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A novel multiagent system (MAS) has been proposed to integrate individual UAV (unmanned aerial vehicle) to form a UAV team
which can accomplish complexmissions with better efficiency and effect.TheMAS basedUAV team control is more able to conquer
dynamic situations and enhance the performance of any single UAV. In this paper, theMAS proposed and established combines the
reacting and thinking abilities to be an initiative and autonomous hybrid system which can solve missions involving coordinated
flight and cooperative operation. The MAS uses BDI model to support its logical perception and to classify the different missions;
then the missions will be allocated by utilizing auction mechanism after analyzing dynamic parameters. Prim potential algorithm,
particle swarm algorithm, and reallocation mechanism are proposed to realize the rational decomposing and optimal allocation in
order to reach the maximum profit. After simulation, the MAS has been proved to be able to promote the success ratio and raise
the robustness, while realizing feasibility of coordinated flight and optimality of cooperative mission.

1. Introduction

UAV has stepped into the new generation and gained more
powerful skills to accomplish a wide range of missions with
high efficiency and high accuracy rate. At present, using UAV
team to complete much more complex mission has become
the most likely trend in modern war, but the performance of
single UAV will be legged when executing coordinated flight
and cooperative mission because of the limited resources it
holds. The limited abilities will form the cask principle, and
this will ultimately affect the effeteness and effect of mission
execution.When it comes to the real battlefield, it will become
more and more obvious due to the myriad changes in the
circumstances and environment.

UtilizingMAS to improve the success rate and robustness
in multiple UAV cooperation is a new research direction,
because as a new generation of intelligent system, MAS has
much more flexibilities [1, 2]. It is more capable of solving
the problems of coordination [3] and optimization and,
moreover, has a very good adaptability for the uncertainties
[4, 5] in the complex system. More than accepting tasks in a
passive way, agent can also take the initiative to request tasks
in an active way by sharing and exchanging with other agents
to complete coordination, consultation, and collaboration

[6, 7], which makes MAS not just a form of collection but an
agent organism to strengthen the robustness of theUAV team.
The MAS can well adapt to the complicated and distributed
task forms [8] and reduce human involvements in decision
making process which will greatly ensure the timely and
successful completion of tasks.

The MAS with BDI model [9] gives every individual
intelligent algorithms, with which the UAV can figure out the
cooperative control solution according to its state and task
target automatically and then complete the trajectory track-
ing, formation changing, obstacle avoidance, and cooperative
task processing [10]. Agent can acquire useful information
from others according to its needs and then use the UAV
mission allocation system based on auction mechanism [11,
12] to solve the coupled task allocation problem and dynamic
reallocation problem.

2. Establish the Multiagent System

The MAS regards every UAV as a control subject. In order
to realize coordinated flight, cooperative mission and raise
the robustness of MAS, tracking mechanism, the artificial
potential field (APF)mechanism, and the auctionmechanism
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Figure 1: Structure of the cooperative system based on agent.

are established in the system. The specific structure is shown
in Figure 1.

2.1. Foundational Abilities: Reaction

2.1.1. Tracking. Using analytic method or numerical method
to guide UAV to follow a trajectory cannot match the
requirement of timeliness, so the tracking mechanism utiliz-
ing approximationwithout establishing differential equations
shows its convenience in real situation. At the time of 𝑡 = 𝜏,
UAV locates at 𝑃
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the MAS will calculate the position deviation between UAV
and target to plan the optimal trajectory in a short time to
realize the real-time tracking.

2.1.2. Formation. APF (artificial potential field) is proposed
to keep the formation of UAV team. The potential force 𝑈

𝑖𝑗

which is derived from the relative distance expresses the
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Figure 2: Target tracking by UAV.
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𝑈
𝑖0
(‖𝑟
𝑖0
‖) represents the potentialbetween the UAV and

the target, ∑
𝑗∈𝑁𝑖/{0}

𝑈
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(‖𝑟
𝑖𝑗
‖) represents the total potential

between one UAV and others, and 𝜒
𝑁0
(𝑖) represents the

weight parameter which is effected by potential formation
samples stored in the library, as shown in Table 1. These
samples can be updated during the formation changing in
real-time.The potential field function will lead the UAV team
to accomplish the position changing and make the process
simpler in reality.
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Table 1: Formation example form.

UAV
𝑖
Position 𝑋Left 𝑋Center 𝑋Right

𝑌Front 1 2 1
𝑌Center 2 0 2
𝑌Back 1 2 1
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Figure 3: Structure of the center point.

2.1.3. Obstacle Avoiding. When a UAV team encounters an
obstacle, the predetermined trajectory and the shape of
the formation have to be abandoned. The shape of the
formation is usually composed of irregular graphics, so an
extra reference point representing the center of the formation
is established to determine the overall trend of the UAV team.
This virtual point is set to follow the predetermined mission
trajectory and then help the UAV team to reorganize. The
position of the center point 𝑝V(𝑡) can be confirmed by relative
positions of UAV around, expressed as 𝑝V(𝑡) = 𝜗(∑

𝑘

𝑖=1
𝑝
𝑖
(𝑡)).

The structure of the center point is shown in Figure 3.
By introducing a gyration force 𝐹

𝑖

𝑔
= 𝜔(𝑛, V)V, the min-

imum problem with local dilemma has been resolved. The
direction of the gyration force keeps being perpendicular
to the speed in order to ensure the stability of the control
system. The system will detect obstacles at any time; if any
obstacle is on the way of motion or if the direction of obstacle
avoidance is opposite to the speed, then the system will
generate appropriate gyration force. This improved APF is as

𝑢
𝑖
= 𝑘𝐹
𝑖

𝐶𝐴
+ 𝐹
𝑖

𝑑
+ 𝐹
𝑖
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+ 𝑘 (𝑟) 𝐹

𝑖

𝑂𝐴
+ 𝐹
𝑖

𝑔
. (3)

Forces in the above equation are set as follows. Repulsion
force 𝐹

𝑖

𝑂𝐴 works for the avoidance motion. The stable
position of any individual UAV in the formation is ensured
by synchronization force 𝐹

𝑖

𝑑 and potential force 𝐹
𝑖

𝐶𝐴 and,
at the same time, they can complete the divergence and
reorganization of the formation. Central attractive force 𝐹

𝑖

𝑉𝑆

is used to make sure that any individual in the formation can
follow the virtual point effectively.

2.2. Establishment of the BDIModel. HybridMAS combining
reaction agent and thinking agent gives the system a better
responsiveness and optimal planning ability. The structure of
hybrid MAS is shown in Figure 4.

BDI model is used to describe the mission information
in MAS, which is composed of three perceptions: belief (B),

desire (D), and intention (I). Belief expressed as 𝜓 represents
the motivation of processing missions which are generated
after considering abilities of itself, restrictive conditions, and
the environment around. In this MAS, the belief refers to
abilities of both physical system and agent algorithms, which
generally includes the capabilities of motion, navigation
and location gained from the onboard equipments, and the
capabilities of calculation, processing and communication
gained from agent itself. Desire expressed as 𝜙 represents the
eagerness of acquiring missions which can help the system
gain benefits. The desire demonstrates expected results, such
as the right to execute specific mission. Intention expressed
as 𝜔 represents the method of solving mission in desire list.
If 𝜔 cannot handle a mission, the system will consult with
other agents to improve it, like when and how to make the
formation changed; request information example is shown
below:

@Agent
𝑖
,Problem

𝑗
,Time

𝑘
,Constaint

𝑙

@Agent
1
,Monitoring Target

1
, 10 : 30,

Accomplishment in 2 minutes
@01, 01 01, 0A 1E, 03 0078

3. Mission Allocation

Individual agent may have certain otherness about the cur-
rent overall world cognition which can be eliminated by
sharing information and communication. The reasonable,
prompt communication and interaction directly affect the
success rate of mission processing, so the mission system
has been devised in order to keep the allocation working
smoothly, as shown in Figure 5.

3.1. Auction Mechanism. Auction mechanism [13] used in
MAS is especially suitable for resource allocation problems
with uncertainties. When a mission is released, every agent
holding interests in it will bid for it. The bidder will decide its
bidding according to the changing benefit, and the mission
promulgator will give the execution right to the agent which
makes the promulgator gain most benefit. The MAS auction
process can be simply divided into four stages: mission
releasing, mission bidding, winner deciding, and mission
executing, as shown in Figure 6.

In this MAS, deadline mechanism, allocation confirming
mechanism, and scale controlling mechanism are established
to restrict auction scale. These can ensure the real-time,
prevent the resource wasted by the bidder terminating the
contract when the benefit changes, and also prevent bringing
too much pressure to the communication and calculating if
too many agents are involved.

3.2. Allocation of the Loosely Coupled Mission. The entire
profit of the loosely coupled allocation is not only affected
by the maximum benefit of every individual agent, but also
more affected by the order of execution. It will greatly reduce
the reasonableness of the allocation and be less efficient and
optimal, in case of allocating missions without considering
the relevance among them. So Prim-APF composed of
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Figure 4: Structure of the hybrid system.
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Prim (namely, minimal spanning tree planning) and APF is
devised to solve this optimal problem. This algorithm can
decompose overall missions into small coordinate groups
and then give each group a reasonable execution order to
maximize the optimality.

For a mission of targets striking, if the missions are
distributed in the original order without considering the
relevance, it costs too much of 1313. When using ACO
(ant colony optimization) to rearrange the order of the
distribution, the global cost is decreased to 426, but the
ACO is not suitable for the actual operation because of the
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limitation and the time of calculation. The Prim-APF algo-
rithm can do effective grouping with relevance before dis-
tributing, so the winner agent will get a group of missions
with connections to ensure the optimality and improve the
real-time. Using this algorithm, first, the entire group should
be processed by Prim, as shown in Figure 7.

Use the improved APF algorithm to calculate attraction
force and repulsion force according to the target location
and its branch, and then set weight parameters and valid
paths to complete the optimal minimal envelope, as shown
in Figure 8.

The result shows that Prim-APF (costs 438) is able to
finish the allocation perfectly and saves more resources
and improves the real-time due to its simpler computing,
so it is better for actual missions which value time most.
Considering the adaptability of the mission changing, this
method will do minimal tree immediately for the remaining
missions and has the lowest cost increasing; in the worst
scenario, it will just increase the cost as much as the ACO.

3.3. Allocation of the Tightly Coupled Mission. As a cause of
limitation, sometimes, accomplishing a mission needs agents
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Figure 7: Output of the Prim algorithm.
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Figure 8: Output of the Prim artificial potential method.

coordinating in a logic order rather than only one agent,
such as blockading some area. So an agent team mechanism
is introduced to solve complex and difficult tightly coupled
missions which can be simply divided into two kinds: one
needs agents in the MAS to process the data parallel, such as
joint monitoring; and the other needs agents to strictly obey
the spatial order and chronological order, such as striking
after scouting [14–16].

First, establish a matrix to represent the overall capabili-
ties of the agent team, as in

𝐶
𝐶
(𝐶
𝑘
) =

[
[
[

[

𝛼
𝑐

𝑘1
0 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ 𝛼
𝑐

𝑘2
⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝛼
𝑐

𝑘𝑝

]
]
]

]

[
[
[
[

[

𝑐
1

𝑐
2

...
𝑐
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]
]
]
]

]

. (4)
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Figure 9: Result of the team selection.

The residual capabilities, expressed as Δ𝐶𝑐𝑡 = (𝛿
1
𝑐
1
, . . . ,

𝛿
𝑝
𝑐
𝑝
), should be minimized on the basis of mission con-

straints. The entire cost of executing the mission should be
minimum, as in

𝐸cost (𝐶, 𝑡) =

𝑞

∑

𝑖−1

𝐸cost (𝑎𝑖, 𝑡) + 𝐶cost (𝐶, 𝑡) , (5)

and the fault-tolerant capability of the team should be
maximum, as in

𝐹tolerant =
𝑤
1
× 𝑢
1
× 𝑢
2
× ⋅ ⋅ ⋅ × 𝑢

𝑞

(V/𝑎)𝑞
+ 𝑤
2
× (1 − 𝑒

−𝜆𝑛
) . (6)

Different agent teams complete missions with different
costs, so finding the most suitable team is significant but also
will make the optimal problem harder. Using PSO (particle
swarm optimization) to decide a suitable team is the best
reply to complex structure and massive calculation. When
selecting the team, the team capabilities should satisfy the
mission requirements and always keep remaining capabilities
and execution costs lower. A solution from simulation done
by the PSOalgorithm is shown in Figure 9; the blue represents
the selected team capabilities and the red one represents the
demanded capabilities.

In the PSO processing, give priorities to weigh param-
eters, fulfilling requirements better than execution cost and
better than the remaining capabilities. These priorities will
affect the particles, and the calculated fitness value of particle
is proportional to the fine level of the team. After finding
the team, send confirmed information to all agent team
members; only if all these members have accepted the
mission, the allocation information will be sent to them later;
otherwise, the system will try to find other agents whose
capabilities are close to the refused ones or begin a new team
selection circle.

3.4. Allocation of the Dynamic Mission. A reasonable redis-
tribution will make the MAS adapt to the circumstances
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of frequent mission changing, which will not only raise
the resource utilization but also improve the computational
efficiency. The redistribution control system is shown in
Figure 10.

In this system,𝑌 as the initial solving command responds
to the mission changing, and then it will be simulated and
calculated to provide the solutions based on the availabilities
of the current agents. In order to let 𝑌 be more suitable for
the current agent group, the solutions will be judged by the
estimated cost changing, and then𝑌will be updated viaworld
model.This feedback will help the system to adapt to themis-
sion changing and meanwhile prevent the overredistribution
and the maldistribution. The auction algorithm is given as
follows.

Algorithm. Willingness based redistribution.

Step 1. Calculate the cost of the remaining-mission redistri-
bution, according to

𝐸 (𝑡
𝑗
, ℎ | 𝑘) =

𝑛

∑

ℎ=1

𝛼
𝑖
(ℎ)Rew

𝑗
(𝑎
𝑖
, 𝑡
𝑗
, ℎ | 𝑘)

−

𝑛

∑

ℎ=1

𝛽
𝑖
(ℎ)Cos

𝑗
(𝑎
𝑖
, 𝑡
𝑗
, ℎ | 𝑘) .

(7)

Step 2. Calculate the agent 𝑎
𝑖
selling willingness value of the

mission 𝑡
𝑗
waiting redistribution, according to

𝑃Agt (𝑎𝑖, 𝑡𝑗) =

{{{

{{{

{

󵄨󵄨󵄨󵄨󵄨
𝐷 (𝑎
𝑖
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨

∑
𝐷(𝑎𝑖 ,𝑡𝑗)<0

󵄨󵄨󵄨󵄨󵄨
𝐷 (𝑎
𝑖
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝐷 (𝑎
𝑖
, 𝑡
𝑗
) < 0

0 𝐷 (𝑎
𝑖
, 𝑡
𝑗
) ≥ 0.

(8)

Step 3. Form the willingness sequence 𝑇𝑎𝑠𝑘 𝑆𝑒𝑙𝑙 for the
mission being sold.

Step 4. Solve loosely coupledmissions in𝑇𝑎𝑠𝑘 𝑆𝑒𝑙𝑙which can
be performed by one agent.

Step 5. Solve tightly coupled missions in 𝑇𝑎𝑠𝑘 𝑆𝑒𝑙𝑙 which
needs multiple agents to coordinate.

Step 6. Use the dynamic auction method to redistribute till
𝑇𝑎𝑠𝑘 𝑆𝑒𝑙𝑙 is empty, according to the bidding willingness as in

𝐷(𝑎
𝑖
, 𝑡
𝑗
) = 𝐸
𝑖
(𝑡
𝑖
, ℎ | 𝑘) − 𝐸

𝑖
(𝑡
𝑗
) . (9)

4. Conclusion

In order to enhance the performance and robustness of
coordination and cooperation in UAV team, hybrid MAS
has been proposed with these novel algorithms: tracking
mechanism in coordination flight, APF improved by model
in formation changing, and improved APF in obstacle avoid-
ance. An effective auction mechanism is devised to make
MAS be able to respond to all kinds of mission, followed by
the corresponding allocation algorithm, auction algorithm,
and bidding algorithm. For loosely coupled missions, a
Prim-APF algorithm of grouping allocation is designed.
For tightly coupled missions, a PSO algorithm for selecting
the best multiagent team is designed. For dynamic mission
problems, a feedback control system based on the willingness
is designed.These algorithms can achieve the optimalmission
achievement and improve the robustness of the MAS.
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