝜌 ≤ ‖𝑥‖ ≤ 𝜌

∗

1
. (65)

This finishes the proof of Theorem 20.

FromTheorems 19 and 20, we have the following result.

Corollary 21. Assume that (𝐻
1
)–(𝐻
3
) hold. Furthermore,

suppose that 𝑓0 = 0 and condition (𝐻
5
) in Theorem 15 hold.

Then problem (3) has at least one positive solution.

Theorem 22. Suppose (𝐻
1
)–(𝐻
3
) hold, 𝑓0 ∈ (0, 𝑙), and 𝑓

∞
=

∞. Then problem (3) has at least one positive solution.

Proof. The proof is similar to that of Theorem 15.

Theorem 23. Suppose (𝐻
1
)–(𝐻
3
) hold, 𝑓

0
= ∞, and 𝑓∞ ∈

(0, 𝑙). Then problem (3) has at least one positive solution.

Proof. The proof is similar to that of Theorem 15.

From Theorems 22 and 23, the following corollaries are
easily obtained.

Corollary 24. Assume that (𝐻
1
)–(𝐻
3
) hold. Furthermore,

suppose that 𝑓
0
= ∞ and condition (𝐻

4
) in Theorem 15 hold.

Then problem (3) has at least one positive solution.

Corollary 25. Assume that (𝐻
1
)–(𝐻
3
) hold. Furthermore,

suppose that 𝑓
∞
= ∞ and condition (𝐻

4
) in Theorem 15 hold.

Then problem (3) has at least one positive solution.

4.4. For the Case 𝑖
0
= 0 and 𝑖

∞
= 2 or 𝑖

0
= 2 and 𝑖

∞
= 0. In

this subsection, we study the existence of multiple positive
solutions for the problem (3) for the case 𝑖

0
= 0 and 𝑖

∞
= 2

or 𝑖
0
= 2 and 𝑖

∞
= 0.

Combining the proof ofTheorems 14 and 15, the following
theorem is easily proven.

Theorem 26. Suppose that (𝐻
1
)–(𝐻
3
), 𝑖
0
= 0, and 𝑖

∞
= 2,

and the condition (𝐻
4
) of Theorem 15 hold. Then problem (3)

has at least two positive solutions.

Corollary 27. Suppose that (𝐻
1
)–(𝐻
3
), 𝑖
0
= 0, and 𝑖

∞
= 2,

and the condition (𝐻
4
)

 of Corollary 16 hold.Then problem (3)
has at least two positive solutions.

Theorem 28. Suppose that (𝐻
1
)–(𝐻
3
), 𝑖
0
= 2, and 𝑖

∞
= 0,

and the condition (𝐻
5
) of Theorem 15 hold. Then problem (3)

has at least two positive solutions.

Corollary 29. Suppose that (𝐻
1
)–(𝐻
3
), 𝑖
0
= 2, and 𝑖

∞
= 0,

and the condition (𝐻
6
) of Theorem 17 hold. Then problem (3)

has at least two positive solutions.

5. Three Examples

To illustrate how our main results can be used in practice, we
present three examples.

Example 1. Consider the following boundary value problem:

−𝑥



(𝑡) + 𝑏𝑥 (𝑡) = 𝜔 (𝑡) 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) , 𝑡 ∈ 𝐽,

𝑥



(0) = 0, 𝑥 (1) = ∫

1

0

𝑥 (𝑡) 𝑑𝑡,

(66)

where 𝛼 ∈ 𝐶(𝐽, 𝐽), 𝛼(𝑡) ≤ 𝑡 on 𝐽, and

𝜔 (𝑡) =

1

√

𝑡

, 𝑓 (𝑡, 𝑥) =

𝑛
√

1 + 𝑡

𝑛
𝑥

𝑛
; (67)

here 𝑛 ≥ 2 is a positive integral number.
This means that problem (66) involves the advanced

argument 𝛼. For example, we can take 𝛼(𝑡) = 𝑡

2. It is clear
that 𝜔 may be singular at 𝑡 = 0 and/or 𝑡 = 1 and 𝑓 is both
nonnegative and continuous.

Problem (66) can be regarded as a problem of the form
(3), where 𝑎(𝑡) ≡ 0, 𝑏(𝑡) ≡ 1, and ℎ(𝑡) ≡ 1.

Let 𝜙 and 𝜓 satisfy

𝐿𝜙 = 0, 𝜙



(0) = 0, 𝜙 (1) = 1,

𝐿𝜓 = 0, 𝜓 (0) = 1, 𝜓 (1) = 0,

(68)

where 𝐿𝑥 = −𝑥 + 𝑥(𝑡) and

𝜙 (𝑡) =

𝑒

1−𝑡
+ 𝑒

1+𝑡

1 + 𝑒

2
, 𝜙 (0) =

2𝑒

1 + 𝑒

2
,

𝜓 (𝑡) =

−𝑒

2−𝑡
+ 𝑒

𝑡

1 − 𝑒

2
,

𝜓



(0) =

𝑒

2
+ 1

1 − 𝑒

2
, 𝑞 (𝑡) = 1,

Δ := −𝜙 (0) 𝜓



(0) =

2𝑒

𝑒

2
− 1

> 0.

(69)

It follows from the definition of 𝜔, 𝑓, and ℎ that (𝐻
1
)–

(𝐻
3
) hold, and

𝑓

0
= 0, 𝑓

∞
= ∞.

(70)
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Hence, by Theorem 14, problem (66) has at least one
positive solution.

Example 2. If we replace 𝑓(𝑡, 𝑥) in Example 1 by

𝑓 (𝑡, 𝑥) = (

1

3

+

1

3

𝑡) + 2 sin𝑥, (71)

in this case, byTheorem 20, we obtain that if 𝐿 < 7/3 and 𝑙 >
2/3, then problem (66) admits at least one positive solution.

In fact, we can prove that

𝑓

0
= lim inf
𝑥→0

min
𝑡∈𝐽

𝑓 (𝑡, 𝑥)

𝑥

=

7

3

,

𝑓

∞
= lim sup
𝑥→∞

max
𝑡∈𝐽

𝑓 (𝑡, 𝑥)

𝑥

=

2

3

,

(72)

which shows that 𝑓
0
∈ (𝐿,∞) and 𝑓∞ ∈ [0, 𝑙).

Example 3. If we replace 𝑓(𝑡, 𝑥) in Example 1 by

𝑓 (𝑡, 𝑥) = (1 + 𝑡) 𝑥

2
+ 𝑥

1/2
,

(73)

in this case, by Theorem 26, we obtain that problem (66)
admits at least two positive solutions.

In fact, we can prove that

𝑓

0
= lim inf
𝑥→0

min
𝑡∈𝐽

𝑓 (𝑡, 𝑥)

𝑥

= ∞,

𝑓

∞
= lim sup
𝑥→∞

max
𝑡∈𝐽

𝑓 (𝑡, 𝑥)

𝑥

= ∞,

(74)

which shows that 𝑖
0
= 0 and 𝑖

∞
= 2.
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