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Mean-field forward-backward doubly stochastic differential equations (MF-FBDSDEs) are studied, which extend many important
equations well studied before. Under some suitable monotonicity assumptions, the existence and uniqueness results for measurable
solutions are established by means of a method of continuation. Furthermore, the probabilistic interpretation for the solutions to a
class of nonlocal stochastic partial differential equations (SPDEs) combined with algebra equations is given.

1. Introduction

In order to provide a probabilistic interpretation for the
solutions of a class of semilinear stochastic partial differential
equations (SPDEs), Pardoux and Peng [1] introduced the
following backward doubly stochastic differential equations
(BDSDEs):

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
) 𝑑𝑠 + ∫

𝑇

𝑡

𝑔 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
)
←
𝑑𝐵
𝑠

− ∫

𝑇

𝑡

𝑍
𝑠

→

𝑑 𝑊
𝑠
, 0 ≤ 𝑡 ≤ 𝑇.

(1)

Due to their important significance to SPDEs, the researches
for BDSDEs have been in the ascendant (cf. [2–8] and their
references).

Peng and Shi [9] introduced a type of time-symmetric
forward-backward stochastic differential equations, that
is, the so-called fully coupled forward-backward doubly
stochastic differential equations (FBDSDEs):

𝑦
𝑡
= 𝑥 + ∫

𝑡

0

𝑓 (𝑠, 𝑦
𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑔 (𝑠, 𝑦
𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
)

→

𝑑 𝑊
𝑠
− ∫

𝑡

0

𝑧
𝑠

←
𝑑𝐵
𝑠
,

𝑌
𝑡
= Φ (𝑦

𝑇
) + ∫

𝑇

𝑡

𝐹 (𝑠, 𝑦
𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
) 𝑑𝑠

+ ∫

𝑇

𝑡

𝐺 (𝑠, 𝑦
𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
)
←
𝑑𝐵
𝑠
+ ∫

𝑇

𝑡

𝑍
𝑠

→

𝑑 𝑊
𝑠
.

(2)

In FBDSDEs (2), the forward equation is “forward” with
respect to a standard stochastic integral

→

𝑑 𝑊
𝑡
, as well as

“backward” with respect to a backward stochastic integral
←
𝑑𝐵
𝑡
; the coupled “backward equation” is “forward” under

the backward stochastic integral
←
𝑑𝐵
𝑡
and “backward” under

the forward one. In other words, both the forward equation
and the backward one are types of BDSDE (1) with different
directions of stochastic integrals. Peng and Shi [9] proved
the existence and uniqueness of solutions to FBDSDEs (2)
with arbitrarily fixed time duration under some monotone
assumptions. Zhu et al. [10] extended the results in [9] to
different dimensional FBDSDEs and weakened the mono-
tone assumptions. Zhu and Shi [11] further generalized the
method of continuation by introducing the notion of bridge.
FBDSDEs can provide more extensive frameworks for the
probabilistic interpretation (nonlinear stochastic Feynman-
Kac formula) for the solutions to a class of quasilinear
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SPDEs (cf. [11]) and stochastic Hamiltonian systems arising
in stochastic optimal control problems (cf. [12–14]).

McKean-Vlasov stochastic differential equation (SDE) of
the form

𝑑𝑋
𝑡
= 𝑏 (𝑋

𝑡
, 𝜇
𝑡
) 𝑑𝑡+

→

𝑑 𝑊
𝑡
, 𝑡 ∈ [0, 𝑇] , 𝑋

0
= 𝑥, (3)

where

𝑏 (𝑋
𝑡
, 𝜇
𝑡
) = ∫
Ω

𝑏 (𝑋
𝑡
(𝜔) , 𝑋

𝑡
(𝜔

)) 𝑃 (𝑑𝜔


)

= E [𝑏 (𝜉, 𝑋
𝑡
)]
𝜉=𝑋
𝑡

,

(4)

𝑏 : R𝑚×R → R being a (locally) bounded Borel measurable
function and 𝜇(𝑡; ⋅) being the probability distribution of
the unknown process 𝑋

𝑡
, was suggested by Kac [15] and

firstly studied by McKean [16]. So far, numerous works have
been done on the SDEs of McKean-Vlasov type and their
applications; see, for example, Ahmed [17], Ahmed and Ding
[18], Borkar and Kumar [19], Chan [20], Crisan and Xiong
[21], Kotelenez [22], Kotelenez and Kurtz [23], and so on. It is
worth pointing out that (3) is a particular case of the following
general version:

𝑋
𝑡
= 𝑥 + ∫

𝑡

0

𝑏 (𝑠, 𝑋
𝑠
,E𝜙
𝑏
[𝑠, 𝑋
𝑠
, 𝜉]
𝜉=𝑋
𝑠

) 𝑑𝑠

+ ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
,E𝜙
𝜎
[𝑠, 𝑋
𝑠
, 𝜉]
𝜉=𝑋
𝑠

)

→

𝑑 𝑊
𝑠
,

(5)

which can be regarded as a natural generalization of classical
SDEs. Mathematical mean-field approaches play a crucial
role in diverse areas, such as physics, chemistry, economics,
finance, and games theory; see, for example, Lasry and Lions
[24], Dawson [25], and Huang et al. [26]. In a recent work
of Buckdahn et al. [27], a notion of mean-field backward
stochastic differential equations (MF-BSDEs)

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

E

𝑓 (𝑠, 𝜔, 𝜔


, 𝑌
𝑠
(𝜔) , 𝑍

𝑠
(𝜔) , 𝑌

𝑠
(𝜔

) , 𝑍
𝑠
(𝜔

)) 𝑑𝑠

− ∫

𝑇

𝑡

𝑍
𝑠

→

𝑑 𝑊
𝑠
,

(6)

with 𝑡 ∈ [0, 𝑇], was introduced to investigate one special
mean-field problem in a pure stochastic approach.

Mean-field backward doubly stochastic differential equa-
tions (MF-BDSDEs) of the form

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
, Γ
𝑓
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)) 𝑑𝑠

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑌
𝑠
, 𝑍
𝑠
, Γ
𝑔
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
))
←
𝑑𝐵
𝑠
− ∫

𝑇

𝑡

𝑍
𝑠

→

𝑑 𝑊
𝑠
,

(7)

where

[Γ
𝑙
(𝑠, 𝑌
𝑠
, 𝑍
𝑠
)] (𝜔)

≐ ∫
Ω

𝜃
𝑙
(𝑠, 𝜔, 𝜔


, 𝑌
𝑠
(𝜔) , 𝑍

𝑠
(𝜔) , 𝑌

𝑠
(𝜔

) ,

𝑍
𝑠
(𝜔

)) 𝑃 (𝑑𝜔


) ,

(8)

with 𝑙 = 𝑓, 𝑔, were discussed by Wang et al. [28], Du et
al. [29], and Xu [30]. Under Lipschitz conditions, Du et al.
[29] and Wang et al. [28], respectively, got the existence and
uniqueness theorem of MF-BDSDEs. Wang et al. [28] gave
one probabilistic interpretation for the solutions to a class of
nonlocal SPDEs and the maximum principle of Pontryagin’s
type for optimal control problems of MF-BDSDEs. Under
locally monotone conditions, Xu [30] got the existence
and uniqueness theorem and comparison theorem of MF-
BDSDEs.

In this paper, we would like to introduce mean-field
forward-backward doubly stochastic differential equations
(MF-FBDSDEs) of the form

𝑦
𝑡
= 𝑥 + ∫

𝑡

0

E

𝑓 (𝑠, 𝜉

𝑠
) 𝑑𝑠 + ∫

𝑡

0

E

𝑔 (𝑠, 𝜉

𝑠
)

→

𝑑 𝑊
𝑠
− ∫

𝑡

0

𝑧
𝑠

←
𝑑𝐵
𝑠
,

𝑌
𝑡
= E

Φ(𝑦


𝑇
, 𝑦
𝑇
) − ∫

𝑇

𝑡

E

𝐹 (𝑠, 𝜉

𝑠
) 𝑑𝑠

− ∫

𝑇

𝑡

E

𝐺 (𝑠, 𝜉

𝑠
)
←
𝑑𝐵
𝑠
− ∫

𝑇

𝑡

𝑍
𝑠

→

𝑑 𝑊
𝑠
,

(9)

where

E

𝑙 (𝑠, 𝜉
𝑠
)

= E

𝑙 (𝑠, 𝑦
𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
, 𝑦


𝑠
, 𝑌


𝑠
, 𝑧


𝑠
, 𝑍


𝑠
)

= ∫
Ω

𝑙 (𝑠, 𝜔, 𝜔

, 𝑦
𝑠
(𝜔) , 𝑌

𝑠
(𝜔) , 𝑧

𝑠
(𝜔) , 𝑍

𝑠
(𝜔) , 𝑦

𝑠
(𝜔

) ,

𝑌
𝑠
(𝜔

) , 𝑧
𝑠
(𝜔

) , 𝑍
𝑠
(𝜔

)) 𝑃 (𝑑𝜔


) ,

𝑙 = 𝑓, 𝑔, 𝐹, 𝐺,

E

Φ(𝑦
𝑇
, 𝑦


𝑇
) = ∫
Ω

Φ(𝜔, 𝜔

, 𝑦
𝑇
(𝜔) , 𝑦

𝑇
(𝜔

)) 𝑃 (𝑑𝜔


) .

(10)

Following the basic ideas in [1], we firstly discuss the existence
and uniqueness of solutions for MF-FBDSDE (9), which
obviously extends the results in [9], Wang et al. [28], Du et al.
[29], andXu [30]. It is worth pointing out thatMF-FBDSDE is
not just a natural generalization of FBDSDE andMF-BDSDE
from the view of mathematics. Our study on them also is
motivated by the probabilistic interpretation for the solutions
to some kind of nonlocal SPDEs.

As is well known to us, the research on SPDEs has
increasingly been a popular issue in recent years. As one kind
of them, SPDEs of the McKean-Vlasov type were discussed
in [23]. In fact, such equations were obtained as continuum
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limit from empirical distributions of a large number of SDEs,
coupledwithmean-field interaction.We also refer the readers
to [21, 22] for more details along this. On the other hand,
we would also like to mention the work of Buckdahn et al.
[31] who studied one kind of nonlocal deterministic PDEs. In
virtue of the “backward semigroup” method, they obtained
the existence and uniqueness of viscosity solution for nonlo-
cal PDEs via MF-BSDE (6) in a Markovian framework and
McKean-Vlasov forward equations. Furthermore,Wu and Yu
[32, 33] and Li andWei [34] investigated PDE combined with
algebra equations. Motivated by the above three cases, in this
paper we will give some discussions on one kind of nonlocal
SPDEs. A probabilistic interpretation for the solutions to such
kind of SPDEs is derived by virtue of a connection between
them and fully coupled FBDSDEs of mean-field type, which
extends the results in [11] to the mean-field case and extends
the results in [32, 33] to stochastic case.

The paper is organized as follows. In Section 2, we will
present some preliminary notations needed in the whole
paper. In Section 3, we consider the existence and uniqueness
of solutions for MF-FBDSDE. In Section 4, we give the
probabilistic interpretations for the solutions to a class of
nonlocal SPDEs by means of MF-FBDSDEs.

2. Setting of the Problem

Let (Ω,F, 𝑃) be a complete probability space on which are
defined twomutually independent Brownianmotions {𝑊

𝑡
}
𝑡≥0

and {𝐵
𝑡
}
𝑡≥0

, with value, respectively, inR𝑑 andR𝑙. We denote

F
𝑡
≐ F
𝑊

𝑡
∨F
𝐵

𝑡,𝑇
, ∀𝑡 ∈ [0, 𝑇] , (11)

whereN is the class of 𝑃-null sets ofF and

F
𝑊

𝑡
≐ 𝜎 {𝑊

𝑟
; 0 ≤ 𝑟 ≤ 𝑡} ∨N,

F
𝐵

𝑡,𝑇
≐ 𝜎 {𝐵

𝑇
− 𝐵
𝑟
; 𝑡 ≤ 𝑟 ≤ 𝑇} ∨N.

(12)

In this case, the collection {F
𝑡
, 𝑡 ∈ [0, 𝑇]} is neither

increasing nor decreasing, while {F𝑊
𝑡
, 𝑡 ∈ [0, 𝑇]} is an

increasing filtration and {F𝐵
𝑡,𝑇
, 𝑡 ∈ [0, 𝑇]} is a decreasing

filtration.
Let (Ω2,F2, 𝑃2) = (Ω×Ω,F⊗F, 𝑃⊗𝑃) be the completion

of the product probability space of the above (Ω,F, 𝑃) with
itself, where we define F2

𝑡
= F
𝑡
⊗ F
𝑡
with 𝑡 ∈ [0, 𝑇] and

F
𝑡
⊗F
𝑡
being the completion ofF

𝑡
×F
𝑡
. It is worth noting

that any random variable 𝜉 = 𝜉(𝜔) defined on Ω can be
extended naturally to Ω2 as 𝜉(𝜔, 𝜔) = 𝜉(𝜔) with (𝜔, 𝜔) ∈
Ω
2. For𝐻 = R𝑛, and so forth, let 𝐿1(Ω2,F2, 𝑃2; 𝐻) be the set

of random variables 𝜉 : Ω2 → 𝐻 which is F2-measurable
such that E2|𝜉| ≡ ∫

Ω
2
|𝜉(𝜔

, 𝜔)|𝑃(𝑑𝜔


)𝑃(𝑑𝜔) < ∞. For any

𝜂 ∈ 𝐿
1
(Ω
2
,F2, 𝑃2; 𝐻), we denote

E

𝜂 (𝜔, ⋅) ≐ ∫

Ω

𝜂 (𝜔, 𝜔

) 𝑃 (𝑑𝜔


) . (13)

Particularly, for example, if 𝜂
1
(𝜔, 𝜔

) = 𝜂
1
(𝜔

), then

E

𝜂
1
= ∫
Ω

𝜂
1
(𝜔

) 𝑃 (𝑑𝜔


) = E𝜂

1
. (14)

We would like to introduce some spaces of functions
required in the sequel:

𝑆
2
([0, 𝑇] ;R

𝑛
)

= {𝜑 : [0, 𝑇] × Ω → R
𝑛
| 𝜑
𝑡
is F
𝑡
-measurable

process such that E( sup
0≤𝑡≤𝑇

𝜑𝑡


2

) < ∞} ,

𝑀
2
(0, 𝑇;R

𝑛
)

= {𝜑 : [0, 𝑇] × Ω → R
𝑛
| 𝜑
𝑡
is F
𝑡
-measurable process

such that E∫
𝑇

0

𝜑𝑡


2

𝑑𝑡 < ∞} ,

𝐿
2
(Ω,F

𝑇
, 𝑃;R
𝑛
)

= {𝜉 : [0, 𝑇] × Ω → R
𝑛
| 𝜉 is F

𝑇
-measurable random

variable such that E𝜉


2

< ∞} .

(15)

We will give notations as follows:

𝑈 = (

𝑦

𝑌

𝑧

𝑍

) , 𝑈

= (

𝑦


𝑌


𝑧


𝑍


),

𝜉 = (
𝑈

𝑈
) , 𝐴 (𝑡, 𝜉) = (

−𝐹

𝑓

−𝐺

𝑔

)(𝑡, 𝜉) .

(16)

Let R𝑛 be the 𝑛-dimensional Euclidean space with the
usual Euclidean norm | ⋅ | and the usual Euclidean inner
product ⟨⋅, ⋅⟩. The notation 𝑇 appearing in the superscripts
denotes the transpose of amatrix. Also, letR𝑛×𝑙 be theHilbert
space that consists of all 𝑛× 𝑙-matrices with the inner product
⟨𝐴, 𝐵⟩ = tr{ABT

}, ∀𝐴, 𝐵 ∈ R𝑛×𝑑. Thus, the norm |𝐴| of
𝐴 ∈ R𝑛×𝑑 is given by |𝐴| = √tr{AAT}. Let 𝑆𝑛 be the set of all
𝑛 × 𝑛 symmetric matrices. All the equalities and inequalities
mentioned in this paper are in the sense of 𝑑𝑡 × 𝑑𝑃 almost
surely on [0, 𝑇] × Ω.

Consider the following MF-FBDSDEs:

𝑦
𝑡
= 𝑥 + ∫

𝑡

0

E

𝑓 (𝑠, 𝜉

𝑠
) 𝑑𝑠 + ∫

𝑡

0

E

𝑔 (𝑠, 𝜉

𝑠
)

→

𝑑 𝑊
𝑠
− ∫

𝑡

0

𝑧
𝑠

←
𝑑𝐵
𝑠
,

𝑌
𝑡
= E

Φ(𝑦


𝑇
, 𝑦
𝑇
) − ∫

𝑇

𝑡

E

𝐹 (𝑠, 𝜉

𝑠
) 𝑑𝑠

− ∫

𝑇

𝑡

E

𝐺 (𝑠, 𝜉

𝑠
)
←
𝑑𝐵
𝑠
− ∫

𝑇

𝑡

𝑍
𝑠

→

𝑑 𝑊
𝑠
,

(17)
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where

𝜉
𝑠
= (𝑦
𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
, 𝑦


𝑠
, 𝑌


𝑠
, 𝑧


𝑠
, 𝑍


𝑠
) ,

𝐹 : Ω × [0, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛
,

𝑓 : Ω × [0, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛
,

𝐺 : Ω × [0, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛×𝑙
,

𝑔 : Ω × [0, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛×𝑑
,

Φ : Ω ×R
𝑛
×R
𝑛
→ R

𝑛
.

(18)

Note that the integral with respect to {𝐵
𝑡
} is a “backward Itô

integral,” in which the integrand takes values at the right end
points of the subintervals in the Riemann type sum, and the
integral with respect to {𝑊

𝑡
} is a standard forward Itô integral.

These two types of integrals are particular cases of the Itô-
Sokorohod integral (for details refer to [35]).

Definition 1. A quadruple of F
𝑡
-measurable processes

(𝑦, 𝑌, 𝑧, 𝑍) ∈ 𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑) is called a solution of

MF-FBDSDEs (17), if (17) is satisfied.

One assumes the following.
(H1) For each 𝜉 ∈ R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑+𝑛+𝑛+𝑛×𝑙+𝑛×𝑑, 𝐴(⋅, 𝜉) is

an F
𝑡
-measurable process defined on [0, 𝑇] with 𝐴(⋅, 0) ∈

𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑+𝑛+𝑛+𝑛×𝑙+𝑛×𝑑).
(H2) 𝐴(𝑡, 𝜉) and Φ(𝑦) satisfy the Lipschitz conditions:

there exist constants 𝑘 > 0 and 0 < 𝜆 < 1/2 such that


𝑓 (𝑡, 𝜉) − 𝑓 (𝑡, 𝜉)



2

≤ 𝑘 (
𝑦


2

+

�̂�


2

+ |�̂�|
2
+

𝑍


2

+

𝑦


2

+

�̂�


2

+

�̂�


2

+

𝑍


2

) ,


𝐹 (𝑡, 𝜉) − 𝐹 (𝑡, 𝜉)



2

≤ 𝑘 (
𝑦


2

+

�̂�


2

+ |�̂�|
2
+

𝑍


2

+

𝑦


2

+

�̂�


2

+

�̂�


2

+

𝑍


2

) ,


𝑔 (𝑡, 𝜉) − 𝑔 (𝑡, 𝜉)



2

≤ 𝑘 (
𝑦


2

+

�̂�


2

+

𝑍


2

+

𝑦


2

+

�̂�


2

+

𝑍


2

) + 𝜆 (|�̂�|
2
+

�̂�


2

) ,


𝐺 (𝑡, 𝜉) − 𝐺 (𝑡, 𝜉)



2

≤ 𝑘 (
𝑦


2

+

�̂�


2

+ |�̂�|
2
+

𝑦


2

+

�̂�


2

+

�̂�


2

) + 𝜆 (

𝑍


2

+

𝑍


2

) ,

∀𝜉, 𝜉 ∈ R
𝑛+𝑛+𝑛×𝑙+𝑛×𝑑+𝑛+𝑛+𝑛×𝑙+𝑛×𝑑

, ∀𝑡 ∈ [0, 𝑇] ,

𝑦 = 𝑦 − 𝑦, �̂� = 𝑌 − 𝑌, �̂� = 𝑧 − 𝑧, 𝑍 = 𝑍 − 𝑍,

𝑦

= 𝑦

− 𝑦

, �̂�

= 𝑌

− 𝑌


,

�̂�

= 𝑧

− 𝑧

, 𝑍

= 𝑍

− 𝑍


,


Φ (𝑦, 𝑦


) − Φ (𝑦, 𝑦


)

≤ 𝑘

𝑦 − 𝑦
 + 𝑘


𝑦

− 𝑦

,

∀𝑦, 𝑦 ∈ R
𝑛
.

(19)

The following monotonic conditions, introduced in [9],
are main assumptions in this paper.

(H3)

E

⟨𝐴 (𝑡, 𝜉) − 𝐴 (𝑡, 𝜉) , 𝑈 − 𝑈⟩ ≤ −𝜇


𝑈 − 𝑈



2

,

∀𝑈 = (𝑦, 𝑌, 𝑧, 𝑍)
𝑇

, 𝑈 = (𝑦, 𝑌, 𝑧, 𝑍)
𝑇

,

𝑈

= (𝑦

, 𝑌

, 𝑧

, 𝑍

)
𝑇

,

𝑈


= (𝑦

, 𝑌


, 𝑧

, 𝑍


)

𝑇

∈ R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑
,

∀𝑡 ∈ [0, 𝑇] ,

E

⟨Φ (𝑦, 𝑦


) − Φ (𝑦, 𝑦


) , 𝑦 − 𝑦⟩ ≥ 𝛽

𝑦 − 𝑦


2

,

∀𝑦, 𝑦 ∈ R
𝑛
,

(20)

where 𝜇 and 𝛽 are positive constants.

3. The Unique Solvability of MF-FBDSDEs

In order to prove the existence and uniqueness result for (17)
under (H1)–(H3), we need the following lemma. The lemma
involves a priori estimates of solutions of the following family
of MF-FBDSDEs parametrized by 𝛼 ∈ [0, 1]:

𝑑𝑦
𝑡
= [𝛼E


𝑓 (𝑡, 𝜉

𝑡
) + 𝑓
0
(𝑡)] 𝑑𝑡 − 𝑧

𝑡

←
𝑑𝐵
𝑡

+ [𝛼E

𝑔 (𝑡, 𝜉

𝑡
) + 𝑔
0
(𝑡)]

→

𝑑 𝑊
𝑡
,

𝑑𝑌
𝑡
= [𝛼E


𝐹 (𝑡, 𝜉

𝑡
) − (1 − 𝛼) 𝜇𝑦

𝑡
+ 𝐹
0
(𝑡)] 𝑑𝑡 + 𝑍

𝑡

→

𝑑 𝑊
𝑡

+ [𝛼E

𝐺 (𝑡, 𝜉

𝑡
) − (1 − 𝛼) 𝜇𝑧

𝑡
+ 𝐺
0
(𝑡)]

←
𝑑𝐵
𝑡
,

𝑦
0
= 𝑥, 𝑌

𝑇
= 𝛼E

Φ(𝑦


𝑇
, 𝑦
𝑇
) + (1 − 𝛼) 𝑦

𝑇
+ 𝜑,

(21)

where 𝜉 = (𝑦, 𝑌, 𝑧, 𝑍, 𝑦

, 𝑌

, 𝑧

, 𝑍

), and (𝐹

0
, 𝑓
0
, 𝐺
0
, 𝑔
0
) ∈

𝑀
2
(0, 𝑇; 𝑅

𝑛+𝑛+𝑛×𝑙+𝑛×𝑑
), and 𝜑 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃; 𝑅𝑛) are

arbitrarily given vector-valued random variables.
When 𝛼 = 1, the existence of the solution of (21) implies

clearly that of (17). Due to the existence and uniqueness of
MF-BDSDE [28], when 𝛼 = 0, (21) is uniquely solvable.
The following a priori lemma is a key step in the proof
of the method of continuation. It shows that, for a fixed
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𝛼 = 𝛼
0
∈ [0, 1), if (21) is uniquely solvable, then it is also

uniquely solvable for any 𝛼 ∈ [𝛼
0
, 𝛼
0
+ 𝛿
0
], for some positive

constant 𝛿
0
independent of 𝛼

0
.

Lemma 2. Under assumptions (H1)–(H3), there exists a posi-
tive constant 𝛿

0
such that if, a priori, for some 𝛼

0
∈ [0, 1) and

for each 𝑥 ∈ R𝑛,𝜑 ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃;R𝑛), (𝐹

0
, 𝑓
0
, 𝐺
0
, 𝑔
0
) ∈

𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑), (21) has a unique solution, then, for

each 𝛼 ∈ [𝛼
0
, 𝛼
0
+ 𝛿
0
] and 𝑥 ∈ R𝑛, 𝜑 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃;R𝑛),

(𝐹
0
, 𝑓
0
, 𝐺
0
, 𝑔
0
) ∈ 𝑀

2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑), (21) also has a

unique solution in𝑀2 (0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑).

Proof. Let

𝑈 = (𝑦, 𝑌, 𝑧, 𝑍) , �̃� = (𝑦, �̃�, �̃�, 𝑍) ,

𝑈 = (𝑦, 𝑌, 𝑧, 𝑍) , �̃� = (𝑦, �̃�, �̃�, 𝑍) ,

𝜉 = (𝑦

, 𝑌

, 𝑧

, 𝑍

, 𝑦, 𝑌, 𝑧, 𝑍) ,

𝜉 = (𝑦

, �̃�

, �̃�

, 𝑍

, 𝑦, �̃�, �̃�, 𝑍) ,

𝜉 = (𝑦

, 𝑌


, 𝑧

, 𝑍


, 𝑦, 𝑌, 𝑧, 𝑍) ,

𝜉 = (𝑦


, �̃�



, �̃�


, 𝑍



, 𝑦, �̃�, �̃�, 𝑍) ,

𝜉 = 𝜉 − 𝜉,
̂
𝜉 = 𝜉 −

̃
𝜉,

�̂� = (𝑦, �̂�, �̂�, 𝑍) = (𝑦 − 𝑦, 𝑌 − �̃�, 𝑧 − �̃�, 𝑍 − 𝑍) ,

̂
𝑈 = (�̂�,

̂
𝑌, �̂�,

̂
𝑍) = (𝑦 − 𝑦, 𝑌 − �̃�, 𝑧 − �̃�, 𝑍 − 𝑍) .

(22)

Since for any 𝑥 ∈ R𝑛, (𝐹
0
, 𝑓
0
, 𝐺
0
, 𝑔
0
) ∈

𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑), 𝜑 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃;R𝑛), there

exists a unique solution to (21) for 𝛼 = 𝛼
0
, thus, for each

𝑈 = (𝑦, 𝑌, 𝑧, 𝑍) ∈ 𝑀
2
(0, 𝑇; R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑), there exists a

unique quadruple 𝑈 = (𝑦, 𝑌, 𝑧, 𝑍) ∈ 𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑)

satisfying the following equations:

𝑑𝑦
𝑡
= [𝛼
0
E

𝑓 (𝑡, 𝜉

𝑡
) + 𝛿E


𝑓 (𝑡, 𝜉

𝑡
) + 𝑓
0
(𝑡)] 𝑑𝑡 − 𝑧

𝑡

←
𝑑𝐵
𝑡

+ [𝛼
0
E

𝑔 (𝑡, 𝜉

𝑡
) + 𝛿E


𝑔 (𝑡, 𝜉

𝑡
) + 𝑔
0
(𝑡)]

→

𝑑 𝑊
𝑡
,

𝑑𝑌
𝑡
= [𝛼
0
E

𝐹 (𝑡, 𝜉

𝑡
) − (1 − 𝛼

0
) 𝜇𝑦
𝑡

+ 𝛿 (E

𝐹 (𝑡, 𝜉

𝑡
) + 𝜇𝑦

𝑡
) + 𝐹
0
(𝑡)] 𝑑𝑡 + 𝑍

𝑡

→

𝑑 𝑊
𝑡

+ [𝛼
0
E

𝐺 (𝑡, 𝜉

𝑡
) − (1 − 𝛼

0
) 𝜇𝑧
𝑡

+ 𝛿 (E

𝐺(𝑡, 𝜉

𝑡
) + 𝜇𝑧

𝑡
) + 𝐺
0
(𝑡)]

←
𝑑𝐵
𝑡
,

𝑦
0
= 𝑥,

𝑌
𝑇
= 𝛼
0
E

Φ(𝑦


𝑇
, 𝑦
𝑇
) + (1 − 𝛼

0
) 𝑦
𝑇

+ 𝛿 (E

Φ(𝑦


𝑇
, 𝑦
𝑇
) − 𝑦
𝑇
) + 𝜑,

(23)

where 𝛿 is a positive number independent of 𝛼
0
and less than

1. We will prove that the mapping defined by

𝑈 = 𝐼
𝛼
0
+𝛿
(𝑈) : 𝑀

2
(0, 𝑇;R

𝑛+𝑛+𝑛×𝑙+𝑛×𝑑
)

→ 𝑀
2
(0, 𝑇;R

𝑛+𝑛+𝑛×𝑙+𝑛×𝑑
)

(24)

is contractive for a small enough 𝛿. Let �̃� = (𝑦, �̃�, �̃�, 𝑍) ∈

𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑) and �̃� = (𝑦, �̃�, �̃�, 𝑍) = 𝐼

𝛼
0
+𝛿
(�̃�).

Applying Itô’s formula to ⟨𝑦, �̂�⟩ on [0, 𝑇], it follows that

E ⟨𝑦
𝑇
, 𝛼
0
Φ̂ (𝑦
𝑇
) + (1 − 𝛼

0
) 𝑦
𝑇
⟩

− E∫
𝑇

0

E

⟨𝛼
0
(𝐴 (𝑡, 𝜉

𝑡
) − 𝐴 (𝑡, 𝜉

𝑡
)) , �̂�
𝑡
⟩ 𝑑𝑡

+ (1 − 𝛼
0
) 𝜇E∫

𝑇

0

(
𝑦𝑡


2

+
�̂�𝑡


2

) 𝑑𝑡

= E ⟨𝑦
𝑇
, 𝛿�̂�
𝑇
⟩ − E ⟨𝑦

𝑇
, 𝛿Φ̂ (𝑦

𝑇
)⟩

+ 𝛿E∫
𝑇

0

(⟨�̂�
𝑡
, 𝑓 (𝑡, 𝜉

𝑡
)⟩ + ⟨𝑦

𝑡
, 𝐹 (𝑡, 𝜉

𝑡
)⟩

+ ⟨𝑍
𝑡
, 𝑔 (𝑡, 𝜉

𝑡
)⟩ + ⟨�̂�

𝑡
, 𝐺 (𝑡, 𝜉

𝑡
)⟩) 𝑑𝑡

+ 𝛿𝜇E∫
𝑇

0

(⟨𝑦
𝑡
, �̂�
𝑡
⟩ + ⟨�̂�

𝑡
, �̂�
𝑡
⟩) 𝑑𝑡,

(25)

where

𝑓 (𝑡, 𝜉
𝑡
) = E

𝑓 (𝑡, 𝜉

𝑡
) − E

𝑓(𝑡, 𝜉

𝑡
) ,

𝑔 (𝑡, 𝜉
𝑡
) = E

𝑔 (𝑡, 𝜉

𝑡
) − E

𝑔(𝑡, 𝜉

𝑡
) ,

𝐹 (𝑡, 𝜉
𝑡
) = E

𝐹 (𝑡, 𝜉

𝑡
) − E

𝐹(𝑡, 𝜉

𝑡
) ,

𝐺 (𝑡, 𝜉
𝑡
) = E

𝐺(𝑡, 𝜉

𝑡
) − E

𝐺(𝑡, 𝜉

𝑡
) ,

Φ̂ (𝑦
𝑇
) = E

Φ(𝑦


𝑇
, 𝑦
𝑇
) − E

Φ(𝑦


𝑇
, 𝑦
𝑇
) ,

Φ̂ (𝑦
𝑇
) = E

Φ(𝑦


𝑇
, 𝑦
𝑇
) − E

Φ(𝑦


𝑇
𝑦
𝑇
) .

(26)

By virtue of (H1)–(H3), we easily deduce

(1 − 𝛼
0
+ 𝛼
0
𝛽)E

𝑦𝑇


2

+ 𝜇E∫
𝑇

0

(
𝑦𝑡


2

+
�̂�𝑡


2

) 𝑑𝑡

≤ 𝛿𝐶E∫
𝑇

0

(

�̂�
𝑡



2

+


̂
𝑈
𝑡



2

)𝑑𝑡 + 𝛿𝐶 (E|𝑦
𝑇
|
2
+ E|�̂�

𝑇
|
2

) ,

(27)
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with some constant 𝐶 > 0. Hereafter, 𝐶 will be some generic
constant, which can be different from line to line and depends
only on the Lipschitz constants 𝑘,𝜇,𝜆, and𝛽. It is obvious that
1 − 𝛼
0
+ 𝛼
0
𝛽 ≥ 𝛽, 𝛽 = min(1, 𝛽) > 0.

On the other hand, for the difference of the solutions
(�̂�, 𝑍) = (𝑌 − �̃�, 𝑍 − 𝑍), we apply a standard method of
estimation. Applying Itô’s formula to |�̂�

𝑡
|
2 on [𝑡, 𝑇], we have

E

�̂�
𝑡



2

+ E∫
𝑇

𝑡


𝑍
𝑠



2

𝑑𝑠

= E

𝛼
0
Φ̂ (𝑦
𝑇
) + (1 − 𝛼

0
) 𝑦
𝑇
+ 𝛿 (Φ̂ (𝑦

𝑇
) − �̂�
𝑇
)


2

− 2E∫
𝑇

𝑡

⟨�̂�
𝑠
, 𝛼
0
𝐹 (𝑠, 𝜉

𝑠
) − (1 − 𝛼

0
) 𝜇𝑦
𝑠

+ 𝛿 (𝐹 (𝑠, 𝜉
𝑠
) + 𝜇�̂�

𝑠
)⟩ 𝑑𝑠

+ E∫
𝑇

𝑡


𝛼
0
𝐺 (𝑠, 𝜉

𝑠
) − (1 − 𝛼

0
)𝜇�̂�
𝑠
+ 𝛿 (𝐺 (𝑠, 𝜉

𝑠
) + 𝜇�̂�

𝑠
)


2

𝑑𝑠,

(28)

where

𝐹 (𝑡, 𝜉
𝑡
) = E

𝐹 (𝑡, 𝜉

𝑡
) − E

𝐹 (𝑡, 𝜉

𝑡
) ,

𝐹 (𝑡, 𝜉
𝑡
) = E

𝐹 (𝑡, 𝜉

𝑡
) − E

𝐹(𝑡, 𝜉

𝑡
) ,

𝐺 (𝑡, 𝜉
𝑡
) = E

𝐺 (𝑡, 𝜉

𝑡
) − E

𝐺(𝑡, 𝜉

𝑡
) ,

𝐺 (𝑡, 𝜉
𝑡
) = E

𝐺(𝑡, 𝜉

𝑡
) − E

𝐺(𝑡, 𝜉

𝑡
) ,

Φ̂ (𝑦
𝑇
) = E

Φ(𝑦


𝑇
, 𝑦
𝑇
) − E

Φ(𝑦


𝑇
𝑦
𝑇
) ,

Φ̂ (𝑦
𝑇
) = E

Φ(𝑦


𝑇
, 𝑦
𝑇
) − E

Φ(𝑦


𝑇
, 𝑦
𝑇
) .

(29)

By virtue of (H2), we have

E

�̂�
𝑡



2

+ E∫
𝑇

𝑡


𝑍
𝑠



2

𝑑𝑠

≤ 4E [𝛼
2

0


Φ̂ (𝑦
𝑇
)


2

+ (1 − 𝛼
0
)
2𝑦𝑇



2

+ 𝛿
2
Φ̂ (𝑦
𝑇
)


2

+ 𝛿
2
�̂�
𝑇



2

]

+ 2E∫
𝑇

𝑡


�̂�
𝑠


(𝛼
0


𝐹 (𝑠, 𝜉

𝑠
)

+ (1 − 𝛼

0
) 𝜇

𝑦𝑠


+ 𝛿

𝐹 (𝑠, 𝜉

𝑠
)

+ 𝛿𝜇


�̂�
𝑠


) 𝑑𝑠

+ E∫
𝑇

𝑡

[
1 + 2𝜆

4𝜆
𝛼
2

0


𝐺 (𝑠, 𝜉

𝑠
)


2

] 𝑑𝑠

+ 3E∫
𝑇

𝑡

[
1 + 2𝜆

1 − 2𝜆
((1 − 𝛼

0
)
2

𝜇
2�̂�𝑠



2

+ 𝛿
2
𝐺 (𝑠, 𝜉

𝑠
)


2

+ 𝛿
2
𝜇
2
�̂�
𝑠



2

) ] 𝑑𝑠

≤ 𝐶E
𝑦𝑇



2

+ 𝛿𝐶E

�̂�
𝑇



2

+ E∫
𝑇

𝑡

[(
8𝑘

1 − 2𝜆


�̂�
𝑠



2

+
1 − 2𝜆

8𝑘


𝐹 (𝑠, 𝜉

𝑠
)


2

)

+ (1 − 𝛼
0
) 𝜇 (


�̂�
𝑠



2

+
𝑦𝑠


2

) ] 𝑑𝑠

+ 𝛿E∫
𝑇

𝑡

[(

�̂�
𝑠



2

+

𝐹 (𝑠, 𝜉

𝑠
)


2

) + 𝜇 (

�̂�
𝑠



2

+

�̂�
𝑠



2

)] 𝑑𝑠

+ E∫
𝑇

𝑡

[
1 + 2𝜆

4𝜆


𝐺 (𝑠, 𝜉

𝑠
)


2

] 𝑑𝑠

+ 3E∫
𝑇

𝑡

[
1 + 2𝜆

1 − 2𝜆
((1 − 𝛼

0
)
2

𝜇
2�̂�𝑠



2

+ 𝛿
2
𝐺 (𝑠, 𝜉

𝑠
)


2

+ 𝛿
2
𝜇
2
�̂�
𝑠



2

) ] 𝑑𝑠

≤ 𝐶E
𝑦𝑇



2

+ 𝛿𝐶E

�̂�
𝑇



2

+ 𝐶E∫
𝑇

𝑡


�̂�
𝑠



2

𝑑𝑠 + 𝛿𝐶E∫
𝑇

𝑡



̂
𝜉
𝑠



2

𝑑𝑠

+ 𝐶E∫
𝑇

𝑡

(
𝑦𝑠


2

+
�̂�𝑠


2

) 𝑑𝑠 +
3 + 2𝜆

4
E∫
𝑇

𝑡


𝑍
𝑠



2

𝑑𝑠.

(30)

Thus, we have

E

�̂�
𝑡



2

+
1 − 2𝜆

4
E∫
𝑇

𝑡


𝑍
𝑠



2

𝑑𝑠

≤ 𝐶E∫
𝑇

𝑡


�̂�
𝑠



2

𝑑𝑠 + 𝐶 (E
𝑦𝑇



2

+ 𝛿E

�̂�
𝑇



2

)

+ 𝐶E∫
𝑇

𝑡

(
𝑦𝑠


2

+
�̂�𝑠


2

+ 𝛿


̂
𝑈
𝑠



2

)𝑑𝑠.

(31)

By Gronwall’s inequality, it follows that

E

�̂�
𝑡



2

+ E∫
𝑇

𝑡


𝑍
𝑠



2

𝑑𝑠

≤ 𝐶 (E
𝑦𝑇



2

+ 𝛿E

�̂�
𝑇



2

)

+ 𝐶E∫
𝑇

0

(
𝑦𝑡


2

+
�̂�𝑡


2

+ 𝛿


̂
𝑈
𝑡



2

)𝑑𝑡.

(32)

Then, we can deduce

E∫
𝑇

0

(

�̂�
𝑡



2

+

𝑍
𝑡



2

) 𝑑𝑡

≤ 𝐶 (E
𝑦𝑇



2

+ 𝛿E

�̂�
𝑇



2

)

+ 𝐶E∫
𝑇

0

(
𝑦𝑡


2

+
�̂�𝑡


2

+ 𝛿


̂
𝑈
𝑡



2

)𝑑𝑡.

(33)
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Combining the above two estimates (27) and (33), for a
sufficiently large constant 𝐶 > 0, we easily have

E∫
𝑇

0


�̂�
𝑡



2

𝑑𝑡 + E
𝑦𝑇



2

≤ 𝛿𝐶(E∫
𝑇

0


�̂�
𝑡



2

𝑑𝑡 + E
𝑦𝑇



2

+ E∫
𝑇

0



̂
𝑈
𝑡



2

𝑑𝑡 + E

�̂�
𝑇



2

) .

(34)

We now choose 𝛿
0
= 1/3𝐶. It is clear that, for each fixed 𝛿 ∈

[0, 𝛿
0
], the mapping 𝐼

𝛼
0
+𝛿

is contractive in the sense that

E∫
𝑇

0


�̂�
𝑡



2

𝑑𝑡 + E
𝑦𝑇



2

≤
1

2
(E∫
𝑇

0



̂
𝑈
𝑡



2

𝑑𝑡 + E

�̂�
𝑇



2

) . (35)

Thus, thismapping has a unique fixed point𝑈 = (𝑦, 𝑌, 𝑧, 𝑍) ∈

𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑), which is the solution of (21) for 𝛼 =

𝛼
0
+ 𝛿, as 𝛿 ∈ [0, 𝛿

0
]. The proof is complete.

Now we can obtain one of the main results in this paper
which is the following existence and uniqueness theorem for
solutions of MF-FBDSDE (17).

Theorem 3. Under assumptions (H1)–(H3), (17) has a unique
solution in𝑀2 (0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑).

Proof. Uniqueness: let 𝑈 = (𝑦, 𝑌, 𝑧, 𝑍) and 𝑈 = (𝑦, 𝑌, 𝑧, 𝑍)

be two solutions of (17). We use the same notations as in
Lemma 2. Applying Itô’s formula to ⟨𝑦, �̂�⟩ on [0, 𝑇], we have

E ⟨𝑦
𝑇
, Φ̂ (𝑦
𝑇
)⟩ = E∫

𝑇

0

E

⟨𝐴 (𝑡, 𝑈

𝑡
) − 𝐴 (𝑡, 𝑈

𝑡
) , �̂�
𝑡
⟩ 𝑑𝑡.

(36)

By virtue of (H3), it follows that

𝜇E∫
𝑇

0

E

⟨𝐴 (𝑡, 𝑈

𝑡
) − 𝐴 (𝑡, 𝑈

𝑡
) , �̂�
𝑡
⟩ 𝑑𝑡 ≤ 0. (37)

Thus, 𝑈 ≡ 𝑈
. The uniqueness is proven.

Existence: when 𝛼 = 0, (21) has a unique solution in
𝑀
2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑). It follows from Lemma 2 that there

exists a positive constant 𝛿
0
= 𝛿
0
(𝑘, 𝜆, 𝜇, 𝛽) such that, for

any 𝛿 ∈ [0, 𝛿
0
] and 𝑥 ∈ R𝑛, 𝜑 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃;R𝑛), and

(𝐹
0
, 𝑓
0
, 𝐺
0
, 𝑔
0
) ∈ 𝑀

2
(0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑), (21) has a unique

solution for 𝛼 = 𝛿. Since 𝛿
0
depends only on (𝑘, 𝜆, 𝜇, 𝛽), we

can repeat this process for𝑁 times with 1 ≤ 𝑁𝛿
0
< 1 + 𝛿

0
. In

particular, for 𝛼 = 1 with (𝐹
0
, 𝑓
0
, 𝐺
0
, 𝑔
0
) ≡ 0 and 𝜑 ≡ 0, (17)

has a unique solution in𝑀2 (0, 𝑇;R𝑛+𝑛+𝑛×𝑙+𝑛×𝑑). The proof is
complete.

Remark 4. Condition (H3) can be replaced by the following
condition.

(H3)

E

⟨𝐴 (𝑡, 𝜉) − 𝐴 (𝑡, 𝜉) , 𝑈 − 𝑈⟩ ≥ 𝜇


𝑈 − 𝑈



2

,

∀𝑈 = (𝑦, 𝑌, 𝑧, 𝑍)
𝑇

, 𝑈 = (𝑦, 𝑌, 𝑧, 𝑍)
𝑇

,

𝑈

= (𝑦

, 𝑌

, 𝑧

, 𝑍

)
𝑇

,

𝑈


= (𝑦

, 𝑌


, 𝑧

, 𝑍


)

𝑇

∈ R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑
,

∀𝑡 ∈ [0, 𝑇] .

E

⟨Φ (𝑦, 𝑦


) − Φ (𝑦, 𝑦


) , 𝑦 − 𝑦⟩ ≤ −𝛽

𝑦 − 𝑦


2

,

∀𝑦, 𝑦 ∈ R
𝑛
,

(38)

where 𝜇 and 𝛽 are positive constants.

By similar arguments to Theorem 3, we have another
parallel existence and uniqueness theorem forMF-FBDSDEs.

Theorem 5. Under assumptions (H1), (H2), and (H3)


, MF-
FBDSDE (17) has a unique solution in𝑀2 (0, 𝑇; 𝑅𝑛+𝑛+𝑛×𝑙+𝑛×𝑑).

4. Probabilistic Interpretation for a Class of
Nonlocal SPDEs

The connection of BDSDEs and systems of second-order
quasilinear SPDEs was observed by Pardoux and Peng [1].
This can be regarded as a stochastic version of the well-
known Feynman-Kac formula which gives a probabilistic
interpretation for second-order SPDEs of parabolic types.
Thereafter this subject has attracted many mathematicians;
refer to Bally and Matoussi [2], Gomez et al. [3], Hu and
Ren [4], Ren et al. [5]; see also Zhang and Zhao [6–8].
One distinctive character of this result is that the forward
component of theMF-FBDSDE is coupled with the backward
variable.This section can be viewed as a continuation of such
a theme and will exploit the above theory of fully coupled
MF-FBDSDE in order to provide a probabilistic formula for
the solution of a quasilinear nonlocal SPDE combined with
algebra equations.

For each 𝑥 ∈ R𝑛, consider the following MF-FBDSDE:

𝑑𝑦
𝑠
= E

𝑓 (𝑠, 𝜉

𝑠
) 𝑑𝑠 + E


𝑔 (𝑠, 𝜉

𝑠
)

→

𝑑 𝑊
𝑠
− 𝑧
𝑠

←
𝑑𝐵
𝑠
,

𝑑𝑌
𝑠
= E

𝐹 (𝑠, 𝜉

𝑠
) 𝑑𝑠 + E


𝐺 (𝑠, 𝜉

𝑠
)
←
𝑑𝐵
𝑠
+ 𝑍
𝑠

→

𝑑 𝑊
𝑠
,

𝑦
𝑡
= 𝑥, 𝑌

𝑇
= E

Φ(𝑦


𝑇
, 𝑦
𝑇
) ,

(39)
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where

𝜉
𝑠
= (𝑦
𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
, 𝑦


𝑠
, 𝑌


𝑠
, 𝑧


𝑠
, 𝑍


𝑠
) ,

𝐹 : [𝑡, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛

×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛
,

𝑓 : [𝑡, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛

×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛
,

𝐺 : [𝑡, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛

×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛×𝑙
,

𝑔 : [𝑡, 𝑇] ×R
𝑛
×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

×R
𝑛

×R
𝑛
×R
𝑛×𝑙

×R
𝑛×𝑑

→ R
𝑛×𝑑
,

Φ : R
𝑛
×R
𝑛
→ R

𝑛
.

(40)

Assume that (𝐹, 𝑓, 𝐺, 𝑔, Φ) in MF-FBDSDE (39) are deter-
ministic, and MF-FBDSDE (39) has a unique measurable
solution (𝑦

𝑠
, 𝑌
𝑠
, 𝑧
𝑠
, 𝑍
𝑠
), 𝑠 ∈ [𝑡, 𝑇]. Set

𝑢 (𝑡, 𝑥) := 𝑌
𝑡,𝑥

𝑡
, V (𝑡, 𝑥) := 𝑍𝑡,𝑥

𝑡
. (41)

By the uniqueness of the solution to (39), it is known that, for
any 𝑡 ≤ 𝑠 ≤ 𝑇,

𝑌
𝑡,𝑥

𝑠
= 𝑌
𝑠,𝑦
𝑡,𝑥

𝑠

𝑠
= 𝑢 (𝑠, 𝑦

𝑡,𝑥

𝑠
) . (42)

To simplify the notation, for 𝜑 = 𝐹, 𝑓, 𝐺, 𝑔, we define

𝜑 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑥)

≐ E [𝜑 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑥, 𝑢 (𝑠, 𝑦

0,𝑥
0

𝑠
) , 𝑢 (𝑠, 𝑥) , 𝜇 (𝑠, 𝑦

0,𝑥
0

𝑠
) ,

𝜇 (𝑠, 𝑥) , V (𝑠, 𝑦0,𝑥0
𝑠

) , V (𝑠, 𝑥))] .
(43)

According to our notations introduced in Section 2, we know
that

𝜑 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑥)

= E

[ 𝜑 (𝜔


, 𝑠, 𝑦
0,𝑥
0 (𝜔

, 𝑠) , 𝑥, 𝑢 (𝑠, 𝑦

0,𝑥
0 (𝜔

, 𝑠)) , 𝑢 (𝑠, 𝑥) ,

𝜇 (𝑠, 𝑦
0,𝑥
0 (𝜔

, 𝑠)) , 𝜇 (𝑠, 𝑥) ,

V (𝑠, 𝑦0,𝑥0 (𝜔, 𝑠)) , V (𝑠, 𝑥)) ] .
(44)

If there exists 𝑢(𝑡, 𝑥) ∈ 𝐶1,2(Ω × [0, 𝑇] × R𝑛;R𝑛) solving
the following quasilinear second-order nonlocal SPDE:

𝑢 (𝑡, 𝑥) = E [Φ (𝑦
0,𝑥
0

𝑇
, 𝑥)]

+ ∫

𝑇

𝑡

[L𝑢 (𝑠, 𝑥) + 𝐹 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑥)] 𝑑𝑠

+ ∫

𝑇

𝑡

𝑝𝐺 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑥)

←
𝑑𝐵
𝑠
,

∇𝑢 (𝑡, 𝑥) 𝜇 (𝑡, 𝑥) = 𝑞𝐺 (𝑡, 𝑦
0,𝑥
0

𝑡
, 𝑥) , 𝑝 + 𝑞 = 1,

𝑞 ̸= 0, 𝑝, 𝑞 ∈ R,

V (𝑡, 𝑥) = ∇𝑢 (𝑡, 𝑥) 𝑔 (𝑡, 𝑦0,𝑥0
𝑡

, 𝑥) , ∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R
𝑛
,

(45)

where 𝑢 : R
+
×R𝑛 → R𝑚,

L𝑢 = (

𝐿𝑢
1

...
𝐿𝑢
𝑚

), (46)

with

𝐿𝑢
𝑘
(𝑡, 𝑥) :=

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑡, 𝑦
0,𝑥
0

𝑡
, 𝑥)

𝜕𝑢
𝑘

𝜕𝑥
𝑖

(𝑡, 𝑥)

+
1

2

𝑛

∑

𝑖,𝑗=1

E(𝑔𝑔
𝑇
)
𝑖𝑗
(𝑡, 𝑦
0,𝑥
0

𝑡
, 𝑥)

𝜕
2
𝑢
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(𝑡, 𝑥)

−
1

2

𝑛

∑

𝑖,𝑗=1

𝜕
2
𝑢
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(𝑡, 𝑥) (𝜇 (𝑡, 𝑥) 𝜇(𝑡, 𝑥)
𝑇
)
𝑖𝑗
,

𝑘 = 1, . . . , 𝑚,

(47)

we can assert the following.

Theorem 6. Assume that (𝐹, 𝑓, 𝐺, 𝑔, Φ) in MF-FBDSDE (39)
are deterministic, and MF-FBDSDE (39) admits a unique
measurable solution, the functions 𝐹, 𝑓, 𝐺, and 𝑔 are of class
𝐶
3. and Φ is of class 𝐶2. If (𝑢, V) solves nonlocal SPDE (45),

then (41) holds, where (𝑌, 𝑍) is determined uniquely by (39).

Proof. It suffices to show that {𝑢(𝑠, 𝑦
𝑡,𝑥

𝑠
), 𝑔(𝑠, 𝑦

0,𝑥
0

𝑠
, 𝑥)

∇𝑢(𝑠, 𝑦
𝑡,𝑥

𝑠
); 0 ≤ 𝑠 ≤ 𝑡} solves MF-FBDSDE (39).

Let 𝑡 = 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑇; we have

𝑢 (𝑡
𝑖
, 𝑦
𝑡,𝑥

𝑡
𝑖

) − 𝑢 (𝑡
𝑖+1
, 𝑦
𝑡,𝑥

𝑡
𝑖+1

)

= 𝑢 (𝑡
𝑖
, 𝑦
𝑡,𝑥

𝑡
𝑖

) − 𝑢 (𝑡
𝑖
, 𝑦
𝑡,𝑥

𝑡
𝑖+1

) + 𝑢 (𝑡
𝑖
, 𝑦
𝑡,𝑥

𝑡
𝑖+1

) − 𝑢 (𝑡
𝑖+1
, 𝑦
𝑡,𝑥

𝑡
𝑖+1

)
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= −∫

𝑡
𝑖+1

𝑡
𝑖

L𝑢 (𝑡
𝑖
, 𝑦
𝑡,𝑥

𝑠
) 𝑑𝑠 + ∫

𝑡
𝑖+1

𝑡
𝑖

∇𝑢 (𝑡
𝑖
, 𝑦
𝑡,𝑥

𝑠
) 𝑧
𝑠

←
𝑑𝐵
𝑠

+ ∫

𝑡
𝑖+1

𝑡
𝑖

𝑔 (𝑡
𝑖
, 𝑦
0,𝑥
0

𝑠
, 𝑦
𝑡,𝑥

𝑠
) ∇𝑢 (𝑠, 𝑦

𝑡,𝑥

𝑠
)

→

𝑑 𝑊
𝑠

+ ∫

𝑡
𝑖+1

𝑡
𝑖

[L𝑢 (𝑠, 𝑦
𝑡,𝑥

𝑡
𝑖+1

) + 𝐹 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑦
𝑡,𝑥

𝑡
𝑖+1

)] 𝑑𝑠

+ ∫

𝑡
𝑖+1

𝑡
𝑖

𝑝𝐺 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑦
𝑡,𝑥

𝑡
𝑖+1

)
←
𝑑𝐵
𝑠
,

(48)

where we have used Itô’s formula and the equation satisfied
by 𝑢. Finally, let the mesh size go to zero; we have

𝑢 (𝑡, 𝑦
𝑡
) − 𝑢 (𝑇, 𝑦

𝑇
)

= ∫

𝑇

𝑡

𝐹 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑦
𝑡,𝑥

𝑠
) 𝑑𝑠 + ∫

𝑇

𝑡

𝐺(𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑦
𝑡,𝑥

𝑠
)
←
𝑑𝐵
𝑠

+ ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑦
𝑡,𝑥

𝑠
) ∇𝑢 (𝑠, 𝑦

𝑡,𝑥

𝑠
)

→

𝑑 𝑊
𝑠
.

(49)

It is easy to check that 𝑌𝑡,𝑥
𝑠

:= 𝑢(𝑠, 𝑦
𝑡,𝑥

𝑠
), 𝑍
𝑡,𝑥

𝑠
:= 𝑔(𝑠, 𝑦

0,𝑥
0

𝑠
,

𝑥)∇𝑢(𝑠, 𝑦
𝑡,𝑥

𝑠
) coincides with the unique solution to MF-

BDSDE of (39).

Remark 7.

(i) In the case when 𝑝 = 0 in nonlocal SPDE (45),
nonlocal SPDE (45) will degenerate to the following
nonlocal PDE:

𝑢 (𝑡, 𝑥) = E [Φ (𝑦
0,𝑥
0

𝑇
, 𝑥)]

+ ∫

𝑇

𝑡

[L𝑢 (𝑠, 𝑥) + 𝐹 (𝑠, 𝑦
0,𝑥
0

𝑠
, 𝑥)] 𝑑𝑠,

∇𝑢 (𝑡, 𝑥) 𝜇 (𝑡, 𝑥) = 𝐺 (𝑡, 𝑦
0,𝑥
0

𝑡
, 𝑥) ,

V (𝑡, 𝑥) = ∇𝑢 (𝑡, 𝑥) 𝑔 (𝑡, 𝑦0,𝑥0
𝑡

, 𝑥) , ∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R
𝑛
.

(50)

(ii) Equation (41) can be called a Feynman-Kac formula
for nonlocal SPDE (45).

(iii) Equation (41) generalizes the PDE combined with
algebra equations in [32, 33] to the mean-field case.

(iv) By virtue of a connection between them and fully
coupled FBDSDE ofmean-field type,Theorem6 gives
a probabilistic interpretation for the solutions to such
kind of SPDE (45). Furthermore, the uniqueness for
SPDE (45) is an interesting problem, and we hope to
be able to address this issue in our future publications.
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