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We study a stochastic partial differential equation in the whole space 𝑥 ∈ R𝑑, with arbitrary dimension 𝑑 ≥ 1, driven by fractional
noise and a pure jump Lévy space-time white noise. Our equation involves a fractional derivative operator. Under some suitable
assumptions, we establish the existence and uniqueness of the global mild solution via fixed point principle.

1. Introduction

Let 𝑑 ≥ 1, 𝛼 = (𝛼1, . . . , 𝛼𝑑), 𝛿 = (𝛿1, . . . , 𝛿𝑑), and D𝛼
𝛿
be the

nonlocal fractional differential operator defined by

D
𝛼

𝛿
=

𝑑

∑

𝑖=1

𝐷
𝛼𝑖

𝛿𝑖
, (1)

where 𝐷𝛼𝑖
𝛿𝑖
denotes the fractional differential derivative with

respect to the 𝑖th coordinate defined via its Fourier transform
F by

F (𝐷
𝛼

𝛿
𝜑) (𝜉) = −

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼 exp(−𝑖𝛿𝜋

2
sgn (𝜉))F (𝜑) (𝜉) . (2)

In this paper, we are concerned with the following
jump type stochastic partial differential equation (SPDE for
abbreviation) with fractional noise:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) = D

𝛼

𝛿
𝑢 (𝑡, 𝑥) + 𝑏 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

+ 𝜎 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥)) 𝐿̇ (𝑡, 𝑥) + 𝐵
𝐻
(𝑑𝑡, 𝑑𝑥) ,

𝑢 (0, 𝑥) = 𝑢0 (𝑥) ,

(3)

where (𝑡, 𝑥) ∈ [0, 𝑇] × R𝑑, 𝐿̇ is a pure jump Lévy space-
time white noise on [0, 𝑇] × R𝑑 defined on a complete

probability space (Ω,F, 𝑃), and 𝐵
𝐻
(𝑑𝑡, 𝑑𝑥) denotes the

fractional noise on [0, 𝑇] × R𝑑 with multiparameter 𝐻 =

(ℎ0, ℎ1, . . . , ℎ𝑑) for ℎ𝑖 ∈ (0, 1) and 𝑖 ∈ {0, 1, 2, . . . , 𝑑} defined
on a complete probability space (Ω,F, 𝑃) (see Section 2 for
precise definitions). Actually, we understand this equation as
Walsh [1] sense, and so we can rewrite (3) as follows:

𝑢 (𝑡, 𝑥)

= ∫
R𝑑

G𝛼,𝛿 (𝑡, 𝑥 − 𝑦) 𝑢0 (𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝐵
𝐻
(𝑑𝑦, 𝑑𝑠)

+ ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝑏 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝐿̇ (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠,

(4)

for all 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R𝑑, where G𝛼,𝛿(⋅, ∗) denotes the
Green function associated with (3).

In the present paper, we are interested in the study of (3)
with respect to 𝑑-dimensional nonlocal fractional differential
operator D𝛼

𝛿
. Such operator is initially introduced by Debbi
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and Dozzi [2] for 𝑑 = 1 and is generalized by Boulanba et al.
[3] for the multidimensional space R𝑑. This operator is a
generalization of various well-known operators, such as the
Laplacian operator, the inverse of the generalized Riesz-Feller
potential, and the Riemann-Liouville differential operator. In
probabilistic terms, replacing the Laplacian by its fractional
power (which is an integrodifferential operator) leads to
interesting and largely open questions of extensions of results
for Brownian motion driven stochastic equations to those
driven by Lévy stable processes. In the physical literature,
such fractal anomalous diffusions have been recently enthu-
siastically embraced by a slew of investigators in the context
of hydrodynamics, acoustics, trapping effects in surface
diffusion, statistical mechanics, relaxation phenomena, and
biology. We refer the readers to [4–9] and references therein
for more information about such fractional differential oper-
ator.

On the other hand, many researchers are interested
in studying SPDES driven by a fractional noise. The heat
equations with a multiparameter fractional noise of Hurst
parameter𝐻 = (ℎ0, . . . , ℎ𝑑) on [0,∞] × R𝑑 were introduced
by Hu [10], and he showed the existence and uniqueness of
the solutions to the equation, via chaos expansion. Wei [11]
considered a class of four-order stochastic partial differential
equations driven by the multiparameter fractional noise; the
author studied the regularity of the solution and the existence
of the density of the law of the solution. Hu and Nualart [12]
studied the 𝑑-dimensional stochastic heat equation with a
multiplicative Gaussian noise which is white in space and has
the covariance of a fractional Brownian motion with Hurst
parameter ℎ ∈ (0, 1) in time. More works for the fields can be
found in Balan and Tudor [13, 14], Bo et al. [15, 16], Jiang et al.
[17–19], and Shi andWang [20] and the references therein. In
the meanwhile, there also have been some works on SPDES
involving Lévy space-time white noise (e.g., Albeverio et al.
[21], Shi and Wang [22], Truman and Wu [23, 24], and Wu
and Xie [25]). Løkka et al. [26] studied the stochastic partial
differential equations driven by a 𝑑-parameter pure jump
Lévywhite noise. As an example they used this theory to solve
the stochastic Poisson equation with respect to Lévy white
noise for any dimension 𝑑. We notice that the fixed point
principle and Picard iteration scheme work in Albeverio et
al. [21] and Truman and Wu [23, 24], since Burkhölder-
Davis-Gundy (B-D-G) inequality can be applied to estimate
stochastic integral with respect to compensated Poisson
randommeasure in𝐿2-sense. Unfortunately, the usual B-D-G
inequality cannot work in estimating stochastic integral with
respect to compensated Poisson randommeasure in 𝐿𝑝-sense
(𝑝 > 2). Hence a new version of B-D-G inequality will be
adopted for 𝐿𝑝 (𝑝 ≥ 2)-estimates on the solution to (3) (see
Bo and Wang [27]).

Motivated by the above results, in this paper, we study a
stochastic fractional partial differential equation in the whole
space 𝑥 ∈ R𝑑, with arbitrary dimension 𝑑 ≥ 1, driven
by fractional noise and a pure jump Lévy space-time white
noise. The main subject of this paper is to establish the
existence and uniqueness of the solution of (3) via fixed point
principle.

The rest of the paper is organized as follows. In Section 2,
we begin by making some notations and by recalling some
basic preliminaries about fractional noises, Lévy space-time
white noise, and Green function which will be needed later.
In Section 3, we will prove the existence and uniqueness of
the mild solution to (4) in 𝐿𝑝 (𝑝 ≥ 2) sense under some
approximate conditions. Most of the estimates of this paper
contain unspecified constants. An unspecified positive and
finite constant will be denoted by 𝐶, which may not be the
same in each occurrence. Sometimes we will emphasize the
dependence of these constants upon parameters.

2. Preliminaries

In this section, we will present the definitions and some
results of the multiparameter fractional noises, Lévy space-
time white noise, and Green function.

2.1. Multiparameter Fractional Noises. Recall that a fractional
Brownian motion with Hurst parameter ℎ ∈ (0, 1) on [0, 𝑇]
is a centered Gaussian process (𝐵𝑡) with covariance

𝐸 (𝐵𝑡𝐵𝑠) =
1

2
(𝑡
2ℎ
+ 𝑠
2ℎ
− |𝑡 − 𝑠|

2ℎ
) . (5)

Following Hu [10] and Wei [11], we introduce a multiparam-
eter fractional Brownian field.

Definition 1. A multiparameter fractional Brownian field
𝐵
𝐻
= {𝐵
𝐻
(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] × R𝑑} with multiparameter

𝐻 = (ℎ0, ℎ1, . . . , ℎ𝑑) for ℎ𝑖 ∈ (0, 1) and 𝑖 ∈ {0, 1, 2, . . . , 𝑑} is
a centered Gaussian field defined on some probability space
(Ω,F, 𝑃) with covariance

𝐸 [𝐵
𝐻
(𝑡, 𝑥) 𝐵

𝐻
(𝑠, 𝑦)]

=
1

2𝑑+1
(𝑡
2ℎ0 + 𝑠

2ℎ0 − |𝑡 − 𝑠|
2ℎ0)

×

𝑑

∏

𝑖=1

(𝑥
2ℎ𝑖

𝑖
+ 𝑦
2ℎ𝑖

𝑖
−
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑦𝑖

󵄨󵄨󵄨󵄨
2ℎ𝑖
) ,

(6)

for all 𝑡, 𝑠 ∈ [0, 𝑇] and 𝑥 = (𝑥1, . . . , 𝑥𝑑), 𝑦 = (𝑦1, . . . , 𝑦𝑑) ∈

R𝑑.

Throughout the paper, we limit our consideration on
the multiparameter fractional Brownian field with parameter
𝐻 = (ℎ0, ℎ1, . . . , ℎ𝑑) = (ℎ, ℎ, . . . , ℎ) and ℎ ∈ (1/2, 1).

Let

Ψℎ (𝑡, 𝑠, 𝑥, 𝑦) := [ℎ (2ℎ + 1)]
𝑑+1
|𝑡 − 𝑠|

2ℎ−2

𝑑

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑦𝑖
󵄨󵄨󵄨󵄨
2ℎ−2

,

0 ≤ 𝑠 ≤ 𝑇, 𝑥, 𝑦 ∈ R
𝑑
.

(7)
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Introduce the following Hilbert space:

𝐿
2

Ψ
:= {𝑓 : [0, 𝑇] ×R

𝑑
󳨀→ R;

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

Ψ
= ∫
[0,𝑇]
2

∫
R2𝑑
Ψℎ (𝑡, 𝑠, 𝑥, 𝑦)

×𝑓(𝑡, 𝑥)𝑓(𝑠, 𝑦)𝑑𝑦 𝑑𝑥 𝑑𝑠 𝑑𝑡<∞} ,

(8)

where 𝑑𝑥 = 𝑑𝑥1𝑑𝑥2, . . . , 𝑑𝑥𝑑 and 𝑑𝑦 = 𝑑𝑦1𝑑𝑦2, . . . , 𝑑𝑦𝑑. Let
𝑓 ∈ 𝐿

2

Ψ
; one can define the following stochastic integral:

{∫

𝑡

0

∫
R𝑑
𝑓 (𝑠, 𝑥) 𝑑𝐵

𝐻
(𝑡, 𝑥) ; 𝑡 ∈ [0, 𝑇]} , (9)

(see, e.g., Hu [10]); it is easy to check that this integral has the
usual properties as a stochastic integral.

Proposition 2. Let 𝑓, 𝑔 ∈ 𝐿2
Ψ
. Then

(1) 𝐸[∫𝑇
0
∫
R𝑑
𝑓(𝑠, 𝑥)𝑑𝐵

𝐻
(𝑠, 𝑥)] = 0,

(2) 𝐸[∫𝑇
0
∫
R𝑑
𝑓(𝑠, 𝑥)𝑑𝐵

𝐻
(𝑠, 𝑥) ∫

𝑇

0
∫
R𝑑
𝑔(𝑠, 𝑥)𝑑𝐵

𝐻
(𝑠, 𝑥)] =

⟨𝑓, 𝑔⟩𝐿2
Ψ

.

The following embedding proposition which is an exten-
sion to the results in Mémin et al. [28] had been proved in
Wei [11].

Lemma 3. Consider the following:
𝐿
ℎ
([0, 𝑇] ×R𝑑) ⊂ 𝐿2

Ψ
(ℎ > 1/2).

2.2. Lévy Space-Time White Noise. Let (𝐸𝑖,E𝑖, 𝜇𝑖), 𝑖 = 1, 2,
be two 𝜎-finite measurable spaces. We call𝑁 : (𝐸1,E1, 𝜇1) ×
(𝐸2,E2, 𝜇2) × (Ω,F, 𝑃) → N ∪ {0} ∪ {∞} a Poisson noise on
(𝐸1,E1, 𝜇1), if, for all𝐴 ∈ E1, 𝐵 ∈ E2, and 𝑛 ∈ N ∪ {0} ∪ {∞},

𝑃 (𝑁 (𝐴, 𝐵) = 𝑛) =
𝑒
−𝜇1(𝐴)𝜇2(𝐵)[𝜇1(𝐴)𝜇2(𝐵)]

𝑛

𝑛!
. (10)

In particular, if (𝐸1,E1, 𝜇1) = ([0,∞) × R𝑑,B([0,∞) ×

R𝑑), 𝑑𝑡×𝑑𝑥), then define a compensated randommartingale
measure by

𝑀(𝐵,𝐴, 𝑡) = 𝑁 ([0, 𝑡] × 𝐴, 𝐵) − 𝜇1 ([0, 𝑡] × 𝐴) 𝜇2 (𝐵) , (11)

by assuming that 𝜇1([0, 𝑡] × 𝐴)𝜇2(𝐵) < ∞ for all (𝑡, 𝐴, 𝐵) ∈
[0,∞) ×B(R𝑑) × E2. Further, let 𝜙 : 𝐸1 × 𝐸2 × Ω → R be
an (F𝑡)𝑡≥0-predictable function satisfying

E [∫
𝑡

0

∫
𝐴

∫
𝐵

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨
2
𝜇2 (𝑑𝑦) 𝑑𝑥 𝑑𝑠] < ∞, (12)

for all 𝑡 > 0 and (𝐴, 𝐵) ∈ E1 ×E2. We can define a stochastic
integral process

(𝑅𝑡 = ∫

𝑡+

0

∫
𝐴

∫
𝐵

𝜙 (𝑠, 𝑥, 𝑦)𝑀 (𝑑𝑦, 𝑑𝑥, 𝑑𝑠)) (13)

which is a square integrable (𝑃, (F𝑡)𝑡≥0)-martingale. It is
well known that a (pure jump) Lévy space-time white noise
possesses the following structure:

𝐿̇ (𝑥, 𝑡) = ∫
𝑈0

ℎ1 (𝑡, 𝑥, 𝑦) 𝑀̇ (𝑑𝑦, 𝑥, 𝑡)

+ ∫
𝐸2\𝑈0

ℎ2 (𝑡, 𝑥, 𝑦) 𝑁̇ (𝑑𝑦, 𝑥, 𝑡) ,

(14)

for some 𝑈0 ∈ 𝐸2 such that 𝜇2(𝐸2 \ 𝑈0) < ∞ and
∫
𝑈0
𝑧
2
𝜇2(𝑑𝑧) < +∞. Here ℎ1, ℎ2 : [0,∞) × R × 𝐸2 → R

are some measurable functions; 𝑀̇ and 𝑁̇ are the Radon-
Nikodym derivatives given by

𝑀̇ (𝑑𝑦, 𝑥, 𝑡) =
𝑀(𝑑𝑦, 𝑑𝑥, 𝑑𝑡)

𝑑𝑡 × 𝑑𝑥
,

𝑁̇ (𝑑𝑦, 𝑥, 𝑡) =
𝑁 (𝑑𝑡 × 𝑑𝑥, 𝑑𝑦)

𝑑𝑡 × 𝑑𝑥
,

(15)

with (𝑡, 𝑥, 𝑦) ∈ [0,∞) ×R𝑑 × 𝐸2.
The following B-D-G inequality is given by Bo andWang

[27], which is useful to estimate the higher order moments of
mild solution to (4).

Lemma 4. Let 𝜙 : [0,∞) × R𝑑 × 𝐸2 × Ω → R be (F𝑡)𝑡≥0-
predictable and satisfy (13). Define the integral process by

{𝑋𝑡 = ∫

𝑡+

0

∫
R𝑑
∫
𝐸2

𝜙 (𝑠, 𝑦, 𝑧)𝑀 (𝑑𝑧, 𝑑𝑦, 𝑑𝑠) , 𝑡 ≥ 0} .

(16)

Then, for any 𝑇 > 0 and 𝑝 > 1, there exists a constant𝐶𝑝,𝑇 > 0
such that

sup
𝑡∈[0,𝑇]

E [
󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨
𝑝
]

≤ 𝐶𝑝,𝑇[∫

𝑇

0

∫
R𝑑
∫
𝐸2

(E [
󵄨󵄨󵄨󵄨𝜙 (𝑠, 𝑦, 𝑧)

󵄨󵄨󵄨󵄨
𝑝
])
2/𝑝

𝜇2 (𝑑𝑧) 𝑑𝑦 𝑑𝑠]

𝑝/2

.

(17)

2.3. Green Function. In this subsection, we will introduce the
nonlocal fractional differential operator defined by

D
𝛼

𝛿
=

𝑑

∑

𝑖=1

𝐷
𝛼𝑖

𝛿𝑖
, (18)

where 𝛼 = (𝛼1, . . . , 𝛼𝑑), 𝛿 = (𝛿1, . . . , 𝛿𝑑), and 𝐷
𝛼𝑖

𝛿𝑖
denotes

the fractional differential derivative with respect to the 𝑖th
coordinate defined via its Fourier transformF by

F (𝐷
𝛼

𝛿
𝜑) (𝜉) = −

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼 exp(−𝑖𝛿𝜋

2
sgn (𝜉))F (𝜑) (𝜉) . (19)

In this paper, we will assume that |𝛿𝑖| ≤ min{𝛼𝑖 − [𝛼𝑖]2, 2 +
[𝛼𝑖]2 − 𝛼𝑖}, 𝑖 = 1, . . . , 𝑑, [𝛼𝑖]2 is the largest even integer less
than or equal to 𝛼𝑖 (even part of 𝛼𝑖), and 𝛿𝑖 ∈ 2N + 1.
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In one space dimension, the operator 𝐷𝛼
𝛿
is a closed,

densely defined operator on 𝐿2(R) and it is the infinitesimal
generator of a semigroup which is in general not symmetric
and not a contraction. This operator is a generalization of
various well-known operators, such as the Laplacian opera-
tor (when 𝛼 = 2), the inverse of the generalized Riesz-
Feller potential (when 𝛼 > 2), and the Riemann-Liouville
differential operator (when |𝛿| = 2 + [𝛼]2 or |𝛿| = 𝛼 − [𝛼]).
It is self-adjoint only when 𝛿 = 0 and, in this case, it coincides
with the fractional power of the Laplacian. We refer the
readers toDebbi [29], Debbi andDozzi [2], andKomatsu [30]
for more details about this operator.

According to Komatsu [30], 𝐷𝛼
𝛿
can be represented, for

1 < 𝛼 < 2, by

𝐷
𝛼

𝛿
𝜑 (𝑥)

= ∫
R

𝜑 (𝑥 + 𝑦) − 𝜑 (𝑥) − 𝑦𝜑
󸀠
(𝑥)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1+𝛼

× (𝜅
𝛿

−
1(−∞,0) (𝑦) + 𝜅

𝛿

+
1(−0,+∞) (𝑦)) 𝑑𝑦

(20)

and, for 0 < 𝛼 < 1, by

𝐷
𝛼

𝛿
𝜑 (𝑥)

= ∫
R

𝜑 (𝑥 + 𝑦) − 𝜑 (𝑥)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1+𝛼

× (𝜅
𝛿

−
1(−∞,0) (𝑦) + 𝜅

𝛿

+
1(−0,+∞) (𝑦)) 𝑑𝑦,

(21)

where 𝜅𝛿
−
and 𝜅𝛿
+
are two nonnegative constants satisfying 𝜅𝛿

−
+

𝜅
𝛿

+
> 0 and 𝜑 is a smooth function for which the integral

exists, and 𝜑󸀠 is its derivative. This representation identifies
it as the infinitesimal generator for a nonsymmetric 𝛼-stable
Lévy process.

Let𝐺𝛼,𝛿(𝑡, 𝑥) be the fundamental solution of the following
Cauchy problem:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) = 𝐷

𝛼

𝛿
(𝑡, 𝑥) ,

𝑢 (0, 𝑥) = 𝛿0 (𝑥) , 𝑡 > 0, 𝑥 ∈ R,

(22)

where 𝛿0(⋅) is the Dirac distribution. By Fourier transform,
we see that𝐷𝛼

𝛿
(𝑡, 𝑥) is given by F :

𝐺𝛼,𝛿 (𝑡, 𝑥)

=
1

2𝜋
∫
R

exp (−𝑖𝑧𝑥 − 𝑡|𝑧|𝛼 exp(−𝑖𝛿𝜋
2
sgn (𝑧))) 𝑑𝑧.

(23)

The relevant parameters 𝛼 called the index of stability and
𝛿 (related to the asymmetry) improperly referred to as the
skewness are real numbers satisfying |𝛿| ≤ min{𝛼 − [𝛼]2, 2 +
[𝛼]2 − 𝛼}, and 𝛿 = 0 when 𝛿 ∈ 2N + 1.

Let us list some known facts on 𝐺𝛼,𝛿(𝑡, 𝑥) which will be
used later on (see, e.g., Debbi [29] and Debbi and Dozzi [2]).

Lemma 5. Let 𝛼 ∈ (0,∞)/{N}; one has the following.

(1) The function 𝐺𝛼,𝛿(𝑡, ⋅) is not in general symmetric
relatively to 𝑥 and it is not everywhere positive.

(2) For any 𝑠, 𝑡 ∈ (0,∞) and 𝑥 ∈ R,

𝜕
𝑛

𝜕𝑥𝑛
𝐺𝛼,𝛿 (𝑡, 𝑥) = (𝑠)

−(𝑛+1)/𝛼
𝐺𝛼,𝛿 (𝑠

−1
𝑡, 𝑠
−1/𝛼

𝑥) , (24)

or equivalently

𝜕
𝑛

𝜕𝑥𝑛
𝐺𝛼,𝛿 (𝑡, 𝑥) = (𝑡)

−(𝑛+1)/𝛼
𝐺𝛼,𝛿 (1, (𝑡)

−1/𝛼
𝑥) . (25)

(3) 𝐺𝛼(𝑠, ⋅) ∗ 𝐺𝛼,𝛿(𝑡, ⋅) = 𝐺𝛼,𝛿(𝑠 + 𝑡, ⋅) for any 𝑠, 𝑡 ∈ (0,∞).

(4) For 𝑛 ≥ 1, there exist some constants 𝐶 and 𝐶𝑛 > 0

such that, for all 𝑥 ∈ R,

󵄨󵄨󵄨󵄨𝐺𝛼,𝛿 (1, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶

1

1 + |𝑥|
1+𝛼

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑛

𝜕𝑥𝑛
𝐺𝛼,𝛿 (1, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑛

|𝑥|
𝛼+𝑛−1

(1 + |𝑥|
𝛼+𝑛
)
2
.

(26)

(5) ∫𝑇
0
∫
R
|𝐺𝛼,𝛿(𝑡, 𝑥)|

𝜆
𝑑𝑡 𝑑𝑥 < ∞ if and only if 1/𝛼 < 𝜆

< 𝛼.

For 𝑑 ≥ 1 and any multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑) and
𝛿 = (𝛿1, . . . , 𝛿𝑑), let G𝛼,𝛿(𝑡, 𝑥) be the Green function of the
deterministic equation

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) = D

𝛼

𝛿
(𝑡, 𝑥) ,

𝑢 (0, 𝑥) = 𝛿0 (𝑥) , 𝑡 > 0, 𝑥 ∈ R
𝑑
.

(27)

Clearly

G𝛼,𝛿 (𝑡, 𝑥)

=

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(𝑡, 𝑥𝑖)

=
1

(2𝜋)
𝑑

× ∫
R𝑑

exp(−𝑖⟨𝜉, 𝑥⟩ − 𝑡
𝑑

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
𝛼𝑖 exp (−𝑖𝛿𝜋

2
sgn (𝜉𝑖)))𝑑𝜉.

(28)
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3. Existence and Uniqueness

In this section, we are going to prove the existence and
uniqueness of the global mild solution to (3). Recall (4) and
(14). Then, for all (𝑡, 𝑥) ∈ [0, 𝑇] ×R𝑑,

𝑢 (𝑡, 𝑥)

= ∫
R𝑑

G𝛼,𝛿 (𝑡, 𝑥 − 𝑦) 𝑢0 (𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝐵
𝐻
(𝑑𝑦, 𝑑𝑠)

+ ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝑏 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝜓 (𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡+

0

∫
R𝑑
∫
𝐸2

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦)

× 𝜎 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) ℎ (𝑠, 𝑦, 𝑧)𝑀 (𝑑𝑧, 𝑑𝑦, 𝑑𝑠) ,

(29)

with the mappings

𝜓 (𝑡, 𝑦) = ∫
𝐸2\𝑈0

ℎ2 (𝑡, 𝑦, 𝑧) 𝜇2 (𝑑𝑧) ,

ℎ (𝑡, 𝑦, 𝑧) = ℎ1 (𝑡, 𝑦, 𝑧) 1𝑈0
(𝑧) + ℎ2 (𝑡, 𝑦, 𝑧) 1𝐸2\𝑈0

(𝑧) ,

(30)

with indicator 1𝐴(⋅) of the set 𝐴 ∈ E2.
In the following, we will show that such a mild solution

indeed exists and is unique, which is stated as follows.

Theorem 6. Let 1 + ∑𝑑
𝑖=1
(1/𝛼𝑖 − 1/ℎ𝛼𝑖) > 0. Suppose the

following conditions hold.

(1) 𝑏, 𝜎 are uniformly Lipschitzian; that is, there exists a
constant 𝐶 > 0 such that for (𝑡, 𝑥) ∈ [0, 𝑇] × R𝑑 and
𝑢, V ∈ R

|𝑏 (𝑡, 𝑥, 𝑢) − 𝑏 (𝑡, 𝑥, V)| + |𝜎 (𝑡, 𝑥, 𝑢) − 𝜎 (𝑡, 𝑥, V)| ≤ 𝐶 |𝑢 − V| .
(31)

(2) 𝑏 is linear growth; that is, there exists a constant 𝐶 > 0
such that for 𝑢 ∈ R

|𝑏 (𝑡, 𝑥, 𝑢)| ≤ 𝐶 (1 + |𝑢|) . (32)

(3) For 𝑝 ∈ (2(1+∑𝑑
𝑖=1
(1/𝛼𝑖))/(∑

𝑑

𝑖=1
(1/𝛼𝑖) −1), +∞)with

𝛼 > 1,

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝜓 (𝑡, ⋅)
󵄩󵄩󵄩󵄩
𝑝

𝑝
< ∞, (33)

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝐸2

|ℎ (𝑡, ⋅, 𝑧)|
2
𝜇2(𝑑𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝/2

𝑝/2

< ∞. (34)

Then, for all F0-measurable 𝑢0 : R𝑑 × Ω → R

satisfying E[‖𝑢0(⋅)‖
𝑝

𝑝
] < ∞, there exists a unique mild

solution (𝑢(𝑡, 𝑥))(𝑡,𝑥)∈[0,𝑇]×R𝑑 to (3) and, for all 𝑝 ∈

(2(1 + ∑
𝑑

𝑖=1
(1/𝛼𝑖))/(∑

𝑑

𝑖=1
(1/𝛼𝑖) − 1), +∞),

sup
𝑡∈[0,𝑇]

E [‖𝑢 (𝑡, ⋅)‖
𝑝

𝑝
] < ∞. (35)

In order to prove the above theorem, we need the
following lemmas.

Lemma 7. Suppose 𝑝 ∈ [1,∞), 𝜌 ∈ [1, 𝑝], and 𝑟 ∈ [1,∞)

such that

1

𝑟
=
1

𝑝
−
1

𝜌
+ 1 ∈ [0, 1] . (36)

LetG𝛼,𝛿 = G𝛼,𝛿(𝑡, 𝑥−𝑦) be the Green kernel,𝐻 = G𝛼,𝛿, orG2𝛼,𝛿
with (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] ×R𝑑 ×R𝑑. Define an operatorA by

A (V) (𝑡, 𝑥) = ∫
𝑡

0

∫
R𝑑
𝐻(𝑡 − 𝑠, 𝑥 − 𝑦) V (𝑠, 𝑦) 𝑑𝑦 𝑑𝑠, (37)

with V ∈ 𝐿
1
([0, 𝑇]; 𝐿

𝜌
( )). Then A : 𝐿

1
([0, 𝑇]; 𝐿

𝜌
( )) →

𝐿
∞
([0, 𝑇]; 𝐿

𝜌
( )) is bounded linear operator and satisfies the

following.

(a) If 𝐻 = G𝛼,𝛿, then there exists a constant 𝐶 > 0 such
that for all 𝑟 ∈ [1, 1 +min𝛼𝑖)

‖A (V) (𝑡, ⋅)‖𝑝

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
((𝑟−1)/𝛼𝑖)‖V(𝑥, ⋅)‖𝜌𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] .

(38)

(b) If G2
𝛼,𝛿
, then there exists a constant 𝐶 > 0 such that for

all 𝑟 ∈ [1, (1 +min𝛼𝑖)/2)

‖A (V) (𝑡, ⋅)‖𝑝

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
((𝑟−2)/𝛼𝑖)‖V(𝑥, ⋅)‖𝜌𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] .

(39)

Proof. We only need to prove the case (a), since the proof
of (b) is similar. Together with Minkowski’s inequality, (3) of
Lemma 5, and Young inequality, one can get

‖A (V) (𝑡, ⋅)‖𝑝

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, ⋅ − 𝑦) V (𝑠, 𝑦) 𝑑𝑦 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝
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≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, ⋅ − 𝑦) V(𝑠, 𝑦)𝑑𝑦
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝
𝑑𝑠

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
−∑
𝑑

𝑖=1
(1/𝛼𝑖)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
R𝑑

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, (𝑡 − 𝑠)

−1/𝛼𝑖(⋅ − 𝑦𝑖))
󵄨󵄨󵄨󵄨V (𝑠, 𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

𝑑𝑠

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
−∑
𝑑

𝑖=1
(1/𝛼𝑖)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, (𝑡 − 𝑠)

−1/𝛼𝑖 (⋅))) ∗ |V (𝑠, ⋅)|
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

𝑑𝑠

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
−∑
𝑑

𝑖=1
(1/𝛼𝑖)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, (𝑡 − 𝑠)

−1/𝛼𝑖 (⋅))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟

⋅ ‖V (𝑠, ⋅)‖𝜌𝑑𝑠

≤ 𝐶∫

𝑡

0

(𝑡 − 𝑠)
−∑
𝑑

𝑖=1
(1/𝛼𝑖) ‖V (𝑠, ⋅)‖𝜌𝑑𝑠,

(40)

where we have used the fact that for 𝑟 ∈ [1, 1 +min𝛼𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, (𝑡 − 𝑠)

−1/𝛼𝑖(⋅))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑟

= [

𝑑

∏

𝑖=1

(∫
R

󵄨󵄨󵄨󵄨󵄨
𝐺𝛼𝑖 ,𝛿𝑖

(1, (𝑡 − 𝑠)
−1/𝛼𝑖𝑦𝑖)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑦𝑖)]

1/𝑟

= (𝑡 − 𝑠)
∑
𝑑

𝑖=1
(𝑟/𝛼𝑖)[

𝑑

∏

𝑖=1

(∫
R

󵄨󵄨󵄨󵄨󵄨
𝐺𝛼𝑖 ,𝛿𝑖

(1, 𝑧𝑖)
󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑧𝑖)]

1/𝑟

≤ 𝐶(𝑡 − 𝑠)
∑
𝑑

𝑖=1
(𝑟/𝛼𝑖) .

(41)

The proof of this lemma is completed.

In the following, we mainly adopt the fixed point princi-
ple to proveTheorem 6. LetB be the space of all𝐿𝑝(R)-valued
F𝑡-adapted processes 𝑢(𝑡, ⋅)0≤𝑡≤𝑇 : [0, 𝑇]×R

𝑑
×Ω → Rwith

the norm

‖𝑎‖B := [ sup
0≤𝑡≤𝑇

𝑒
−𝜂𝑡

E [‖𝑢 (𝑡, ⋅)‖
𝑝

𝑝
]]

1/𝑝

, 𝜂 > 0. (42)

Then (B, ‖ ⋅ ‖B) is a Banach space. Now, for 𝑢 ∈ B, let us define
an operatorT by

T (𝑡, 𝑥) =

5

∑

𝑖=1

T𝑖 (𝑢) (𝑡, 𝑥) , (43)

where

T1 (𝑢) (𝑡, 𝑥) = ∫
R𝑑

G𝛼,𝛿 (𝑡, 𝑥 − 𝑦) 𝑢0 (𝑦) 𝑑𝑦,

T2 (𝑢) (𝑡, 𝑥) = ∫

𝑡

0

∫
R𝑑
G𝛼,𝛿(𝑡 − 𝑠, 𝑥 − 𝑦)𝑏(𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠,

T3 (𝑢) (𝑡, 𝑥) = ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝐵
𝐻
(𝑑𝑦, 𝑑𝑠) ,

T4 (𝑢) (𝑡, 𝑥) = ∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦))

× 𝜓 (𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

T5 (𝑢) (𝑡, 𝑥) = ∫

𝑡

0

∫
R𝑑
∫
𝐸2

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦))

× ℎ (𝑠, 𝑦, 𝑧)𝑀 (𝑑𝑧, 𝑑𝑦, 𝑑𝑠) .

(44)

According to (43), we have the following.

Proposition 8. Suppose 1 + ∑𝑑
𝑖=1
(1/𝛼𝑖 − 1/ℎ𝛼𝑖) > 0 and the

assumptions (1), (2), and (3) of Theorem 6 are satisfied. Then,
for each 𝑝 > 2(1 + ∑𝑑

𝑖=1
(1/𝛼𝑖))/∑

𝑑

𝑖=1
(1/𝛼𝑖) − 1 and 𝑢 ∈ B, it

holds thatT ∈ B.

Proof. From Lemma 3 and Young inequality, it follows that

󵄩󵄩󵄩󵄩T1 (𝑢) (𝑡, 𝑥)
󵄩󵄩󵄩󵄩𝑝

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
R𝑑

G𝛼,𝛿(𝑡, 𝑥 − 𝑦)𝑢0(𝑦)𝑑𝑦
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

= 𝑡
−∑
𝑑

𝑖=1
(1/𝛼𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
R𝑑

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, 𝑡
−1/𝛼𝑖 (⋅ − 𝑦𝑖)) 𝑢0(𝑦)𝑑𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≤ 𝑡
−∑
𝑑

𝑖=1
(1/𝛼𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, 𝑡
−1/𝛼𝑖 ⋅) ∗ 𝑢0(⋅)](⋅)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≤ 𝑡
−∑
𝑑

𝑖=1
(1/𝛼𝑖)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, 𝑡
−1/𝛼𝑖 ⋅)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩1

⋅
󵄩󵄩󵄩󵄩𝑢0 (⋅)

󵄩󵄩󵄩󵄩𝑝

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢0 (⋅)

󵄩󵄩󵄩󵄩𝑝 < ∞,

(45)

where we have used the fact that E[‖𝑢0(⋅)‖
𝑝

𝑝
] < ∞. Now we

deal withT2(𝑢). Applying (a) of Lemma 7 with 1/𝑟 = 1/𝑝 −
1/𝑝+1 = 1 and condition (1) ofTheorem 6, we conclude that

E [
󵄩󵄩󵄩󵄩T2 (𝑢) (𝑡, 𝑥)

󵄩󵄩󵄩󵄩
𝑝

𝑝
]

≤ 𝐶E[∫
𝑡

0

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
((𝑟−1)/𝛼𝑖)‖𝑏 (𝑠, ⋅, 𝑢 (𝑠, ⋅))‖𝑝𝑑𝑠]

𝑝
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≤ 𝐶E[∫
𝑡

0

(1 + ‖𝑢 (𝑠, ⋅)‖𝑝) 𝑑𝑠]

𝑝

≤ 𝐶𝑝,𝑇 [1 + sup
0≤𝑡≤𝑇

E‖𝑢 (𝑠, ⋅)‖
𝑝

𝑝
]

≤ 𝐶𝑝,𝑇 [1 + ‖𝑢(𝑠, ⋅)‖
𝑝

B] < ∞,

(46)

since 𝑢 ∈ B.
Now, let us considerT3(𝑢)(𝑡, 𝑥). By Lemma 3, we deduce

that

E
󵄩󵄩󵄩󵄩T3 (𝑢) (𝑡, 𝑥)

󵄩󵄩󵄩󵄩
𝑝

𝑝

= ∫
R𝑑

E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

∫
R𝑑

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝐵
𝐻
(𝑑𝑦, 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥

= ∫
R𝑑

E
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

∫
R𝑑
(𝐾
∗

𝐻
𝐺𝛼,𝛿 (𝑡 − ⋅, 𝑥 − ⋅)) (𝑠, 𝑦)𝑊 (𝑑𝑦, 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥

≤ 𝐶𝑝 ∫
R𝑑

󵄩󵄩󵄩󵄩G𝛼,𝛿(𝑡 − ⋅, 𝑥 − ⋅)
󵄩󵄩󵄩󵄩
𝑝

𝐿1/ℎ([0,𝑇]×R𝑑)
𝑑𝑥,

(47)

where𝑊(𝑠, 𝑦) is a space-time white noise on [0, 𝑇] ×R𝑑.
Note that

󵄩󵄩󵄩󵄩G𝛼,𝛿 (𝑡 − ⋅, 𝑥 − ∗)
󵄩󵄩󵄩󵄩
𝑝

𝐿1/ℎ([0,𝑇]×R𝑑)

= [∫

𝑡

0

∫
R𝑑

󵄨󵄨󵄨󵄨G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦)
󵄨󵄨󵄨󵄨
1/ℎ
𝑑𝑦𝑑𝑠]

𝑝ℎ

= [

[

∫

𝑡

0

(𝑡 − 𝑠)
−∑
𝑑

𝑖=1
(1/ℎ𝛼𝑖)

×∫
R𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

∏

𝑖=1

𝐺𝛼𝑖 ,𝛿𝑖
(1, (𝑡 − 𝑠)

−1/𝛼𝑖 (𝑥𝑖 − 𝑦𝑖))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/ℎ

𝑑𝑦𝑑𝑠]

]

𝑝ℎ

= [∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
(1/𝛼𝑖−1/ℎ𝛼𝑖)

×

𝑑

∏

𝑖=1

(∫
R

󵄨󵄨󵄨󵄨󵄨
𝐺𝛼𝑖 ,𝛿𝑖

(1, 𝑧𝑖)
󵄨󵄨󵄨󵄨󵄨

1/ℎ

𝑑𝑧𝑖)𝑑𝑠]

𝑝ℎ

≤ 𝐶𝛼,𝐻[∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
(1/𝛼𝑖−1/ℎ𝛼𝑖)𝑑𝑠]

𝑝ℎ

< ∞,

(48)

under the assumption 1 +∑𝑑
𝑖=1
(1/𝛼𝑖 − 1/ℎ𝛼𝑖) > 0. So we have

T3(𝑢)(𝑡, 𝑥) ∈ B for 𝑝 ≥ 2.

Combining (a) of Lemma 7 with 1/𝑟 = 1/𝑝 − 2/𝑝 + 1 =
1 − 1/𝑝 ∈ (0, 1] and assumption (33), we obtain that, for 𝑝 ∈
[2,∞),

E
󵄩󵄩󵄩󵄩T4 (𝑢) (𝑡, 𝑥)

󵄩󵄩󵄩󵄩
𝑝

𝑝

≤ 𝐶E[∫
𝑡

0

(𝑡 − 𝑠)
−(∑
𝑑

𝑖=1
(1/𝛼𝑖))(1−1/𝑟)‖1 + |𝑢 (𝑠, ⋅)|‖𝑝 ⋅

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝑝𝑑𝑠]

𝑝

≤ 𝐶𝑝 [1 + ‖𝑢 (⋅)‖
𝑝

B] sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝜓 (𝑡, ⋅)
󵄩󵄩󵄩󵄩
𝑝

𝑝

⋅ [∫

𝑡

0

(𝑡 − 𝑠)
−(∑
𝑑

𝑖=1
(1/𝛼𝑖))(1−1/𝑟)(𝑝/(𝑝−1))𝑑𝑠]

𝑝−1

≤ 𝐶𝑝,𝑇 sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝜓 (𝑡, ⋅)
󵄩󵄩󵄩󵄩
𝑝

𝑝
(1 + ‖𝑢 (⋅)‖

𝑝

B) .

(49)

with 1 − (1/(∑𝑑
𝑖=1
(1/𝛼𝑖))(𝑝 − 1)) > 0; that is, 𝑝 > 1 +

(1/∑
𝑑

𝑖=1
(1/𝛼𝑖)). Finally, let us estimate T5(𝑢)(𝑡, 𝑥). This is

a key step in the proof of Proposition 8. Together with the
condition (34), (b) of Lemma 7 with 1/𝑟 = 1/𝑝 − 4/𝑝 + 1 =
1 − 2/𝑝 ∈ (0, 1] and Lemma 4, we conclude that, for 𝑝 >

2(1 + ∑
𝑑

𝑖=1
(1/𝛼𝑖))/(∑

𝑑

𝑖=1
(1/𝛼𝑖) − 1),

E
󵄩󵄩󵄩󵄩T5(𝑢)(𝑡, ⋅)

󵄩󵄩󵄩󵄩
𝑝

𝑝

= E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡+

0

∫
R𝑑
∫
𝐸2

G𝛼,𝛿 (𝑡 − 𝑠, ⋅ − 𝑦) 𝜎 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦))

× ℎ (𝑠, 𝑦, 𝑧)𝑀 (𝑑𝑦, 𝑑𝑧, 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

]

≤ 𝐶𝑝 ∫
R𝑑
[∫

𝑡

0

∫
R𝑑
∫
𝐸2

󵄨󵄨󵄨󵄨G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2

× (E [1 +
󵄨󵄨󵄨󵄨𝑢 (𝑠, 𝑦)

󵄨󵄨󵄨󵄨
𝑝
])
2/𝑝

× 𝜇2 (𝑑𝑧) 𝑑𝑦 𝑑𝑠]

𝑝/2

𝑑𝑥

= 𝐶𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

∫
R𝑑

󵄨󵄨󵄨󵄨G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦)
󵄨󵄨󵄨󵄨
2

× [∫
𝐸2

󵄨󵄨󵄨󵄨ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2
𝜇2 (𝑑𝑧)]

×[1 + E|𝑢 (𝑠, ⋅)|
𝑝
]
2/𝑝
𝑑𝑦𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝/2
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≤ 𝐶𝑝 [∫

𝑡

0

(𝑡 − 𝑠)
−(𝑝+2)/𝑝(∑

𝑑

𝑖=1
(1/𝛼𝑖))

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[∫
𝐸2

󵄨󵄨󵄨󵄨ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2
𝜇2 (𝑑𝑧)]

× [1 + E|𝑢 (𝑠, ⋅)|
𝑝
]
2/𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝/4

𝑑𝑠]

𝑝/2

≤ 𝐶𝑝 [∫

𝑡

0

(𝑡 − 𝑠)
−(𝑝+2)/𝑝(∑

𝑑

𝑖=1
(1/𝛼𝑖))

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝐸2

󵄨󵄨󵄨󵄨ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2
𝜇2 (𝑑𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝/2

×
󵄩󵄩󵄩󵄩󵄩󵄩
(1 + E|𝑢 (𝑠, ⋅)|

𝑝
)
2/𝑝󵄩󵄩󵄩󵄩󵄩󵄩𝑝/2

𝑑𝑠]

𝑝/2

≤ 𝐶𝑝 [ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝐸2

󵄨󵄨󵄨󵄨ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2
𝜇2 (𝑑𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝/2

𝑝/2

⋅ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩
(1 + E|𝑢 (𝑠, ⋅)|

𝑝
)
2/𝑝󵄩󵄩󵄩󵄩󵄩󵄩

𝑝/2

𝑝/2
]

⋅ [∫

𝑡

0

(𝑡 − 𝑠)
−(𝑝+2)/(𝑝−2)(∑

𝑑

𝑖=1
(1/𝛼𝑖))]

(𝑝−2)/2

≤ 𝐶𝑝,𝑇 [ sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝐸2

󵄨󵄨󵄨󵄨ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2
𝜇2 (𝑑𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝/2

𝑝/2

]

× (1 + ‖𝑢 (⋅)‖
𝑝

B) < ∞.

(50)

Thuswe have proved that the operatorT defined by (43) is an
operator fromB to itself. On the other hand, from the similar
argument as in (45)–(50), let 𝜂 > 0 sufficiently large; then
T ∈ B. Thus we complete the proof of the proposition.

In what follows, we will prove that the operatorT : B 󳨃→

B is a contract operator.

Proposition 9. Suppose the assumptions (1), (2), and (3)
of Theorem 6 are satisfied. Then, for each 𝑝 > 2(1 +

∑
𝑑

𝑖=1
(1/𝛼𝑖))/(∑

𝑑

𝑖=1
(1/𝛼𝑖) − 1), the operatorT𝛼 is a contraction

onB. In other words, there exists a constant 󰜚 ∈ (0, 1) such that

‖T(𝑢) −T(V)‖B ≤ 󰜚‖𝑢 − V‖B, for 𝑢, V ∈ B. (51)

Proof. Let 𝑢0 and V0 be initials of (F𝑡)𝑡≥0-adapted random
fields 𝑢, V ∈ B such that 𝑢0 = V0. Let us consider T1(𝑢)

firstly. Note that, for 𝜌 = 𝑝/3, together with (a) of Lemma 7
with 1/𝑟 = (1/𝑝) − (1/𝜌) + 1 = 1 − (2/𝑝) and condition (1) of
Theorem 6, one can get

E [
󵄩󵄩󵄩󵄩T2 (𝑢) (𝑡, ⋅) −T2 (V) (𝑡, ⋅)

󵄩󵄩󵄩󵄩
𝑝

𝑝
]

≤ 𝐶E [∫
𝑡

0

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
((𝑟−1)/𝛼𝑖)

×
󵄩󵄩󵄩󵄩𝑏 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) − 𝑏 (𝑠, 𝑦, V (𝑠, 𝑦))

󵄩󵄩󵄩󵄩𝑝𝑑𝑠]

𝑝

≤ 𝐶𝑝[∫

𝑡

0

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
((𝑟−1)/𝛼𝑖)E‖𝑢(𝑠, ⋅) − V(𝑠, ⋅)‖𝑝𝑑𝑠]

𝑝

.

(52)

Then

󵄩󵄩󵄩󵄩T2(𝑢)(𝑡, ⋅) −T2 (V) (𝑡, ⋅)
󵄩󵄩󵄩󵄩
𝑝

B

= sup
0≤𝑡≤𝑇

𝑒
−𝜂𝑡

E [
󵄩󵄩󵄩󵄩T2 (𝑢) (𝑡, ⋅) −T2 (V) (𝑡, ⋅)

󵄩󵄩󵄩󵄩
𝑝

𝑝
]

≤ 𝐶 sup
0≤𝑡≤𝑇

E [∫
𝑡

0

𝑒
−(𝜂/𝑝)(𝑡−𝑠)

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
((𝑟−1)/𝛼𝑖)𝑒

−(𝜂/𝑝)𝑠

× ‖𝑢 (𝑠, ⋅) − V (𝑠, ⋅)‖𝑝𝑑𝑠]
𝑝

≤ 𝐶𝑝 sup
0≤𝑡≤𝑇

E [∫
𝑡

0

𝑒
−𝜂𝑠
‖𝑢 (𝑠, ⋅) − V (𝑠, ⋅)‖𝑝

𝑝
𝑑𝑠]

⋅ [∫

𝑡

0

(𝑒
−(𝜂/𝑝)(𝑡−𝑠)

(𝑡 − 𝑠)
∑
𝑑

𝑖=1
((𝑟−1)/𝛼𝑖))

𝑝/(𝑝−1)

𝑑𝑠]

𝑝−1

≤ 𝐶𝑝 sup
0≤𝑡≤𝑇

[∫

𝑡

0

𝑒
−𝜂𝑠

E‖𝑢(𝑠, ⋅) − V(𝑠, ⋅)‖𝑝
𝑝
𝑑𝑠]

⋅ [∫

𝑡

0

(𝑒
−(𝜂/𝑝)(𝑡−𝑠)

(𝑡 − 𝑠)
−(1/𝛼)(1−𝑟)

)
𝑝/(𝑝−1)

𝑑𝑠]

𝑝−1

≤ 󰜚‖𝑢 − V‖𝑝B,

(53)

with 󰜚 ∈ (0, 1) by choosing 𝜂 > 0 large enough. Now
we are going to consider the term T5(𝑢)(𝑡, 𝑥). From a
similar argument as in (50), thanks to the generalized B-D-G
inequality, we derive from the conditions of Theorem 6 that

󵄩󵄩󵄩󵄩T5 (𝑢) (𝑡, ⋅) −T5 (V) (𝑡, ⋅)
󵄩󵄩󵄩󵄩
𝑝

B

= sup
0≤𝑡≤𝑇

𝑒
−𝜂𝑡

E [
󵄩󵄩󵄩󵄩T5 (𝑢) (𝑡, ⋅) −T5 (V) (𝑡, ⋅)

󵄩󵄩󵄩󵄩
𝑝

𝑝
]
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= sup
0≤𝑡≤𝑇

𝑒
−𝜂𝑡
∫
R𝑑

E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+

0

∫
R𝑑
∫
𝐸2

G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑠, 𝑦, 𝑧)

⋅ [𝜎 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦))

−𝜎 (𝑠, 𝑦, V (𝑠, 𝑦))]

× 𝑀(𝑑𝑦, 𝑑𝑧, 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥

≤ 𝐶𝑝 sup
0≤𝑡≤𝑇

𝑒
−𝜂𝑡

× ∫
R𝑑
(∫

𝑡

0

∫
R𝑑
∫
𝐸2

󵄨󵄨󵄨󵄨G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2

⋅ (E
󵄨󵄨󵄨󵄨𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)󵄨󵄨󵄨󵄨

𝑝
)
2/𝑝

×𝜇2 (𝑑𝑧) 𝑑𝑦 𝑑𝑠)

𝑝/2

𝑑𝑥

≤ 𝐶𝑝 sup
0≤𝑡≤𝑇

𝑒
−𝜂𝑡

× ∫
R𝑑
(∫

𝑡

0

∫
R𝑑
∫
𝐸2

󵄨󵄨󵄨󵄨G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2
𝑒
2𝜂𝑠/𝑝

⋅ (𝑒
−𝜂𝑠

E
󵄨󵄨󵄨󵄨𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)󵄨󵄨󵄨󵄨

𝑝
)
2/𝑝

× 𝜇2 (𝑑𝑧) 𝑑𝑦 𝑑𝑠)

𝑝/2

𝑑𝑥

≤ 𝐶𝑝 sup
0≤𝑡≤𝑇

× ∫
R𝑑
(∫

𝑡

0

∫
R𝑑
∫
𝐸2

𝑒
−𝜂𝑠

E
󵄨󵄨󵄨󵄨𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)󵄨󵄨󵄨󵄨

𝑝
𝜇2(𝑑𝑧) 𝑑𝑦 𝑑𝑠)

⋅ (∫

𝑡

0

∫
R𝑑
∫
𝐸2

󵄨󵄨󵄨󵄨G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
2𝑝/(𝑝−2)

× 𝑒
−(2𝜂(𝑡−𝑠)/(𝑝−2))

𝜇2 (𝑑𝑧) 𝑑𝑦 𝑑𝑠)

(𝑝−2)/2

𝑑𝑥

≤ 𝐶𝑝,𝑇𝜇2 (𝐸2) ‖𝑢 − V‖𝑝B

⋅ sup
0≤𝑡≤𝑇

∫
R𝑑
∫

𝑡

0

∫
R𝑑
∫
𝐸2

󵄨󵄨󵄨󵄨G𝛼,𝛿 (𝑡 − 𝑠, 𝑥 − 𝑦) ℎ (𝑠, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨
𝑝

× 𝑒
−𝜂(𝑡−𝑠)

𝜇2 (𝑑𝑧) 𝑑𝑦 𝑑𝑠 𝑑𝑥

≤ 󰜚‖𝑢 − V‖𝑝B.
(54)

ThenT5(𝑢) is a contraction on B.
A similar procedure as the above arguments yields that

T4(𝑢) is a contraction on B by letting 𝜂 > 0 large enough.
Therefore, it follows from (49) that T(⋅) is a contraction on
B if 𝜂 > 0 large enough. Thus the proof of Proposition 9 is
complete.

Based on Propositions 8 and 9 and fixed point principal
on the set {𝑢 ∈ B : 𝑢(0) = 𝑢0}, we conclude that (3) admits
a unique solution 𝑢 ∈ B. Thus the conclusion of Theorem 6
follows.
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equations,” in École d’été de Probabilités de Saint-Flour, XIV—
1984, vol. 1180 of Lecture Notes in Math., pp. 265–439, Springer,
Berlin, Germany, 1986.

[2] L. Debbi and M. Dozzi, “On the solutions of nonlinear
stochastic fractional partial differential equations in one spatial
dimension,” Stochastic Processes andTheir Applications, vol. 115,
no. 11, pp. 1764–1781, 2005.

[3] L. Boulanba, M. Eddahbi, and M. Mellouk, “Fractional SPDEs
driven by spatially correlated noise: existence of the solution
and smoothness of its density,” Osaka Journal of Mathematics,
vol. 47, no. 1, pp. 41–65, 2010.

[4] C. Mueller, “The heat equation with Lévy noise,” Stochastic
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Lévy noises,” in Stochastic Partial Differential Equations and
Applications, vol. 245 of Lect. Notes Pure and Appl. Math., pp.
295–310, Chapman & Hall/CRC Taylor & Francis, Boca Raton,
Fla, USA, 2006.

[8] J. Liu, L. Yan, andY.Cang, “On a jump-type stochastic fractional
partial differential equation with fractional noises,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 75, no. 16, pp.
6060–6070, 2012.



10 Abstract and Applied Analysis

[9] D. Wu, “On the solution process for a stochastic fractional
partial differential equation driven by space-time white noise,”
Statistics & Probability Letters, vol. 81, no. 8, pp. 1161–1172, 2011.

[10] Y. Hu, “Heat equations with fractional white noise potentials,”
Applied Mathematics and Optimization, vol. 43, no. 3, pp. 221–
243, 2001.

[11] T. T. Wei, “The high-order SPDEs driven by multi-parameter
fractional noises,” Acta Mathematica Sinica, vol. 26, no. 10, pp.
1943–1960, 2010.

[12] Y. Hu and D. Nualart, “Stochastic heat equation driven by
fractional noise and local time,” Probability Theory and Related
Fields, vol. 143, no. 1-2, pp. 285–328, 2009.

[13] R. M. Balan and C. A. Tudor, “Stochastic heat equation with
multiplicative fractional-colored noise,” Journal of Theoretical
Probability, vol. 23, no. 3, pp. 834–870, 2010.

[14] R.M. Balan andC.A. Tudor, “The stochasticwave equationwith
fractional noise: a random field approach,” Stochastic Processes
and Their Applications, vol. 120, no. 12, pp. 2468–2494, 2010.

[15] L. Bo, Y. Jiang, and Y. Wang, “On a class of stochastic Anderson
models with fractional noises,” Stochastic Analysis and Applica-
tions, vol. 26, no. 2, pp. 256–273, 2008.

[16] L. Bo, Y. Jiang, andY.Wang, “Stochastic Cahn-Hilliard equation
with fractional noise,” Stochastics andDynamics, vol. 8, no. 4, pp.
643–665, 2008.

[17] Y. Jiang, K. Shi, and Y. Wang, “Stochastic fractional Anderson
models with fractional noises,” Chinese Annals of Mathematics.
Series B, vol. 31, no. 1, pp. 101–118, 2010.

[18] Y. Jiang, X. Wang, and Y. Wang, “On a stochastic heat equation
with first order fractional noises and applications to finance,”
Journal of Mathematical Analysis and Applications, vol. 396, no.
2, pp. 656–669, 2012.

[19] Y. Jiang, T. Wei, and X. Zhou, “Stochastic generalized Burgers
equations driven by fractional noises,” Journal of Differential
Equations, vol. 252, no. 2, pp. 1934–1961, 2012.

[20] K. Shi and Y. Wang, “On a stochastic fractional partial differen-
tial equation with a fractional noise,” Stochastics, vol. 84, no. 1,
pp. 21–36, 2012.

[21] S. Albeverio, J.-L. Wu, and T.-S. Zhang, “Parabolic SPDEs
driven by Poisson white noise,” Stochastic Processes and Their
Applications, vol. 74, no. 1, pp. 21–36, 1998.

[22] K. Shi and Y. Wang, “On a stochastic fractional partial differen-
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