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The work is concerned with output-feedback stabilization control problem for a class of systems with random switchings and state
jumps.The switching signal is supposed to obey Poisson distribution. Firstly, based on the asymptotical property of the distribution
of switching points, we derive some sufficient conditions to guarantee the closed-loop system to be almost surely exponentially
stable. Then, we pose a parametrization approach to convert the construction conditions of the output-feedback control into a
family of matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of our method.

1. Introduction

It is one of the fundamental ways to represent the uncer-
tainties in modeling practical systems in terms of random
processes, since the stochastic analysis theory provides an
unified framework to account for the uncertainties and to
study their influences. In particular, it is conventional to
describe the environment noise by Wiener processes; see,
for example, [1, 2] and the references therein. Since the
last decade, considerable attentions have been devoted to
investigate the effect of environment noise on stability. The
researchers gain a comprehensive insight into the influences
of the statistic properties of the sample path of Wiener
processes. For example, as pointed out by Deng et al. in series
of their works, the noise can be used to stabilize a given
unstable system or to make a system more stable even when
it is already stable; see, for example, [3] and the references
therein.

In this paper, we consider to use certain randomness to
represent the switching signal which results in the abrupt
changes in parameters and states of a dynamical system. In
the stochastic framework to deal with such systems, it is a
common assumption that the time evolution of switching
signal is determined by Markovian transition matrix; see,
for example, [4–11]. From this perspective, roughly speaking,

the stability relies on two aspects, namely, the embedded
Poisson distribution and the embedded discrete-timeMarkov
chain; please refer to [12]. Indeed, the embedded Poisson
distribution represents the density of switching points, while
the embedded Markov chain indicates the likelihood of a
subsystem to be activated at a switching point. In this sense,
focusing on the aspect of how the varying rate of switching
signal influences stability, we might purely suppose the time
evolution of switching signal to obey Poisson distribution;
see, for example, [13–16]. A merit of supposing switching
signal to obey the Poisson distribution lies in that it naturally
implies that all the switching points are uniformly distributed;
see [1]. In contrast, in the deterministic framework to deal
with switching signal, the property of uniform distribution of
switching signal must be imposed in terms of average dwell-
time technique for that it is essential for deriving stability
conditions.

Bymeans of Poisson processes, we actually have a counter
for the switching points that are located within a certain
interval of time. In other words, we can indicate the density of
the switching points in terms of Poisson exponent.Therefore,
by using the statistic property of the distribution of switching
points, we are able to establish the constraint conditions
on Poisson exponent so as to guarantee the system to be
stable almost surely. Motivated by the observation, the goal
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of this paper is to design output-feedback controller to
stabilize the systems with abrupt changes in parameters and
states, which are triggered by the switching signal obeying
Poisson distribution. After establishing stability conditions
for the closed-loop system, we construct the controllers
via a parametrization approach so that we can check their
existence in terms of a family of matrix inequalities. We will
demonstrate the effectiveness of the method via a numerical
example.

2. Problem Formulation

Consider the system that is composed of the following linear
subsystems:

�̇� (𝑡) = 𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)

𝑦 (𝑡) = 𝐶

𝑖
𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑝, and 𝑦(𝑡) ∈ R𝑞 are the state
vector, control input, and measured output, respectively. The
matrices 𝐴

𝑖
, 𝐵

𝑖
, 𝐶

𝑖
are of appropriate dimensions.The system

under consideration is generated by the right-continuous
switching signal 𝜎(𝑡), which takes value from the index set
I := {1, . . . , 𝑁} to orchestrate among the subsystems in (1).
Synchronously, at a switching point, there is a state jump.The
overall system then is described as follows :

�̇� (𝑡) = 𝐴 (𝜎 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝜎 (𝑡)) 𝑢 (𝑡) (2)

𝑥 (𝑡

+
) = 𝐻 (𝜎 (𝑡) , 𝜎 (𝑡

+
)) 𝑥 (𝑡) + 𝐺 (𝜎 (𝑡) , 𝜎 (𝑡

+
)) 𝑢 (𝑡)

(3)

𝑦 (𝑡) = 𝐶 (𝜎 (𝑡)) 𝑥 (𝑡) , 𝑡 ≥ 0. (4)

Alternatively, (3) can be rewritten as

Δ𝑥 (𝑡) = [𝐻 (𝜎 (𝑡) = 𝑖, 𝜎 (𝑡

+
) = 𝑗) 𝑥 (𝑡) − 𝑥 (𝑡)]

+ [𝐺 (𝜎 (𝑡) = 𝑖, 𝜎 (𝑡

+
) = 𝑗) 𝑢 (𝑡) − 𝑢 (𝑡)]

= [𝐻

𝑖𝑗
𝑥 (𝑡) − 𝑥 (𝑡)] + [𝐺

𝑖𝑗
𝑢 (𝑡) − 𝑢 (𝑡)] ,

(5)

which indicates the impulse effect that occurs at the switching
point of 𝜎(𝑡) being from 𝑖 to 𝑗. Therefore, the state-transition
of such a system is jointly determined by the continuous
dynamics in (2) and the discontinuous dynamics in (3).
The former is intended to indicate the abrupt changes in
parameters, while the latter corresponds to state jumps.

Thedynamical behavior of the systemunder investigation
in strong way relies on the switching mechanism. One way to
interpret the switchingmechanism is to characterize the time
evolution of switching signal. To this end, we expand it into
the following sequential form:

{(𝜎 (𝑡

0
) , 𝑡

0
= 0) , (𝜎 (𝑡

1
) , 𝑡

1
) , . . . , (𝜎 (𝑡

𝑘
) , 𝑡

𝑘
) , . . .} . (6)

It means that the 𝜎(𝑡

𝑘
)th subsystem is activated during the

interval [𝑡

𝑘
, 𝑡

𝑘+1
). We now suppose the switching signal in (6)

to obey Poisson distribution. In order to put the argument
on a firm footing, we define the random switching signal

on a complete probability space {Ω,F,P}. Let E denote
the mathematical expectation operator. Thus, given Δ > 0,
the Poisson distribution requires the length between two
successive switching points to satisfy

P {𝑡

𝑘+1
− 𝑡

𝑘
≥ Δ} = 𝑒

−𝜆Δ
, 𝑘 = 0, 1, 2, . . . ,

(7)

where 𝜆 > 0 is referred to as Poisson exponent. Equivalently,
it reads that

P {𝜎 (𝑡 + Δ) ̸= 𝜎 (𝑡)} = 1 − 𝑒

−𝜆Δ
.

(8)

In this way, we define a statistic property for the sequence
of switching points 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , which

tends to infinity. Actually, the Poisson exponent 𝜆 defines the
mean value of the number of the switching points distributed
within the time interval of unit length.Therefore, bymeans of
Poisson exponent, we canmake a sense of the varying rate of a
switching signal. Accordingly, we categorize switching signals
in such a way that we write S

𝜆
for the collection of all the

switching signals obeying Poisson distribution exactly with
the exponent 𝜆.

We aim at designing output-feedback control to stabilize
the overall system with respect to certain classes S

𝜆
. For

this purpose, we construct the following full-order output-
feedback compensator:

̇

�̂� (𝑡) =

̂

𝐴

𝑖
𝑥 (𝑡) +

̂

𝐵

𝑖
𝑦 (𝑡) (9)

𝑢 (𝑡) =

̂

𝐶

𝑖
𝑥 (𝑡) (10)

for each subsystem and

𝑥 (𝑡

+
) =

̂

𝐻 (𝜎 (𝑡) , 𝜎 (𝑡

+
)) 𝑥 (𝑡) +

̂

𝐺 (𝜎 (𝑡) , 𝜎 (𝑡

+
)) 𝑦 (𝑡)

(11)

corresponding to the state jump. The matrices ̂

𝐴

𝑖
,

̂

𝐵

𝑖
,

̂

𝐶

𝑖
and

̂

𝐺

𝑖𝑗
=

̂

𝐺(𝜎(𝑡) = 𝑖, 𝜎(𝑡

+
) = 𝑗),

̂

𝐻

𝑖𝑗
=

̂

𝐻(𝜎(𝑡) = 𝑖, 𝜎(𝑡

+
) = 𝑗) of

appropriate dimensions are left to be solved.
Therefore, with the controller in the form of (9)–(11), we

get the following closed-loop system:

̇

𝜉 (𝑡) = 𝐴 (𝜎 (𝑡)) 𝜉 (𝑡)

𝜉 (𝑡

+
) = 𝐻 (𝜎 (𝑡) , 𝜎 (𝑡

+
)) 𝜉 (𝑡) , 𝑡 ≥ 0,

(12)

where 𝜉 = [

𝑥

𝑥 ]. Correspondingly, the systemmatrices of each
closed-loop subsystem are defined by 𝐴

𝑖
= 𝐴(𝜎(𝑡) = 𝑖) =

[

𝐴𝑖 𝐵𝑖�̂�𝑖

𝐵𝑖𝐶𝑖 𝐴𝑖

] and 𝐻

𝑖𝑗
= 𝐻(𝜎(𝑡) = 𝑖, 𝜎(𝑡

+
) = 𝑗) = [

𝐻𝑖𝑗 𝐺𝑖𝑗�̂�𝑖

𝐺𝑖𝑗𝐶𝑖 �̂�𝑖𝑗

].
For given switching signal 𝜎, we denote by 𝜉(𝑡; 𝑥

0
, 𝜎) the

corresponding motion of system (12) at time 𝑡 starting from
𝜉

0
at initial time 𝑡

0
.

Definition 1. The closed-loop system in (12) is said to be
almost surely exponentially stable, if

P{lim sup
𝑡→∞

ln 







𝜉 (𝑡; 𝜉

0
, 𝜎)









𝑡

< 0} = 1 (13)

for all 𝜉

0
∈ R2𝑛.
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3. Main Results

In this section, we first establish the conditions guaranteeing
the closed-loop system in (12) to be almost surely exponen-
tially stable and then propose a parametrization approach to
solve the output-feedback controller in the form of (9), (10),
and (11).

Theorem 2. System (12) is almost surely exponentially stable
for all the switching signals belonging toS

𝜆
, if there exist scalars

𝜒 and 𝛽, and a family of positive-definite matrices 𝑃

𝑖
such that

𝐴



𝑖
𝑃i + 𝑃

𝑖
𝐴

𝑖
− 𝛽𝑃

𝑖
≤ 0, 𝑖 ∈ I,

(14)

𝐻



𝑖𝑗
𝑃

𝑗
𝐻

𝑖𝑗
− 𝜒𝑃

𝑖
≤ 0, 𝑖 ̸= 𝑗,

(15)

𝜆 ln𝜒 + 𝛽 < 0. (16)

Proof. Construct the Lyapunov function as follows:

𝑉 (𝜉 (𝑡) , 𝜎 (𝑡) = 𝑖) = 𝜉


(𝑡) 𝑃

𝑖
𝜉 (𝑡) . (17)

For any 𝑡 ≥ 𝑡

0
, let 𝑁([𝑡

0
, 𝑡]) be the counter of the switching

points of 𝜎(𝑡) distributed within the interval [𝑡

0
, 𝑡] and let

it equal an integer value, say, 𝑘. At the same time, let the
sequence

𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
≤ 𝑡 (18)

denote the corresponding switching points.
Indeed, (14) implies that

𝑉 (𝜉 (𝑡

𝑖
) , 𝜎 (𝑡

+

𝑖−1
)) ≤ 𝑒

𝛽(𝑡𝑖−𝑡𝑖−1)
𝑉 (𝜉 (𝑡

+

𝑖−1
) , 𝜎 (𝑡

+

𝑖−1
)) ,

1 ≤ 𝑖 ≤ 𝑘.

(19)

This together with (15) yields

𝑉 (𝜉 (𝑡

𝑖
) , 𝜎 (𝑡

+

𝑖−1
)) ≤ 𝜒𝑒

𝛽(𝑡𝑖−𝑡𝑖−1)
𝑉 (𝜉 (𝑡

𝑖−1
) , 𝜎 (𝑡

+

𝑖−2
))

≤ 𝜒𝑒

𝛽(𝑡𝑖−𝑡𝑖−2)
𝑉 (𝜉 (𝑡

+

𝑖−2
) , 𝜎 (𝑡

+

𝑖−2
)) .

(20)

Therefore, we get

𝑉 (𝜉 (𝑡) , 𝜎 (𝑡

+

𝑘
))

≤ 𝜒

𝑘
𝑒

𝛽(𝑡−𝑡0)
𝑉 (𝜉 (𝑡

0
) , 𝜎 (𝑡

0
))

= exp [𝑁 ([𝑡

0
, 𝑡]) ln𝜒 + 𝛽 (𝑡 − 𝑡

0
)] 𝑉 (𝜉 (𝑡

0
) , 𝜎 (𝑡

0
)) .

(21)

It then follows that

lim sup
𝑡→∞

ln 







𝜉 (𝑡; 𝜉

0
, 𝜎)









𝑡

= lim
𝑡→∞

𝑁 ([𝑡

0
, 𝑡]) ln𝜒 + 𝛽 (𝑡 − 𝑡

0
)

𝑡

.

(22)

Furthermore, by the law of large number of Poisson processes
(cf. page 214, [1]), there is probability 1 that

lim
𝑡→∞

𝑁 ([𝑡

0
, 𝑡])

𝑡

= 𝜆.

(23)

Hence, in view of (16), we arrive at

P{lim sup
𝑡→∞

ln 







𝜉 (𝑡; 𝜉

0
, 𝜎)









𝑡

= 𝜆 ln𝜒 + 𝛽 < 0} = 1. (24)

The proof is thus completed.

With the analysis result in hand, we now turn to consider
the output-feedback controller design problem. For this
purpose, we introduce a set of auxiliary matrices as follows:

Ψ = {𝑋

𝑖
, 𝑌

𝑖
, 𝑊

𝑖
∈ R𝑛×𝑛, 𝑈

𝑖
∈ R𝑝×𝑛, 𝑉

𝑖
∈ R𝑛×𝑞 : 𝑖 ∈ I}

∪ {𝑁

𝑖𝑗
∈ R𝑛×𝑛, 𝑀

𝑖𝑗
∈ R𝑛×𝑞 : 𝑖 ̸= 𝑗} ,

(25)

where 𝑋

𝑖
and 𝑌

𝑖
are symmetric matrices.

Theorem 3. The closed-loop system (12) can be exponentially
stabilized with respect to certain class S

𝜆
, if there exist scalars

𝜒 > 0 and 𝛽 satisfying (16), and a set of matrices as in (25)
satisfying the following inequalities:

[

𝐴

𝑖
𝑌

𝑖
+ 𝐵

𝑖
𝑈

𝑖
+ ⋆ 𝐴

𝑖
− 𝑊



𝑖

⋆ 𝑋

𝑖
𝐴

𝑖
+ 𝑉

𝑖
𝐶

𝑖
+ ⋆

] − 𝛽𝑄

𝑖 (
Ψ) < 0 (26)

[

𝜒𝑄

𝑖 (
Ψ) ⋆

𝑅

𝑖𝑗 (
Ψ) 𝑄

𝑗 (
Ψ)

] ≥ 0, 𝑖 ̸= 𝑗, (27)

where ∗ represents the entries obtained by symmetry, and

𝑄

𝑖 (
Ψ) = [

𝑌

𝑖
𝐼

𝑛

⋆ 𝑋

𝑖

] ,

𝑅

𝑖𝑗 (
Ψ) = [

𝐻

𝑖𝑗
𝑌

𝑖
+ 𝐺

𝑖𝑗
𝑈

𝑖
𝐻

𝑖𝑗

𝑁

𝑖𝑗
𝑋

𝑗
𝐻

𝑖𝑗
− 𝑀

𝑖𝑗
𝐶

𝑖

] .

(28)

Proof. According to the Ψ defined in (25), the output-
feedback compensator in (9)–(11) can be parameterized by

̂

𝐴

𝑖 (
Ψ) = (𝑋

𝑖
− 𝑌

−1

𝑖
)

−1

× (𝑊

𝑖
+ 𝑋

𝑖
𝐴

𝑖
𝑌

𝑖
+ 𝑋

𝑖
𝐵

𝑖
𝑈

𝑖
+ 𝑉

𝑖
𝐶

𝑖
𝑌

𝑖
) 𝑌

−1

𝑖
,

̂

𝐵

𝑖 (
Ψ) = −(𝑋

𝑖
− 𝑌

−1

𝑖
)

−1

𝑉

𝑖
,

̂

𝐶

𝑖 (
Ψ) = 𝑈

𝑖
𝑌

−1

𝑖
,

̂

𝐺

𝑖𝑗 (
Ψ) = (𝑋

𝑗
− 𝑌

−1

𝑗
)

−1

𝑀

𝑖𝑗
,

̂

𝐻

𝑖𝑗 (
Ψ) = (𝑋

𝑗
− 𝑌

−1

𝑗
)

−1

× (𝑋

𝑗
𝐻

𝑖𝑗
𝑌

𝑖
+ 𝑋

𝑗
𝐺

𝑖𝑗
𝑈

𝑖
− 𝑀

𝑖𝑗
𝐶

𝑖
𝑌

𝑖
− 𝑁

𝑖𝑗
) 𝑌

−1

𝑖
.

(29)

Correspondingly, the substitution of the parameterized
matrices in (29) gives the closed-loop matrices as follows:

𝐴

𝑖 (
Ψ) = [

𝐴

𝑖
𝐵

𝑖
̂

𝐶

𝑖 (
Ψ)

̂

𝐵

𝑖 (
Ψ) 𝐶

𝑖
̂

𝐴

𝑖 (
Ψ)

] , 𝑖 ∈ I, (30)

𝐻

𝑖𝑗 (
Ψ) = [

𝐻

𝑖𝑗
𝐺

𝑖𝑗
̂

𝐶

𝑖 (
Ψ)

̂

𝐺

𝑖𝑗 (
Ψ) 𝐶

𝑖
̂

𝐻

𝑖𝑗 (
Ψ)

] , 𝑖 ̸= 𝑗. (31)
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Additionally, in order to be consistent with the construction
of the compensator as in (29), the Lyapunov matrix is
parameterized as

𝑃

𝑖 (
Ψ) = [

𝑋

𝑖
⋆

𝑌

−1

𝑖
− 𝑋

𝑖
𝑋

𝑖
− 𝑌

−1

𝑖

] . (32)

With the parameterizedmatrices in (29)–(32), the conditions
in (14) and (15) then become

𝐴



𝑖
(Ψ) 𝑃

𝑖 (
Ψ) + 𝑃

𝑖 (
Ψ) 𝐴

𝑖 (
Ψ) − 𝛽𝑃

𝑖 (
Ψ) < 0, 𝑖 ∈ I,

(33)

[

𝜒𝑃

𝑖 (
Ψ) ⋆

𝑃

𝑗 (
Ψ) 𝐻

𝑖𝑗 (
Ψ) 𝑃

𝑗 (
Ψ)

] ≥ 0, 𝑖 ̸= 𝑗. (34)

Let 𝑆

𝑖
(Ψ) = [

𝑌𝑖 𝐼𝑛

𝑌𝑖 0
]. Substituting the parameterized

matrices in (30) and (32) into (33) and then pre- and
postmultiplying the obtained expression by 𝑆



𝑖
(Ψ) and 𝑆

𝑖
(Ψ)

yield

[

𝐴

𝑖
𝑌

𝑖
+ 𝐵

𝑖
𝑈

𝑖
+ ⋆ 𝐴

𝑖
− 𝑊



𝑖

⋆ 𝑋

𝑖
𝐴

𝑖
+ 𝑉

𝑖
𝐶

𝑖
+ ⋆

] − 𝛽 [

𝑌

𝑖
𝐼

𝑛

⋆ 𝑋

𝑖

] < 0.

(35)

It proves the equivalence between (26) and (33).
Furthermore, let 𝑇

𝑖𝑗
(Ψ) = [

𝑆𝑖(Ψ) 0

0 𝑆𝑗(Ψ)
]. Substituting the

parameterized matrices in (31) and (32) into (34) and then
pre- and postmultiplying the obtained expression by 𝑇



𝑖𝑗
(Ψ)

and 𝑇

𝑖𝑗
(Ψ), we get

𝑇



𝑖𝑗
(Ψ) [

𝜒𝑃

𝑖 (
Ψ) ⋆

𝑃

𝑗 (
Ψ) 𝐻

𝑖𝑗 (
Ψ) 𝑃

𝑗 (
Ψ)

] 𝑇

𝑖𝑗 (
Ψ)

= [

𝜒𝑄

𝑖 (
Ψ) ⋆

𝑅

𝑖𝑗 (
Ψ) 𝑄

𝑗 (
Ψ)

] ≥ 0.

(36)

The equivalence between (27) and (34) then is proven,
while the positiveness of the parameterized Lyapunov matrix
in (32) is guaranteed. The proof is thus completed.

The parametrization has been proven a successful design
methodology; see, for example, [5]. It enables us to convert
the nonconvex constraint conditions into the convex ones.
In this paper, we propose a family of auxiliary matrices that
are defined in (25) and, moreover, parameterize the output-
feedback controllers. In this way, based on somematrix trans-
formation techniques, we convert the nonconvex constraint
conditions on the controllers into convex ones, which can
be solved efficiently. Moreover, the posed parametrization
method can be extended to other kinds of systems with
switching and state jumps, such as periodical switching
systems and impulsive systems.

4. Illustrative Examples

We now use an example to illustrate the stability analysis
result.

Example 1. Let the switching signal obey Poisson distribution
with its exponent 𝜆 = 1.0. Consider the system with random
switchings and state jumps for the following parameters:

𝐴

1
= [

0 1

0.5 0

] , 𝐵

1
= [

1

0.5

] , 𝐶

1
= [

1

0.5

]



;

𝐴

2
= [

0 1

−1 1

] , 𝐵

2
= [

−1

0.5

] , 𝐶

2
= [

0

1

]



;

𝐻

12
= [

−0.5 0.5

0.5 1

] , 𝐺

12
= [

1

0

] ;

𝐻

21
= [

1 0.5

−1 1

] , 𝐺

21
= [

−0.5

1

] .

(37)

According toTheorem 3, by setting𝜒 = 1.2 and𝛽 = −0.185 to
meet the condition in (16), we can solve a set of the parameters
defined as in (25) and, correspondingly, present the output-
feedback compensators as follows:

̇

�̂� (𝑡) =

̂

𝐴

1
𝑥 (𝑡) +

̂

𝐵

1
𝑦 (𝑡)

= [

−2.0154 −0.8209

−1.3904 −0.4459

] 𝑥 (𝑡) + [

2.4499

1.9873

] 𝑦 (𝑡)

𝑥 (𝑡

+
) =

̂

𝐻

12
𝑥 (𝑡) +

̂

𝐺

12
𝑦 (𝑡)

= [

−0.7140 −0.0803

−0.4240 0.5026

] 𝑥 (𝑡) + [

−0.2406

0.7340

] 𝑦 (𝑡)

𝑢 (𝑡) =

̂

𝐶

1
𝑥 (𝑡) = [−0.4420 −0.7257] 𝑥 (𝑡) ,

̇

�̂� (𝑡) =

̂

𝐴

2
𝑥 (𝑡) +

̂

𝐵

2
𝑦 (𝑡)

= [

−0.5187 1.4607

−0.0858 −2.2714

] 𝑥 (𝑡) + [

−0.1375

2.1958

] 𝑦 (𝑡)

𝑥 (𝑡

+
) =

̂

𝐻

21
𝑥 (𝑡) +

̂

𝐺

21
𝑦 (𝑡)

= [

0.6799 0.9497

−0.2400 −1.5745

] 𝑥 (𝑡) + [

0.3297

0.7073

] 𝑦 (𝑡)

𝑢 (𝑡) =

̂

𝐶

2
𝑥 (𝑡) = [0.6270 −1.5785] 𝑥 (𝑡) ,

(38)

which stabilizes the closed-loop system.

5. Conclusion

We considered the output-feedback stabilization problem for
a kind of dynamical systems undergoing random switchings
and state jumps.We supposed the time evolution of switching
signal to obey Poisson distribution. Therefore, based on
characterizing the asymptotical behavior of the distribution
of switching points, we established the almost surely expo-
nentially stable conditions for the closed-loop system. We
then proposed a parametrization approach, which allows
to solve the dynamical output-feedback control in terms
of matrix inequalities. Finally, a numerical example was
presented to demonstrate the effectiveness of the method.
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