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Construction projects are generally subject to uncertainty, which influences the realization of time-cost tradeoff in project
management. This paper addresses a time-cost tradeoff problem under uncertainty, in which activities in projects can be executed
in different construction modes corresponding to specified time and cost with interval uncertainty. Based on multiobjective robust
optimization method, a robust optimization model for time-cost tradeoff problem is developed. In order to illustrate the robust
model, nondominated sorting genetic algorithm-II (NSGA-II) is modified to solve the project example. The results show that, by
means of adjusting the time and cost robust coefficients, the robust Pareto sets for time-cost tradeoff can be obtained according to
different acceptable risk level, from which the decision maker could choose the preferred construction alternative.

1. Introduction

Widespread uncertainty in projects will directly affect the
achievement of the project schedule and cost management
goals. Some studies also discuss the project time-cost tradeoff
problem and relevant resource constrained project schedul-
ing problem under conditions of uncertainty for the duration
[1, 2].

Under random conditions of uncertainty, most studies
are based on known activity period and cost parameters
probability distribution. Azaron and Tavakkoli-Moghaddam
[3] researched the time-cost tradeoff problem of activity
period when it exhibits exponential and generalized Erlang
distribution. The study constructed a Markov chain to cal-
culate probability distribution of time of completion and
got a multiobjective tradeoff model. Bruni et al. [4] studied
project scheduling problem of activity period when it was
normal distribution. The paper established and compared
three 𝛽-robust scheduling models. Wu et al. [5] proposed a
heuristic approach for solving project scheduling problem,
when activity period was an independent random variable
and renewable resources were a determined value. Klerides
and Hadjiconstantinou [6] researched time-cost tradeoff
problem of activity period when it was a discrete random

variable and proposed a two-stage stochastic integer pro-
gramming approach based on path. Wiesemann et al. [7]
studied project scheduling problem when activity period and
cash flow were discrete random variables and ensured the
scheduling strategy in pursuit of the project’s biggest net
present value. Shou andWang [8] studied project scheduling
problemwhen activity periodwas a discrete random variable.
They proposed robust optimization model and designed
the genetic algorithms for the model. Wang [9] researched
project scheduling problem when time and cost are discrete
random variables. He proposed DSPSP model in pursuit of
the biggest expected value of net present value and solved
two instances to confirm the superiority of the model by
simulated annealing algorithm. However, due to the one-off
characteristics of projects, in most cases, it is difficult to get
the accurate information on the probability distributions of
these parameters [10].

Under circumstances without accurate probability dis-
tributions, some researches also use nominal values and
their variation ranges to indicate random parameters, giving
parameters interval uncertainty [11]. Janak et al. [12] studied
the activity period intervals with project scheduling problem
of uncertainty. Robust optimizationmodel containing certain
parameters only was obtained by introducing a few auxiliary
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variables and constraints. Given the uncertain parameters,
feasibility of the tolerance interval, and reliability standards,
the model can produce optimal solutions under the worst
conditions. Hazir et al. [13] studied the project equilibrium
problems of activity cost which has interval uncertainty
under BOT model. The research established and compared
three different robust optimizationmodels of time-cost trade-
off problems and explored exact and heuristic algorithms
for those models. However, these studies only considered
the situations of uncertainty in activity time or cost without
taking into account the uncertainties of both time and cost in
the project [14, 15]. Therefore, it is necessary to research time
and cost tradeoff problems with uncertainties of both time
and cost.

Discrete time-cost tradeoff problem (DTCTP) is the
classic time-cost equilibrium problem [16, 17] in the project.
This paper researched the DTCTP problem with uncertain-
ties of both time and cost and used multiobjective robust
optimization to build robust model of time and cost and at
last employed NSGA-II to analyze engineering example.

2. Multiobjective Robust Optimization

A multiobjective optimization model is shown below:

min
𝑥

𝑓
𝑚
(𝑥, 𝑝) , 𝑚 = 1, . . . ,𝑀;

s.t.: 𝑔
𝑙
(𝑥) ≤ 0, 𝑙 = 1, . . . , 𝐿,

(1)

where 𝑓
𝑚

refers to the objective function of number (𝑚),
𝑚 = 1, . . . ,𝑀. 𝑔

𝑙
stands for constraint function of number

(𝑙), 𝑙 = 1, . . . , 𝐿. 𝑥 is decision vector, and 𝑝 is parameter
vector. As 𝑝 is uncertain, its value range can be shown as
tolerance region. The solid black spots in 𝑝 tolerance region
are nominal value 𝑝

0
, which is the most likely value. When

𝑥 = 𝑥
0
, the value range of functional vector can be shown as

objective sensitivity region (OSR) in𝑓, and solid black spot is
nominal value𝑓(𝑥

0
, 𝑝
0
). VectorΔ𝑓 = (Δ𝑓

1
, . . . Δ𝑓

𝑀
) specifies

acceptable objective variation region (AOVR) of 𝑓(𝑥
0
, 𝑝) in

the 𝑓-space. If OSR of 𝑓(𝑥
0
, 𝑝) is in the 𝑓(𝑥

0
, 𝑝) acceptable

target change area, 𝑥
0
is the robust solution.

In the sensitivity analysis of the objective function, worst-
case objective sensitivity region (WCOSR) can be used to
estimate the target sensitive areas. WCOSR of 𝑓(𝑥

0
, 𝑝) is

through 𝑓(𝑥
0
, 𝑝) sensitive area of the target objective func-

tion corresponding to the maximum point and the straight
line parallel to the axis of the enclosed area. If WCOSR of
𝑓(𝑥
0
, 𝑝) is in the acceptable target change areas, OSR of

𝑓(𝑥
0
, 𝑝)must be also in its acceptable target change areas. So

𝑥
0
is the robust solution of the model and vice versa [18, 19]

(see Figure 1).

3. Robust Model for Time-Cost
Tradeoff Problem

DTCTP issues involve a project network 𝐺(𝑁,𝐴), where 𝑁
is the set of all activities of the project and 𝐴 is a collection
of logical relationships among activities. Each activity in the
network can work in a different construction model, and

each constructionmodel has its corresponding time and cost.
Decision-maker can choose different construction schemes,
that is, distribute different construction models to different
activities, in order to achieve different time-cost equilibrium
in projects. However, there are many uncertainties in the
process of implementing the project. These factors make
the activity time and cost uncertain and bring difficulties
in the project’s time and cost. For the DTCTP problems
with interval of uncertainty in the activity time and cost,
the paper uses multiobjective robust optimization method to
analyze the problems and construct model to achieve time-
cost tradeoff robust optimization model. The equations are
showed as follows:

min𝑇
0
= max
𝑝

𝐽

∑
𝑗=1

∑
𝑚∈𝑀𝑗

𝑤
𝑝

𝑗
𝑑
𝑗𝑚

𝑥
𝑗𝑚

, (2)

min𝐶
0
=
𝐽

∑
𝑗=1

∑
𝑚∈𝑀𝑗

𝑐
𝑗𝑚

𝑥
𝑗𝑚

, (3)

s.t. ∑
𝑚∈𝑀𝑗

𝑥
𝑗𝑚

= 1 𝑥
𝑗𝑚

∈ {0, 1} , (4)
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𝐽
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𝑗
𝑑
𝑗𝑚

𝑥
𝑗𝑚

)
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𝐽
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𝑤
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𝑗
𝑑
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)

−1
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(5)

∑
𝐽

𝑗=1
∑
𝑚∈𝑀𝑗

Δ𝑐
𝑗𝑚

𝑥
𝑗𝑚

∑
𝐽

𝑗=1
∑
𝑚∈𝑀𝑗

𝑐
𝑗𝑚

𝑥
𝑗𝑚

≤ 𝑅𝐶, (6)

𝑤
𝑝

𝑗
= {

1 𝑗 ∈ 𝑝

0 𝑗 ∉ 𝑝,
(7)

𝑗 = 1, . . . , 𝐽, (8)

𝑝 = 1, . . . , 𝑃. (9)

In the model, the nominal time of the project is sum of
each activity nominal time in the critical path for the network.
Nominal project cost is sum of each activity nominal cost in
the network.𝑑

𝑗𝑚
and 𝑐
𝑗𝑚

are nominal duration and cost under
model 𝑚 of activity 𝑗. The variable 𝑤

𝑝

𝑗
is used to determine

whether activity 𝑗 is on the path 𝑝. If 𝑗 is on the path, it is 1,
otherwise 0. 𝑥

𝑗𝑚
, a decision variable, is 1 if activity 𝑗 is in m

mode execution, and 0 otherwise. Formula (4) ensures that
each activity has one construction model only. Equations (5)
and (6) are robust constraints, where𝑅𝑇 and𝑅𝐶 are duration
and cost robust coefficients, respectively.They reflect the level
of risk which decision-maker can accept. 𝑅𝑇 ⋅ 𝑇

0
and 𝑅𝐶 ⋅ 𝐶

0
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Figure 1: Multiobjective robust optimization principle.

specify an acceptable change area of project duration and cost
of scheduling scheme in multiobjective function space. If the
project duration and cost sensitive areas under the worst-case
conditions fall within the acceptable varied target areas, that
is, (10) are satisfied simultaneously, the scheme is robust:

max
𝑝

𝐽

∑
𝑗=1

∑
𝑚∈𝑀𝑗

𝑤
𝑝

𝑗
(𝑑
𝑗𝑚

+ Δ𝑑
𝑗𝑚

) 𝑥
𝑗𝑚

≤ (1 + 𝑅𝑇) ⋅ 𝑇
0
,

𝐽

∑
𝑗=1

∑
𝑚∈𝑀𝑗

(𝑐
𝑗𝑚

+ Δ𝑐
𝑗𝑚

) 𝑥
𝑗𝑚

≤ (1 + 𝑅𝐶) ⋅ 𝐶
0
.

(10)

In formula (10), Δ𝑑
𝑗𝑚

and Δ𝑐
𝑗𝑚

are the duration and cost
upper limit change value of activity 𝑗 in the pattern 𝑚.
Simplifying (10) can get robust constraints (5) and (6).

4. Modified NSGA-II Algorithm

NSGA-II algorithm is the modified version of nondominated
sorting genetic algorithm. Because of its excellent property,
this algorithm has been used widely and gradually became a
reference multiobjective algorithm [20, 21]. This paper mod-
ified the simulated binary intersection and the polynomial
mutation so as to assure the feasibility of construction plans
denoted by chromosomes after intersections and mutations.
By the modified algorithm, the duration-cost equilibrium
robust model under specific example was solved in the next
parts.

The main steps of modified NSGA-II algorithm are as
follows.

(1) Population Initialization. The initial population 𝑃
𝑡
of

size 𝑚 is generated randomly where 𝑡 = 0. Individuals are
encoded by real numbers and the chromosome length is
equal to the number of activities in the project. The genes
at different locations indicate different construction modes.
For instance, if an individual’s gene at location 3 is 2, that is,
𝑥
32

= 1, it means the construction mode of activity 3 is 2.
(2) Filial generation 𝑄

𝑡
is produced through dual tour-

nament that mainly consists of noninferior sorting and

crowding distance calculating for individuals of the parent
generation 𝑃

𝑡
. The noninferior sorting works as

(a) finding out noninferior solutions from 𝑃
𝑡
and putting

them into noninferior class 𝐹
𝑖
where 𝑖 = 1;

(b) ending sorting if the number of rest individuals is 0
and going to (c) otherwise;

(c) continuing to find out noninferior solutions from the
rest of the 𝑃

𝑡
and putting them into noninferior class

𝐹
𝑖
where 𝑖 = 𝑖 + 1 and going to (b).

The crowding distance indicates the density of target
function area. Sorting individuals that belong to the same
noninferior class according to their target values and calcu-
lating the average length of sides of the cube constructed by
two adjacent individuals, the crowding distance CD(𝑖) can
be obtained as the sum of the average length of sides under
different target values. When the objective function value of
some individual 𝑖 reaches the maximum or the minimum,
CD(𝑖) is defined as Inf.

After that, two randomly chosen individuals are com-
pared. If they fall into different noninferior classes, the one
within higher class remains in the filial generation 𝑄

𝑡
. Oth-

erwise, the individual with bigger crowding distance keeps in
the filial generation 𝑄

𝑡
. The process continues until the size

of the filial generation reaches the designed requirement.
(3) One-point intersection is practiced with the intersec-

tion probability of𝑃
𝑐
. Two parent individuals of𝑄

𝑡
are chosen

and they exchange their genes at random location of 𝑞cos
(1 ≤ 𝑞cos ≤ 𝐽), thus producing two filial individuals.

(4) Uniform mutation would occur on individuals of 𝑄
𝑡

with themutation probability of𝑃
𝑚
. One individual is chosen

and its genes will be changed with a small probability.
(5) Population Aggregation. A new population can be got

by aggregating the parent and filial generations (𝑅
𝑡
= 𝑃
𝑡
∪

𝑄
𝑡
). In 𝑅

𝑡
, individuals are sorted by their noninferior classes

first. Given the same noninferior class, they will be sorted by
crowding distance then.The best m individuals are chosen to
form the next population 𝑃

𝑡+1
.

(6) Ending Judgment. In this paper, when the designed
number of generations is reached, the calculation ends and
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Table 1: Engineering example.

Activity (𝑗) Immediate predecessor Construction model (m) 𝑑
𝑗𝑚
/day Δ𝑑

𝑗𝑚
/day 𝑐

𝑗𝑚
/ten thousand Δ𝑐

𝑗𝑚
/ten thousand

1
1 28 8 46 4
2 40 8 36 7
3 48 4 24 7

2 1
1 30 9 60 6
2 36 7 48 9
3 40 4 36 10

3 1
1 30 9 90 9
2 44 8 80 16
3 66 6 64 19

4 1
1 24 7 90 9
2 32 6 70 14
3 40 4 60 18

5 2.3
1 44 13 40 4
2 48 9 35 4
3 56 5 30 9

6 4
1 28 8 80 8
2 36 7 64 12
3 48 4 36 4

7 5.6
1 18 5 60 6
2 30 6 48 9
3 36 3 44 13

results will be printed. Otherwise, calculation goes to step (2)
with 𝑡 = 𝑡 + 1.

5. Example Analysis

5.1. Engineering Example. A project is shown as in Table 1.

5.2. Result and Discussion. This paper uses NSGA-II algo-
rithm and the above example to solve time-cost robust
tradeoff model. In the algorithm parameters, we define the
size of the population of algorithm 𝑚 = 50, evolving algebra
𝑛 = 1000, crossover probability 𝑝

𝑐
= 0.85, and mutation

probability 𝑝
𝑚

= 0.01. Table 2 is Pareto solutions which are
calculated under different sums. When RT and RC are not
0.3 at the same time, the solutions are robust Pareto. When
RT and RC are 0.3 at the same time, the solution is Pareto.

As Table 2 shows, when RC is 0.3, although Pareto front
porch has intersection in different RT, the number of Pareto
solutions is increasing with RT increasing from 0.1 to 0.3.
So relevant Pareto front porch area is extending. And, as
RT increases, robust Pareto frontier constantly moves left
gradually approaching the nominal Pareto frontier.

In Figure 3, when RT is 0.2, there is intersection between
robust Pareto front porch and nominal Pareto. Similar to
Figure 2, when RT increases from 0.3 to 0.1, the number of
Pareto solutions is increasing, and the corresponding Pareto
front porch area also is expanding and moving to the bottom
left gradually approaching the nominal Pareto frontier.

To sum up, increasing duration or cost robust coeffi-
cient will obtain more alternative scheduling plans within
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Figure 2: Pareto front porch under different RT.

certain ranges, including some better ones with higher
risks. Decision-maker needs to make a tradeoff between
the optimization of alternative scheduling plan and the
acceptable level of risk. By adjusting the robust coefficient of
the model, we can obtain robust Pareto solutions of time-cost
tradeoff under different acceptable risk levels in order to help
decision-maker choose better construction plans.
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Table 2: Pareto solution under different RT and RC.

RT RC Serial number 𝑇
0

𝐶
0

Scheduling plan

0.1 0.3
1 172 349 3 1 1 3 2 3 3
2 180 320 3 3 1 3 3 3 3
3 206 294 3 3 3 3 3 3 3

0.2 0.3

1 134 363 1 3 1 3 2 3 1
2 142 358 1 3 1 3 3 3 1
3 146 348 1 3 2 3 3 3 1
4 152 347 1 3 1 3 2 3 3
5 154 336 3 3 2 3 1 3 1
6 158 331 3 3 2 3 2 3 1
7 166 324 3 3 2 3 1 3 2
8 170 319 3 3 2 3 2 3 2
9 176 315 3 3 2 3 2 3 3
10 178 314 3 3 2 3 3 3 2
11 184 310 3 3 2 3 3 3 3
12 188 308 3 3 3 3 1 3 2
13 192 303 3 3 3 3 2 3 2
14 198 299 3 3 3 3 2 3 3
15 200 298 3 3 3 3 3 3 2
16 206 294 3 3 3 3 3 3 3

0.3 0.1 1 120 466 1 1 1 1 1 1 1
2 124 461 1 1 1 1 2 1 1

0.3 0.2

1 120 422 1 1 1 1 1 3 1
2 122 420 1 1 1 3 1 2 1
3 124 415 1 1 1 3 2 2 1
4 126 390 1 2 1 2 1 3 1
5 130 378 1 3 1 2 1 3 1
6 134 358 1 3 2 3 1 3 1
7 146 351 1 3 1 3 2 3 2
8 154 341 3 3 1 3 2 3 1
9 166 339 3 3 1 2 2 3 2

0.3 0.3

1 120 422 1 1 1 1 1 3 1
2 122 420 1 1 1 3 1 2 1
3 124 415 1 1 1 3 2 2 1
4 126 390 1 2 1 2 1 3 1
5 130 378 1 3 1 2 1 3 1
6 134 358 1 3 2 3 1 3 1
7 138 353 1 3 2 3 2 3 1
8 146 346 1 3 2 3 1 3 2
9 150 341 1 3 2 3 2 3 2
10 154 336 3 3 2 3 1 3 1
11 158 331 3 3 2 3 2 3 1
12 166 324 3 3 2 3 1 3 2
13 170 319 3 3 2 3 2 3 2
14 176 315 3 3 2 3 2 3 3
15 178 314 3 3 2 3 3 3 2
16 184 310 3 3 2 3 3 3 3
17 188 308 3 3 3 3 1 3 2
18 192 303 3 3 3 3 2 3 2
19 198 299 3 3 3 3 2 3 3
20 200 298 3 3 3 3 3 3 2
21 206 294 3 3 3 3 3 3 3
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6. Conclusions

This paper studies the time-cost tradeoff problems where
activity duration and cost present interval uncertainties
under multimodel in the project. We build time-cost tradeoff
robust model based on multiobjective robust optimization
and apply the improved NSGA-II algorithm to solve the
model under specific engineering examples. The results
showed that increasing time robust coefficient RT or cost
robust coefficient RC offers more alternative scheduling
plans within certain ranges, including some better options
with higher risks. Decision-maker needs to make a tradeoff
between the optimization of alternative scheduling plan and
the acceptable risk levels. By adjusting the robust coefficient
of the model, we can obtain robust Pareto solutions of time-
cost tradeoff under different acceptable risk levels in order
to help decision-maker choose better construction plans. In
the future, researches will consider the effect of resource
constraints on this basis and go on to study time-cost tradeoff
problems of resource constraint under uncertain conditions.
At the same time, we will make better intelligent algorithms
to improve model solving efficiency.
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